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Abstract—This paper deals with structural controllability of

a Linear Time Invariant (LTI) composite system consisting of

several circuits/subsystems. We consider subsystems with struc-

turally similar state matrices, i.e., the zero/non-zero pattern of

the state matrices of the subsystems are the same, but dynamics

can be different due to different numerical values. Structurally

similar subsystems arise in large circuits implemented using many

similar smaller circuits and agent-based networks consisting of

homogeneous agents. The subsystems may not be structurally

controllable individually; however, structural controllability of

the composite system can be achieved by sharing state informa-

tion. Sharing of information among subsystems incurs cost and

our aim is to design a structurally controllable composite system

with minimum information sharing. Minimizing information

sharing is the same as minimizing the number of interaction

links between subsystems, referred to as interconnections. An

optimal network topology is one with minimum number of

interconnections. This paper presents a closed-form expression

for the minimum number of interconnections for structural

controllability and derives a polynomial time algorithm to find

an optimal network topology. The algorithm is based on a

minimum weight perfect matching algorithm and a so-called edge

reconstruction process. The minimum number of interconnections

required is formulated in terms of two indices we define in the

paper: maximum commonality index (aN ) and dilation index
(bI ). Loosely speaking, more connectedness of subsystems leads

to lower total value of aN and bI . Further, aN decreases if the

subsystems have fewer number of connected components. We

apply and verify our general result to special cases that arise

in control, where the minimum number can be more directly

obtained. The special cases considered are structurally cyclic

subsystems, irreducible subsystems, and subsystems in controller

canonical form.

Index Terms—Structural controllability, Composite systems,

Communication cost, Minimizing interconnections, Large-scale

systems, Agent-based systems.

1. INTRODUCTION

Recently there has been immense research advance in
the area of large-scale dynamical systems collectively using
concepts from control theory, network science and statistical
physics [1]. Very often these networks consist of smaller
entities called subsystems interacting with each other to form
a collective system, referred to as the composite system.
Composite systems are present in numerous applications, that
include electric circuits [2], multi-agents [3], and power net-
works [4], where large networks are built by interconnecting
smaller subsystems/circuits. Composite systems are also used
in the parallelization of a larger big task into smaller subtasks
which is to be implemented by smaller subsystems/circuits.

Many large systems and circuits can only be analyzed at
a subsystem level. These subsystems can have exactly same
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intra-subsystem structure but are not necessarily identical due
to different paramters. There exists a practically important
class of composite systems, including robot swarms, power
grids and biological systems, consisting of similar subsys-
tems (circuits) interacting with each other for performing a
desired task. Robots manufactured by the same manufacturer
usually have the same structural pattern even if the numerical
entries vary slightly due to the manufacturing variations of
the components used. Design of optimal composite systems
is relevant in a swarm of robots with homogeneous structure
where the communication topology can change over time, or
where robots may join or leave the swarm over time [5].

The interaction links between subsystems are referred to
as interconnections. An interconnection is a directed edge
between two states of distinct subsystems through which one
state influences the other state by information transfer. In
most of the applications, it is desired to achieve the intended
performance, say controllability, by keeping the amount of
information transfer the least because of security reasons,
capacity constraints in communication, and to minimize the
communication cost and delay. For instance, in multi-agent
networked system, the robot swarm consists of many agents.
In a formation control or consensus application with selected
leaders, only a few agents receive external input and hence
each agent is not necessarily controllable. Input addition to
achieve controllability is not permissible as the input structure
is predefined; however, interconnection links between agents
are often allowed. Thus in a robot swarm, the agents commu-
nicate their state information with other agents [6]. In electric
circuit design using interconnection network, the circuit mod-
ules are connected to a network to form an interconnected
system over which the modules communicate to one another
by sending packets instead of connecting them using dedicated
physical wires [2]. An optimal network design is crucial here
to obtain a modular design.

This paper aims to design a controllable optimal network
topology of the composite system, optimal in the sense of
amount of information transfer between subsystems. Since
information transfer among subsystems are carried out using
the interconnections and since each interconnection link cor-
responds to a transfer of one state information, an optimal net-
work topology with minimum information transfer is a network
topology with minimum number of interconnections. To this
end, we identify what state information to be communicated
and to which agents it should be communicated so as to obtain
a controllable optimal network topology design. The minimum
number of interconnections required is formulated in terms of
two indices we define in the paper; maximum commonality
index (aN ) and dilation index (bI ).

The optimal network topology design problem with similar
objectives has been addressed for numerical systems in [3], [7].



The approaches given in [3], [7] require the system matrices to
be known precisely. Typically, complex networks are charac-
terized by large system dimension and in most cases the system
parameters are not known precisely because of various reasons
that include uncertainties in the system model and time varying
link weights of the graph [1]. Hence, for addressing system
theoretic questions related to these networks, for instance
controllability and feedback selection, many papers use the
topological characteristics of the system. Control theoretic
analysis of complex networks, when only the graph of the
network is known, is done using ‘structural analysis’ [8].
We perform our analysis from a structural framework, where
instead of the numerical matrices of the system, the structures
or sparsity patterns of the system matrices are used. Given the
sparsity pattern of a set of subsystems, we identify a minimum
cardinality set of interconnections that has to be established
between the subsystems so that the networked system achieves
structural controllability.
We summarize this paper’s contributions below.
• We introduce the indices, maximum commonality index
(aN ) and dilation index (bI ), to characterize the minimum
number of interconnections required for structural control-
lability of composite system (Theorem 4.1). These indices
quantify the connectedness of the system which we emphasize
in Remark 4.9.
• Given a set of structured subsystems with identical struc-
tured state matrices, we find a closed-form expression for the
minimum number of interconnections the subsystems should
establish amongst one another such that the composite system
is structurally controllable (Theorem 4.1).
• We propose a polynomial time complexity algorithm to find a
set of minimum cardinality interconnection edges to solve the
optimal network topology design problem given in Problem 2.3
(Algorithm 4.1 and Theorem 4.7).
• For each subsystem, the solution obtained using Algo-
rithm 4.1 provides a set of subsystems that it should communi-
cate with and the state information that must be communicated
so that the composite system is structurally controllable using
the minimum number of interconnections.
• The results and algorithm presented in this paper apply to
the multi-input case. This is discussed in Section 5-C.
Related Work: Structural controllability of LTI systems is
widely studied (see [1], [9], [10], [11] and references therein).
For necessary and sufficient conditions related to various
structural properties of the systems, see the survey paper [12].
For various applications in structural control see [13]. We
briefly describe the most relevant literature here.

Composite systems consisting of subsystems with similar
dynamics is studied in [14], [15]. Paper [14] formulated
conditions for checking various system theoretic properties of
composite systems when all subsystems are identical. Analysis
of various system theoretic properties of composite systems
with symmetrically interconnected subsystems is given in [15].
The controllability and observability of composite systems
are addressed in papers [16], [17], [18] and [19]. Decen-
tralized controller synthesis of composite systems is studied
in [15] when the subsystems have identical dynamics and
the interconnections are symmetric. Optimization problems
in LTI composite systems are also studied in many papers
for various problem settings. For instance, optimal network

design for efficient average consensus of multi-agent systems
is considered in [3]. Paper [20] addressed consensus in multi-
agent systems when the communication topology of the agents
have a spanning tree. On the other hand, design of optimal
trajectory for establishing connectivity of spatially distributed
dynamic agents is addressed in [21]. Optimal topology design
is formulated as a mixed-integer semi-definite programming
problem in [7] when there is a trade-off between cost of
communication links and the closed-loop performance. While
all these papers use numerical system matrices in their anal-
ysis, our approach is to use structural analysis for an optimal
topology design in large complex networks. Moreover, our
focus is on the structural controllability of the network.

Structural analysis of composite systems is studied in
literature where various conditions for checking structural
controllability of composite systems in terms of subsystems
are given (see [5], [22], [23], [24], [25], [26] and references
therein). The algorithm given in [5] accomplishes this using a
distributed algorithm. In [26], a graphic notion referred to as
‘g-cactus’ is defined using which a sufficient condition is given
for structural controllability of composite systems. This paper
solves optimal topology design for structural controllability
of composite systems by minimizing the number of commu-
nication links among subsystems. Specifically, we focus on
composite systems composed of homogeneous (structurally
identical) subsystems. We had addressed this problem for
the case of irreducible1. heterogeneous subsystems in [27].
Recently, the constrained version of the problem, i.e., when the
interconnection edges that can be included is constrained to a
specified set, is shown to be NP-hard and a 2-approximation
algorithm is given in [28]. Addition of the minimum num-
ber of edges in the system digraph to render a structurally
controllable system are addressed in many papers including
[29] and [30]. In contrast to [29], [30] in which insertion of
an edge between any two states is allowed, we only allow
interconnections between subsystems and the structure of the
individual subsystems are unaltered.

Robustness of interdependent networks under node attacks is
studied in [31] and a redundant design approach is proposed
using node and edge backup (addition). Structural perturba-
tions of structured systems in the context of strong structural
controllability is studied in [32] and an upper bound on the
number of edges that can be added/deleted to achieve strong
structural controllability is derived. Paper [33] addressed
structural perturbations in undirected networks with special
topologies and proposed a method to synthesize structural and
strong structural networks. In this paper, we analyze (weak)
structural controllability in general (no structural constraint
on the topology of the subsystem other than homogeneous)
composite systems and derive the exact value of the minimum
number of edges which when added into the composite system
guarantee structural controllability. Further, we only consider
edge perturbations and no addition of states or inputs are
allowed as in [31]. Papers [34], [35] proved that selecting a
minimum cost edge set that when added into the input pattern
make the structured system structurally controllable is NP-
hard. However, we focus on addition of minimum number
of edges in the state matrix pattern of the composite system

1A subsystem is said to be irreducible if the associated state digraph is
strongly connected



in contrast to addition into the input pattern. We prove that
this problem is polynomial-time solvable and also provide a
polynomial-time algorithm. The key difference between the
problem considered in this paper and that in [34], [35] is
that we only allow addition of interconnection edges and the
structure of the individual subsystems are unaltered.
Organization: The organization of the rest of the paper is
as follows: in Section 2, we formulate the optimal network
topology design problem for structured composite systems. In
Section 3, we give few graph theoretic preliminaries used in
the sequel and some existing results. In Section 4, we first find
the minimum number of interconnections required to make a
composite system structurally controllable when state matrices
of all the subsystems are structurally identical. Then we give
a polynomial time algorithm for solving the optimal network
topology design problem. In Section 5, we demonstrate our
algorithm using an illustrative example and also discuss a few
special cases and the extension to the multi-input case. In
Section 6, we give concluding remarks and future directions.

2. PROBLEM STATEMENT

Structural representation of an LTI system with dynamics
ẋ(t) = Ax(t)+Bu(t), where A 2 Rn⇥n and B 2 Rn⇥m, is given
by Ā2 {0,?}n⇥n and B̄2 {0,?}n⇥m. Here R denotes the set of
real numbers and ? denotes a free independent parameter. The
pair (Ā, B̄) structurally represents a system (A,B) if it satisfies
the following:

Āpq = 0 whenever Apq = 0, and
B̄pq = 0 whenever Bpq = 0. (1)

We refer to (A,B) that satisfies (1) as a numerical realization
of the structured system (Ā, B̄). Note that (Ā, B̄) does not have
numerical values but only indicates locations where non-zero
entries are possible. Thus for a given (A,B), (Ā, B̄) structurally
represents a class of control systems corresponding to all
possible numerical realizations. The key idea in structural
controllability is to determine controllability of the class
of systems represented by (Ā, B̄). Specifically, we have the
following definition.

Definition 2.1 ([8]). The structured system (Ā, B̄) is said to be
structurally controllable if there exists at least one controllable
numerical realization (A,B).

Remark 2.2. Even though the definition of structural control-
lability requires only one controllable realization, it is known
that if a system is structurally controllable, then ‘almost all’
numerical realizations of the same structure is controllable
[36]. In other words, structural controllability is a generic
property.

Now we describe structural representation of a composite
system consisting of k subsystems with structurally identical
state matrices. Two matrices are referred to as structurally
identical if their zero/non-zero pattern are the same. Consider k
subsystems with structured state matrix Ās 2 {0,?}ns⇥ns . Thus
Ās denotes the structured state matrix for every subsystem and
each subsystem has dimension ns. Although structured state
matrix of every subsystem is Ās, each subsystem can possibly
have a different numerical realization of Ās. This is important
because building subsystems with exactly identical dynamics

is not practically feasible. Let B̄i 2 {0,?}ns⇥mi denote the
structured input matrix for the ith subsystem, for i = 1, . . . ,k.
Different agents in a networked system receive control signals
differently due to which the input matrices are not structurally
identical. The pair (Ās, B̄i) is referred to as the ith subsystem
and is denoted by Si. With this notation, the dynamics of Si is

ẋi(t) = Āsxi(t)+ B̄iui(t), for i = 1, . . . ,k. (2)

We do not assume that each subsystem is individually struc-
turally controllable. To achieve structural controllability, one
needs to interconnect subsystems. Let Ēi j 2 {0,?}ns⇥ns denote
the structured connection matrix from S j to Si. With the struc-
tured connection matrices, the composite structured system of
k subsystems has the following dynamics:

ẋ(t)=

2

664

Ās Ē12 · · · Ē1k
Ē21 Ās · · · Ē2k

...
. . .

. . .
...

Ēk1 Ēk2 · · · Ās

3

775

| {z }
ĀT

x(t)+

2

664

B̄1 0 · · · 0
0 B̄2 · · · 0
...

. . .
. . .

...
0 0 · · · B̄k

3

775

| {z }
B̄T

u(t),(3)

where ĀT 2 {0,?}nT⇥nT with nT = k⇥ns and B̄T 2 {0,?}nT⇥mT

with mT = Âk
i=1 mi. Here, x = [xT

1 , . . . ,x
T
k ]

T with xi =
[xi

1, . . . ,x
i
ns ]

T and u = [uT
1 , . . . ,u

T
k ]

T with ui = [ui
1, . . . ,u

i
mi
]T . The

system (ĀT , B̄T ) is said to be a structured composite sys-
tem formed by subsystems (Ās, B̄1), . . . ,(Ās, B̄k) interconnected
through Ēi j’s, for i, j 2 {1, . . . ,k}.

Our aim in this paper is to design a structurally controllable
optimal network topology of (ĀT , B̄T ). Since we cannot change
the dynamics of the individual subsystem, optimality is with
respect to designing interconnection matrices. Formally, the
optimization problem we consider is as follows:

Problem 2.3. Given k subsystems with structurally identical
state matrices Ās 2 {0,?}ns⇥ns and a structured input matrix
B̄T 2 {0,?}nT⇥mT consisting of input matrices B̄i 2 {0,?}ns⇥mi

as given in (3), for i 2 {1, . . . ,k}, where nT = k ns and mT =
Âk

i=1 mi, find
Ā?

T 2 arg min
Ā0T2K

��Ā0T
��

0 ,

where K := {Ā0T 2 {0,?}nT⇥nT : all (ns ⇥
ns) diagonal submatrices of Ā0T are Ās and (Ā0T , B̄T ) is
structurally controllable}.

Here, k·k0 denotes the zero matrix norm2. The set K denotes
the set of all feasible solutions of Problem 2.3. Two matrices
Ā0T and Ā00T in K differs only in their off-diagonal blocks. Note
that, for Ēi j = {?}ns⇥ns for all i, j, the composite structured
system is structurally controllable if B̄T 6= 0 and hence the
set K is non-empty. Solving the minimum interconnection
problem is same as minimizing the non-zero entries in matrices
in K, since for all matrices in K the diagonal blocks are
fixed and optimization is possible only corresponding to the
off-diagonal blocks. This in turn is same as minimizing the
interconnections.

Remark 2.4. Note that an interconnection link corresponds
to a ? entry in Ēi j and it can be also considered as an output
of subsystem S j fed as input to subsystem Si.

2Although k·k0 does not satisfy some of the norm axioms, the number
of non-zero entries in a matrix is conventionally referred to as the zero norm.



As a first step to solving Problem 2.3 and for better insight,
we first consider a case where only the first subsystem receives
an input. That is, B̄1 2 {0,?}ns⇥1 and B̄i = 0 for all i 2
{2, . . . ,k}. Then B̄T 2 {0,?}nT⇥1 and recall from the structure
of B̄T that an input of a particular subsystem connects to
arbitrary number of states of that subsystem only. Interconnec-
tions are essential for the composite system to be structurally
controllable. The single input case, with only one of the agent
receiving an input is relevant in many applications, including
single leader multi-agent systems [6] and single source drug
target identification [13]. Later in Section 5-C we show that the
results obtained for the single input case extend to the multi-
input case also. The constructions described in Section 3 is
given for a multi-input as these descriptions are later needed
while explaining the multi-input case in Section 5-C.

3. REVIEW OF ESSENTIAL GRAPH THEORETIC RESULTS

The key motivation behind considering graphs for analyzing
structured systems is because we can represent the influences
of states and inputs on each state through a directed graph. In
order to capture the interactions of states and inputs efficiently,
we construct digraphs corresponding to a structured system
(Ā, B̄) as described below.

Consider a structured system3 (Ā, B̄), where Ā 2 {0,?}n⇥n

and B̄2 {0,?}n⇥m. Then the state digraph is D(Ā) := (VX ,EX ),
where VX = {x1, . . . ,xn} and (xp,xq)2 EX , Āqp = ?. Now we
define the system digraph as D(Ā, B̄) := (VX [VU ,EX [EU ),
where VU = {u1, . . . ,um} and (up,xq)2 EU , B̄qp = ?. A state
xq is said to be accessible if there exists a path from some input
node up to xq. A digraph is said to be strongly connected if
for each ordered pair of vertices (vp,vq), there exists a path
from vp to vq. Using the strong connectedness of the digraph
D(Ā) one can check the accessibility of states {x1, . . . ,xn}.
A strongly connected component (SCC) is a maximal strongly
connected subgraph of a digraph [37]. All states of a structured
system are accessible if and only if every SCC consists of at
least one state that is accessible. We characterize the SCCs as
per the following definition.

Definition 3.1. In a digraph, an SCC ˆN is said to be non-top
linked if there are no directed edges from the nodes of other
SCCs into any node in ˆN .

All states in a subsystem are accessible if each non-top
linked SCC contains an accessible state [11]. While accessi-
bility of all states is necessary for structural controllability, it
is not sufficient. In addition to accessibility the system digraph
should satisfy a no-dilation condition. Presence of dilations in
D(Ā, B̄) can be easily checked using a matching condition on
the system bipartite graph B(Ā, B̄) defined below.

Given a bipartite graph Gb = ((Vb, eVb),Eb), where Vb [ eVb
denotes the set of nodes satisfying Vb\eVb = /0 and Eb✓Vb⇥eVb
denotes the set of undirected edges, a matching Mb is a
collection of edges Mb ✓ Eb such that no two edges in the
collection share the same endpoint. That is, for any (p,q) and
(w,v) 2 Mb, we have p 6= w and q 6= v, where p,w 2 Vb and
q,v 2 eVb. A vertex q 2 eVb is said to be a right unmatched
vertex with respect to a matching Mb if there does not exist

3Typical structured system is denoted by (Ā, B̄) and the related concepts
can be extended to specific system under consideration.

a vertex p 2Vb such that (p,q) 2Mb. A matching Mb is said
to be a perfect matching of the bipartite graph Gb if |Mb| =
min(|Vb|, |eVb|). Further, given Gb and a cost function c from the
set Eb to the set of non-negative real numbers R+, a minimum
cost perfect matching, referred to as an optimum matching,
is a perfect matching Mb such that Âe2Mb c(e) 6 Âe2M0b

c(e),
for every perfect matching M0b in Gb [37]. There exists an
equivalent matching condition on a bipartite graph denoted
by B(Ā, B̄), for the no-dilation condition. The construction of
B(Ā, B̄) is explained here in two stages. In the first stage,
the state bipartite graph is B(Ā) := ((VX 0 ,VX ),EX ) is con-
structed, where VX = {x1,x2, . . . ,xn}, VX 0 = {x01,x

0

2, . . . ,x
0
n} and

(x0q,xp) 2 EX , (xp,xq) 2 EX . Subsequently, the system bipar-
tite graph is B(Ā, B̄) :=((VX 0 ,VX [VU ),EX [EU ) is constructed,
where VU = {u1,u2, . . . ,um} and (x0q,up)2 EU , (up,xq)2EU .
In B(Ā, B̄), the left vertex set indicates the equations, while the
right vertex set indicated the variables. The following results
relates B(Ā, B̄) and the no-dilation condition.

Proposition 3.2. [38, Theorem 2] A digraph D(Ā, B̄) has no
dilation if and only if the bipartite graph B(Ā, B̄) has a perfect
matching.

Using the state accessibility condition and the no-dilation
condition, Lin proved the following result for structural con-
trollability. Proof of the multi-input case is given in [39], [40].

Proposition 3.3. [8, pp.207] The structured system (Ā, B̄) is
structurally controllable if and only if the associated digraph
D(Ā, B̄) has no inaccessible states and has no dilations.

Alternatively, a structured system is said to be structurally
controllable if and only if all non-top linked SCCs are acces-
sible and there exists a perfect matching in B(Ā, B̄).

4. MAIN RESULTS

Consider a set of k subsystems S1, . . . ,Sk with structurally
identical state matrices Ās. Since the subsystems are struc-
turally identical, they have the same number of nodes, i.e.,
ns. We first describe construction of few graphs associated
with these subsystems. The state digraph of a subsystem Si
has vertex set VXi and edge set EXi . Here, VXi = {xi

1, . . . ,x
i
ns}

and (xi
g,xi

h) 2 EXi if Āshg = ?. Also the system digraph of Si
is denoted by D(Ās, B̄i), with vertex set VXi [VUi and edge
set EXi [EUi . Here, VUi = {ui

1, . . . ,u
i
mi
} and (ui

g,xi
h) 2 EUi if

B̄ihg = ?. We assume that all states of the jth subsystem can
be connected to all states of the ith subsystem. In other words,
for any pair of subsystems Si,S j, there is no restriction on the
structure of Ēi j. Thus the set of all possible interconnections,
denoted by EI , consists of (xi

g,x
j
h)2 EI for all i, j 2 {1, . . . ,k},

i 6= j, xi
g 2 VXi and x j

h 2 VXj . Now we define the digraph
D(ĀT ) := ([k

i=1VXi ,[
k
i=1EXi [EI) with vertex set [k

i=1VXi and
edge set [k

i=1EXi [ EI . The digraph D(ĀT ) consists of all
subsystems along with all possible interconnections. Then
we define the composite system digraph as D(ĀT , B̄T ) :=
([k

i=1VXi [[
k
i=1VUi ,[

k
i=1EXi [EI [[

k
i=1EUi).

The state bipartite graph of subsystem Si has vertex set
(VX 0i

,VXi) and edge set EXi . Here, VX 0i
= {x0i1, . . .x0

i
ns} and

(x0ih,xi
g) 2 EXi , (xi

g,xi
h) 2 EXi . Then the subsystem bipartite

graph B(Ās, B̄i) is defined with vertex set (VX 0i
,VXi [ VUi)



and edge set EXi [ EUi , where (x0ig,ui
h) 2 EUi , (ui

h,x
i
g) 2

EUi . Now we will discuss the construction of the bipartite
graphs associated with the composite system. The state bi-
partite graph is B(ĀT ) := (([k

i=1VX 0i
,[k

i=1VXi),[
k
i=1EXi [ EI),

where (x0ig,x
j
h) 2 EI , (x j

h,x
i
g) 2 EI . Further, the system

bipartite graph of the composite system is B(ĀT , B̄T ) :=
(([k

i=1VX 0i
,[k

i=1VXi [ [
k
i=1VUi),[

k
i=1EXi [EI [ [

k
i=1EUi), where

(x0ig,ui
h) 2 EUi , (ui

h,x
i
g) 2 EUi . This completes the construc-

tion of the digraphs and the bipartite graphs associated with
composite system composed of subsystems. Now we derive a
closed-form expression for the minimum number of intercon-
nections required for structural controllability and then present
an algorithm to solve Problem 2.3.

A. Finding Minimum Number of Interconnections Required to
Solve Problem 2.3

Using the constructions and definitions given above, now
we analyze and solve Problem 2.3. Given a set of subsystems
with structurally identical state matrices, we give an expression
to find the minimum number of interconnections required to
make the composite system structurally controllable. Subse-
quently, in subsection 4-B, we propose a polynomial time
algorithm to identify an optimum set of interconnections and
then prove its optimality. This algorithm solves Problem 2.3.

Let NH = {N1, . . . ,NQ} denotes the set of non-top linked
SCCs of the subsystems that are inaccessible in the di-
graph with vertex set [k

i=1VXi [ [
k
i=1VUi and edge set

[
k
i=1EXi[ [

k
i=1EUi . In other words, these are the non-top linked

SCCs of the subsystems that are inaccessible4 without using in-
terconnections. Thus interconnections are essential to achieve
accessibility of these non-top linked SCCs in the composite
system. With some abuse of notation we denote a set of Q
nodes that correspond to SCCs N1, . . . ,NQ using the same
notation. For the subsystems S1, . . . ,Sk, we now define a bi-
partite graph B(ĀT , B̄T ,NH) := (([k

i=1VX 0i
,[k

i=1VXi [ [
k
i=1VUi [

NH),[k
i=1EXi [EI [ [

k
i=1EUi [EN ), where (x0ig ,Nh) 2 EN ,

xi
g is a vertex in SCC Nh. Figure 1 shows an example

demonstrating construction of B(ĀT , B̄T ) and B(ĀT , B̄T ,NH).
Bipartite graphs with non-top linked SCCs of the structured
system as nodes is used in the literature for structural analysis
of LTI systems in different contexts [10], [41].

Our approach is to find minimum cardinality interconnec-
tions for structural controllability using minimum cost perfect
matching. The edges in sets [k

i=1EUi and [k
i=1EXi are edges

within the subsystems and hence are not to be optimized.
However, a matching with maximum number of edges from
the set [k

i=1EUi will have more unmatched state nodes in the
right vertex set, i.e., equations, of the bipartite graph which can
then be used for interconnections. This motivates us to choose
a weight 0 for edges in [k

i=1EUi and 1 for [k
i=1EXi . Note that,

it is essential that all non-top linked SCCs must have at least
one incoming interconnection edge, in order to guarantee the
accessibility, and further, an interconnection edge starting from
a state node in a non-top linked SCC will contribute towards
both accessibility and no-dilation conditions. This motivates
the selection of choosing weight 2 for edges in EN and 3 for

4An SCC is said to inaccessible if it consists of at least one state node
that is inaccessible.

EI . Note that, the numerical values in the cost function are
not crucial, however, the order needs to be maintained. Now
we define the cost function cH on B(ĀT , B̄T ,NH) as:

cH(e) :=

8
>>><

>>>:

0, for e 2 [k
i=1EUi ,

1, for e 2 [k
i=1EXi ,

2, for e 2 EN ,

3, for e 2 EI .

(4)

With slight abuse of notation, we use Eq. (4) to denote the
cost function on B(ĀT , B̄T ), where EN = /0. There exists a
perfect matching in both the bipartite graphs B(ĀT , B̄T ) and
B(ĀT , B̄T ,NH) as the set K is non-empty.
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Figure 1: Illustrative example demonstrating construction of
B(ĀT , B̄T ) and B(ĀT , B̄T ,NH). The green coloured edges in Fig-
ure 1c correspond to EN . The blue and red coloured edges in
Figures 1b and 1c correspond to [k

i=1EXi and [k
i=1EUi , respectively.

Let M?
H

be an optimum matching in B(ĀT , B̄T ,NH) under
cost function cH. Recall, that an optimum matching is a perfect
matching with the minimum cost. Define |M?

H
\ EN | := aN

and |M?
H
\ EI| := bI . As the number of edges in a perfect

matching in B(ĀT , B̄T ,NH) is fixed and the cost of any
minimum cost perfect matching is unique and the cost function
cH has different values associated with edges in EN and EI ,
the indices aN and bI are constant for a given subsystem Ās
and number of subsystems, k. In a graph that is well connected
fewer number of edges from sets EN and EI are present in
an optimum matching M?

H
and hence lower are values of aN

and bI . Next, we give one of the main result of this paper.

Theorem 4.1. Consider a structured composite system con-
sisting of k subsystems with structurally identical state ma-
trices. Let Ā?

T be an optimum solution to Problem 2.3 and
let E?

I
be the set of interconnection edges in Ā?

T . Further,
let |NH| = Q and let M?

H
be an optimum matching in the

bipartite graph B(ĀT , B̄T ,NH) such that |M?
H
\EN |=aN and

|M?
H
\EI|= bI . Then, |E?

I
|= bI +Q.

To prove Theorem 4.1, we state and prove the following
lemmas with respect to the bipartite graph B(ĀT , B̄T ). Since we
assume single input, [k

i=1VUi = u1
1. For the sake of notational

brevity, henceforth we denote u1
1 as u1. The optimality proof

is a construction based proof which relies on the fact that
an optimum matching in B(ĀT , B̄T ) contains input node u1
matched (Lemma 4.2) and also contains a right unmatched
node which is input accessible (Lemma 4.3).

Lemma 4.2. Let (ĀT , B̄T ) be a structured composite system
consisting of k subsystems with structurally identical state



matrices interconnected using all possible interconnections,
EI , and let B̄T be a single input matrix. Let M be an opti-
mum matching obtained by solving the minimum cost perfect
matching on the bipartite graph B(ĀT , B̄T ) under cost function
cH given in (4). Then, (x01a,u1) 2M for some a 2 {1, . . . ,ns}.

Proof of Lemma 4.2 is given in the appendix.

Lemma 4.3. Let (ĀT , B̄T ) be a structured composite system
consisting of k subsystems with structurally identical state
matrices interconnected using all possible interconnections,
EI , and let B̄T be a single input matrix. Consider an opti-
mum perfect matching M in B(ĀT , B̄T ) and let EI

0 = M\EI .
Then, there exists a right unmatched node in M such that
it is accessible in the digraph constructed with vertex set
[

k
i=1VXi[ [

k
i=1VUi and edge set [k

i=1EXi[ [
k
i=1EUi[EI

0 , where
(xi

g,x
j
h) 2 EI

0 , (x0 jh ,x
i
g) 2 EI

0 .

See appendix for the proof of Lemma 4.3.
Lemma 4.3 concludes that with respect to any optimum

perfect matching in B(ĀT , B̄T ), there exists a unique right
unmatched accessible node. Let M?

H
be an optimum matching

in B(ĀT , B̄T ,NH) under cost function cH. Now we give the
following result to show that the input node u1 is matched
in M?

H
. Even though the proof of Lemma 4.4 uses the same

argument as that of the proof of Lemma 4.2, it is given in the
appendix for the sake of completeness.

Lemma 4.4. Consider a structured composite system consist-
ing of k subsystems with structurally identical state matrices.
Let M?

H
be an optimum perfect matching obtained by solving

the minimum cost perfect matching on the bipartite graph
B(ĀT , B̄T ,NH) using cost function cH given in (4). Then,
(x01a,u1) 2M?

H
for some a 2 {1, . . . ,ns}.

We present the Proof of Lemma 4.4 in the appendix.
By Lemma 4.4, |M?

H
\[

k
i=1EUi | = 1, when |[

k
i=1 EUi | = 1.

With respect to M?
H

, we now prove the following lemmas.
Lemmas 4.3 and 4.4 are used in the proofs of Lemmas 4.5
and 4.6 which are later used in the proof of Theorem 4.1.

Lemma 4.5. Consider a structured composite system consist-
ing of k subsystems with structurally identical state matrices.
Let M?

H
be an optimum perfect matching in the bipartite graph

B(ĀT , B̄T ,NH) under cost function cH such that |M?
H
\EN |=

aN and |M?
H
\ EI| = bI . Then, any minimum cost perfect

matching eMH in B(ĀT , B̄T ) satisfies | eMH \EI|= aN +bI .

Proof of Lemma 4.5 is given in the appendix. From
Lemma 4.5, we conclude that an optimum matching in
B(ĀT , B̄T ) under cH has aN +bI interconnections. An intu-
itive explanation of indices aN and bI is given in Remark 4.9.

In the result below we prove the existence of an optimum
perfect matching M̂H in B(ĀT , B̄T ) that ensures accessibility of
aN SCCs in NH using only the interconnections in M̂H.

Lemma 4.6. Let (ĀT , B̄T ) be the structured composite system
consisting of k subsystems with structurally identical state
matrices and interconnected using all possible interconnec-
tions, EI . Then, there exists an optimum matching M̂H in
B(ĀT , B̄T ) such that |M̂H \ EI| = aN + bI . Further, SCCs
{N1, . . . ,NaN } 2NH are accessible in the digraph consist-
ing of vertex set [k

i=1VXi [[
k
i=1VUi and edge set [k

i=1EXi [

[
k
i=1EUi [EI

0 , where (x j
h,x

i
g) 2 EI

0 , (x0ig ,x
j
h) 2 M̂H \EI .

We present the proof of Lemma 4.6 in the appendix.
Using Lemmas 4.5 and 4.6, now we prove Theorem 4.1.
Proof of Theorem 4.1: We prove this result in two steps. In
Step (i) we show that |E?

I
|6 bI +Q and in Step (ii) we show

that |E?
I
|> bI +Q. The result follows from Steps (i) and (ii).

Step (i): Here we will prove that |E?
I
| 6 bI +Q. From Lem-

mas 4.5 and 4.6, we know that there exists a perfect matching
M̂H in B(ĀT , B̄T ) that uses exactly aN +bI interconnections
and out of Q SCCs in NH, aN SCCs are accessible using
these interconnections. After using the interconnections in M̂H,
there are Q�aN number of SCCs in NH that are inaccessible.
Accessibility of these SCCs can be achieved by adding Q�aN

interconnections more. Using (aN +bI)+(Q�aN ) = bI+Q
interconnections, all SCCs are accessible and there exists a
perfect matching in B(ĀT , B̄T ). Consequently, one can inter-
connect the subsystems using bI + Q interconnections such
that the composite system is structurally controllable. Hence
|E?

I
|6 bI +Q.

Step (ii): Here we will prove that |E?
I
| > Q+ bI . We prove

this using a contradiction argument. Suppose not. Then |E?
I
|<

Q + bI . This implies |E?
I
| 6 Q + bI � 1. Without loss of

generality, assume that |E?
I
| = Q + bI � 1. Then one can

interconnect the subsystems using Q+bI �1 interconnections
such that the composite system is structurally controllable.
Consider an optimum matching MH in B(ĀT , B̄T ) under cost
function cH. We know from Lemma 4.5 that MH consists
of aN + bI interconnections. Thus [(Q + bI � 1)� (aN +
bI)] = Q�aN � 1 interconnections are solely for achieving
accessibility condition. This implies that out of Q inaccessible
non-top linked SCCs, (aN + 1) SCCs are accessible using
the interconnections in MH. Note that SCCs, N1, . . . ,NQ, are
those SCCs whose states do not have a directed path from
the input node when interconnections are not used. Hence at
least one node in each of the (aN + 1) SCCs are connected
using interconnection edges in MH. Now we will construct a
matching in B(ĀT , B̄T ,NH) from MH. Note that MH is a perfect
matching in B(ĀT , B̄T ,NH) also. Let EQ denotes the set of in-
terconnections connecting one node each of (aN +1) SCCs in
MH. Then, |EQ|= aN +1. Remove edge set EQ from MH and
connect them to aN +1 SCC nodes, say {N1, . . . ,NaN +1},
in the right side of B(ĀT , B̄T ,NH). Let this new set of edges
is denoted by EaN +1. Define M00

H
:= {MH \ EQ}[ {EaN +1}.

Recall, |M?
H
\[

k
i=1EXi |= nT � (1+aN +bI). The cost of this

new matching under cH is 3[(aN +bI)�(aN +1)]+2(aN +
1)+ (nT � (aN + bI + 1)) = 2bI + aN + nT � 2. Note that
cost of optimum matching M?

H
in B(ĀT , B̄T ,NH) is 3bI +

2aN + (nT � (aN + bI + 1)) = 2bI + aN + nT � 1. Thus
cH(M00H) < cH(M?

H
). This contradicts that M?

H
is an optimum

matching in B(ĀT , B̄T ,NH) and the assumption |E?
I
|< Q+bI

is not true. Therefore, |E?
I
|> Q+bI . From Steps (i) and (ii),

we get |E?
I
|= Q+bI .

The minimum number of interconnection required to solve
Problem 2.3 is Q + bI . We present below an algorithm that
identifies a set of interconnections, of cardinality Q+bI , that
results in a structurally controllable composite system.

B. Algorithm to Solve Problem 2.3
In this subsection, we give an optimal algorithm to solve

Problem 2.3 in polynomial time. The pseudocode of the
proposed algorithm is given in Algorithm 4.1. Algorithm 4.1



incorporates a minimum weight perfect matching algorithm
along with an edge reconstruction process. The key idea of
the algorithm is to select interconnection edges in such a way
that majority of them serve both the accessibility and the no-
dilation condition. A brief explanation of the individual steps
in the algorithm is given below.

Algorithm 4.1 Pseudocode for solving Problem 2.3 on struc-
tured subsystems consisting of structurally identical state ma-
trices

Input: k structured subsystems with state matrices Ās and
a structured composite input matrix B̄T

Output: Interconnections IH

1: Construct the bipartite graph B(ĀT , B̄T )  
(([k

i=1VX 0i
,[k

i=1VXi [[
k
i=1VUi),[

k
i=1EXi [EI [ [

k
i=1EUi)

2: Construct the bipartite graph B(ĀT , B̄T ,NH)  
(([k

i=1VX 0i
,[k

i=1VXi [ [
k
i=1VUi [ NH),[k

i=1EXi [ EI [

[
k
i=1EUi [EN )

3: Define cost vector cH(e) 

8
>>><

>>>:

0, for e 2 [k
i=1EUi ,

1, for e 2 [k
i=1EXi ,

2, for e 2 EN ,

3, for e 2 EI .
4: Find minimum cost maximum matching in B(ĀT , B̄T ,NH)

using cost function cH, say M?
H

5: M0
H
 M?

H
\{[

k
i=1EX 0i

[ [
k
i=1EUi}

6: Find a perfect matching in B(ĀT , B̄T )�M0
H

, say M00
H

7: eMH M0
H
[M00

H

8: VN 0  {x0ig : (x0ig ,x
j
z) 2 eMH \ EI ,xi

g 2

No,No not accessible using edges eMH \EI}

9: Let xd
a be the unique unmatched accessible node in eMH

10: while |VN 0 | 6= 0 do

11: if x0ig 2VN 0 and i 6= d then

12: eMH { eMH \{(x0ig ,x
j
z)}}[{(x0ig ,xd

a)}
13: else if x0ig 2VN 0 and i = d then

14: Find xh
v such that for `2 {1, . . . ,ns}, (x

0 j
` ,x

h
v)2 eMH

15: eMH { eMH \{(x0 j` ,x
h
v)}}[{(x

0 j
` ,x

d
a)}

16: end if

17: Update VN 0 and the unique accessible unmatched node
xd

a
18: end while

19: E
Q
I
 {(x0iv ,xd

a) : SCC ˆN is inaccessible
in the digraph with vertex set ([k

i=1VXi [ [
k
i=1VUi)

and edge set [k
i=1EXi [ [

k
i=1EUi [ ( eMH \ EI), xi

v 2
ˆN ,xd

a is accessible and i 6= d}
20: IH {(xi

g,x
j
z) : (x0 jz ,xi

g) 2 eMH\EI}[{(xd
a ,xi

v) : (x0iv ,xd
a) 2

E
Q
I
}

Steps 1-4: Initially we run a minimum cost perfect match-
ing algorithm on the bipartite graph B(ĀT , B̄T ,NH) using
cost function cH. Let M?

H
be the optimum matching. Then

|M?
H
\EI|= bI and |M?

H
\EN |= aN and from Lemma 4.4,

we know that |M?
H
\[

k
i=1EUi |= 1.

Steps 5-7: Now we define a matching M0
H

:= M?
H
\

{[
k
i=1EX 0i

[ [
k
i=1EUi}. Note that |M0

H
| = nT � (aN + bI).

Subsequently, we find the difference of B(ĀT , B̄T ) and M0
H

,
denoted as B(ĀT , B̄T )�M0

H
. B(ĀT , B̄T )�M0

H
consists of only

those nodes in B(ĀT , B̄T ) that are not matched in M0
H

and
the edges between them. Moreover, there exists a perfect
matching M00

H
in B(ĀT , B̄T )�M0

H
such that M00

H
⇢ EI (see proof

of Lemma 4.5). We define eMH as the union of M0
H

and M00
H

.
Note that, eMH is a perfect matching in B(ĀT , B̄T ). Further,
| eMH \ EI| = aN + bI and aN interconnections connect to
states in aN distinct SCCs. However, these aN SCCs need
not be accessible using these aN + bI interconnections in
eMH. Our aim is to update eMH in such a way that in the new
eMH, | eMH\EI|= aN +bI and aN SCCs are accessible using

interconnections in eMH \EI .
Steps 8-18: For achieving the accessibility of aN SCCs,
we first identify the aN interconnection edges in eMH that
connects to one state each in SCCs, say N1, . . . ,NaN . Let
VN 0 is the set of aN left side nodes in B(ĀT , B̄T ) belonging
to SCCs that are matched through edges in EI in eMH. Further,
these SCCs are inaccessible even after using interconnections
in eMH\EI . By Lemma 4.3, we know that in eMH there exists an
unmatched accessible node. Let xd

a be this node. Our approach
is to remove the edges corresponding to nodes in VN 0 from
eMH and make new interconnections using the node xd

a such
that SCCs become accessible. Consider an arbitrary vertex
x0ig 2VN 0 . Let xi

g 2No. Then x0ig satisfies one of the following
cases: (a) i 6= d or (b) i = d. In case (a), we update eMH by
removing the edge (x0ig ,x

j
z) and including the edge (x0ig ,xd

a).
Note that, in the updated eMH, SCC No is accessible. In
case (b), the unique unmatched accessible node belongs to the
same subsystem as xi

g and hence the edge (x0ig ,xd
a) cannot be

formed. However, notice that since the unique unmatched node
is in the ith subsystem and (x0ig ,x

j
z) 2 eMH, there exists an edge

(x0 j` ,x
h
v) for some `,v2 {1, . . . ,ns} and j 6= h in eMH. In case (b),

we update eMH by removing the edge (x0 j` ,x
h
v) and including

the edge (x0 j` ,x
d
a). This results in node xh

v being the unique
unmatched accessible node. Sets VN 0 and unique accessible
unmatched node in eMH are updated. Notice that if i 6= h, then
in the next iteration of the While loop, No becomes accessible.
On the other hand, if i = h, then by atmost ns iterations of the
While loop, node xi

g of the ith subsystem becomes accessible.
This will make SCC No accessible. Notice that accessibility
of No is achieved by keeping the number of interconnections
the same as before, i.e., aN +bI . By the end of the Step 18,
aN SCCs are accessible using interconnections in eMH \ EI .
Consequently, the number of inaccessible SCCs are Q�aN .
Steps 19-20: Now we add Q�aN interconnections one each
to some state in these Q�aN SCCs from the accessible nodes
in other subsystems. These set of edges that are added to attain
accessibility of Q�aN SCCs is denoted by E

Q
I

. Thus using
[(aN +bI)+(Q�aN )] = Q+bI interconnections, we achieve
accessibility of all SCCs {N1, . . . ,NQ} and a perfect matching
in B(ĀT , B̄T ). The final interconnection edge set is given by
IH. This completes the description of Algorithm 4.1. Now
we prove optimality of Algorithm 4.1 and its computational
complexity below.

Theorem 4.7. Algorithm 4.1 which takes as input k structured
subsystems with state matrices Ās of dimension (ns⇥ns) and
input matrix B̄T gives as output the interconnection edges IH

which is an optimal solution to Problem 2.3, i.e., |IH|= |E?
I
|.

Proof. By Theorem 4.1 we know that the minimum number
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are shown in blue) non-top linked SCCs
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Figure 2: Illustrative example demonstrating Algorithm 4.1 on subsystems S1,S2,S3 and S4. The blue and the red edges corresponds to
a matching in B(ĀT , B̄T ). The blue edges are those edges which connects two nodes in the same subsystem and the red edges are the
interconnections in the matching. The set NH consists of 4 non-top linked SCCs.

of interconnections that solve Problem 2.3 is |E?
I
| = bI + Q.

Using the set of interconnections formed in Algorithm 4.1,
there exists a perfect matching and the no-dilation condition
of the composed structured system is satisfied. By the edge
reconstruction process, it is ensured that all non-top linked
SCCs {N1, . . . ,NQ} are made accessible. This guarantess the
accessibility of all the state nodes of the composite system.
The number interconnections made in Algorithm 4.1 is bI +Q
(see description of Steps 19-20). By Theorem 4.1, output of
Algorithm 4.1 is an optimal solution to Problem 2.3.

Theorem 4.8. Algorithm 4.1 which takes as input k structured
subsystems with state matrices Ās of dimension (ns⇥ns) and
input matrix B̄T and gives as output the interconnection edges
IH has running time complexity O(n2.5

T ), where nT = k⇥ns.

Proof. The number of inputs of each subsystem is of the
order of the number of states, i.e., mi = O(ns). This gives
mT = O(nT ). The number of edges in the bipartite graphs
B(ĀT , B̄T ) and B(ĀT , B̄T ,NH) are of O(n2

T ) as the number of
vertices are of O(nT ). Finding all SCCs in the subsystems
is of complexity O(ns

2.5) [42], where ns denotes the number
of nodes in each subsystem. Thus constructing the bipartite
graphs B(ĀT , B̄T ),B(ĀT , B̄T ,NH) is of complexity O(n2.5

T ),
where nT = k⇥ ns. Solving minimum cost perfect matching
problem on these bipartite graphs has complexity O(n2.5

T ) [42]
as the number of vertices in B(ĀT , B̄T ) and B(ĀT , B̄T ,NH) are
of O(nT ). The rest of the constructions, which include finding
an unmatched node in the obtained matching and addition and
deletion of one edge each, are of linear complexity with max-
imum nT iterations. Therefore, complexity of Algorithm 4.1 is
O(n2.5

T ).

Remark 4.9. Let GA be the minimum cardinality subset of all
interconnections which can be used to achieve accessibility.
Then, |GA|= Q (since there are Q inaccessible non-top linked
SCCs). Also, let GD be the minimum set of interconnections
which can be used to achieve the no-dilation condition.
Then, |GD|= aN +bI (since optimum matching in B(ĀT , B̄T )
has aN +bI interconnections). The maximum cardinality of
GA\GD is the set of interconnections that can serve both the
conditions, i.e., accessibility and the no-dilation. Thus, aN is
the maximum cardinality of GA\GD. In other words, aN is the
maximum number of interconnections present in sets GA and
GD that can serve both the purposes. Hence bI = |GD|�aN ,

is the minimum number of interconnections in GD that are
needed to meet the no-dilation condition solely.

We refer to aN as the maximum commonality index and
bI as the dilation index. Both these indices quantifies the
connectedness of the system, specifically, aN depends on the
strong connectivity. As the subsystems are more interconnected
within themselves, the value of indices, aN and bI , decreases.

5. ILLUSTRATIVE EXAMPLE, MULTI-INPUT CASE AND
SPECIAL CASES

In this section, we first give an illustrative example to
demonstrate Algorithm 4.1. Then, we discuss few special cases
and extension to the multi-input case.

A. Illustrative Example

We demonstrate Algorithm 4.1 through an illustrative
example in Figure 2. The subsystems are S1,S2,S3,S4.
The set NH = {N1, . . . ,N4}, where N1 = x1

4, N2 = x2
4,

N3 = x3
4, and N4 = x4

4. We first obtain an optimum
matching M?

H
in B(ĀT , B̄T ,N ). Let the optimum matching

M?
H
= {(x011 ,u1), (x012 ,x

1
4), (x

01
3 ,x

1
2), (x

01
4 ,N1),(x015 ,x

2
4), (x

02
1 ,x

2
2),

(x022 ,x
2
1),(x

02
3 ,x

1
1),(x

02
4 ,N2),(x025 ,x

1
5),(x

03
1 ,x

4
3),(x

03
2 ,x

3
1), (x033 ,x

3
2),

(x034 ,N3),(x035 ,x
4
5),(x

04
1 ,x

4
2),(x

04
2 ,x

4
1),(x

04
3 ,x

3
3),(x

04
4 ,N4),(x045 ,x

3
5)}.

Here, aN = 4 and bI = 7. Corresponding to M?
H

, we obtain
matching eMH =M0H[M00H as shown in Figure 2a. Here, M0

H
=

{(x011 ,u1),(x012 ,x
1
4),(x

01
3 ,x

1
2),(x

02
2 ,x

2
1),(x

02
1 ,x

2
2),(x

03
2 ,x

3
1),(x

03
3 ,x

3
2),

(x042 ,x
4
1),(x

04
1 ,x

4
2)} and M00

H
= {(x023 ,x

1
1),(x

02
5 ,x

1
5),(x

01
5 ,x

2
4),

(x024 ,x
1
3),(x

01
4 ,x

2
3),(x

04
4 ,x

3
4),(x

03
4 ,x

4
4),(x

03
5 ,x

4
5),(x

04
5 ,x

3
5),(x

04
3 ,x

3
3),

(x031 ,x
4
3)} as given in Steps 5 and 6 of Algorithm 4.1. With

respect to eMH the inaccessible SCCs are {N3,N4}. The node
set VN 0 = {x034 ,x

04
4 } (condition in Step 10 satisfied) and the

unique unmatched accessible node corresponding to eMH is
the blue coloured node, x2

5.
Now we update eMH as per Steps 11-15. In order

to update eMH, we first remove the edge (x034 ,x
4
4) from

eMH and include edge (x034 ,x
2
5) as shown in Figure 2b.

While M0H remains the same as before the matching
M00H gets modified as M00

H
= {(x023 ,x

1
1),(x

02
5 ,x

1
5),(x

01
5 ,x

2
4),

(x024 ,x
1
3),(x

01
4 ,x

2
3),(x

04
4 ,x

3
4),(x

03
4 ,x

2
5),(x

03
5 ,x

4
5),(x

04
5 ,x

3
5),(x

04
3 ,x

3
3),

(x031 ,x
4
3)} as given in Steps 5 and 6 of Algorithm 4.1. After

this, SCCs N3,N4 also become accessible and VN 0 = /0. The
unique unmatched node in this stage is x4

4.



In this example aN = Q = 4. This implies EQ
I
= /0. Here the

minimum number of interconnections to make the composite
system structurally controllable is equal to bI+Q = 7+4= 11
as shown by the red edges in Figure 2b.

B. Special Cases

Now, we will focus on few special cases, where the
minimum number of interconnections can be more directly
obtained, and see the value of |E?

I
| for these cases.

Structurally Cyclic Systems: The first case is when Ās is
structurally cyclic. A structured system is said to be struc-
turally cyclic if the vertices of the state digraph is spanned
by disjoint cycles. The class of structurally cyclic systems
are wide: self-damped systems including multi-agent systems
and epidemic dynamic systems are structurally cyclic [43].
Then, B(Ās) has a perfect matching. So the composite system
does not have dilation even without using any interconnection.
Thus only the accessibility condition has to be catered. For
optimum matching M?

H
in B(ĀT , B̄T ,NH), our algorithm gives

aN + bI = 0. Hence, |E?
I
| = Q. In other words, the set

of interconnections needed to solve Problem 2.3 equals the
number of non-top linked SCCs that are inaccessible.

Irreducible Systems: Here we consider subsystems that are
individually irreducible. The digraph D(Ās) is an SCC. Except
S1 all other subsystems belong to NH giving |NH| = k� 1.
The subsystems satisfy one of the following: (i) B(Ās) has
a perfect matching, or (ii) B(Ās) does not have a perfect
matching. In case (i), since no-dilation condition is satisfied
by the subsystems individually, the number of interconnections
needed for the composite system to be structurally controllable
is k� 1. By our algorithm, aN + bI = 0 and Q = k� 1.
Therefore, |E?

I
|= Q = k�1. In case (ii), as the first subsystem

receives an input, in any perfect matching in B(Ās, B̄1) there
exists an accessible unmatched node in the first subsystem. In
any perfect matching in the bipartite graph B(ĀT , B̄T ,NH), the
unique accessible node of S1 connects to some subsystem and
its unmatched accessible node connects to another subsystem
and so on. These interconnects caters both accessibility of the
subsystem and also removes one dilation. Thus the number
of interconnections required for structural controllability of
the composite system is the same as the minimum number
of interconnections for satisfying the no-dilation condition.
Now, analysing this case using our algorithm, aN = k� 1.
Since each subsystem is irreducible and the first subsystem
receives an input, Q = k� 1. As result, aN = Q = k� 1 and
|E?

I
| = bI + Q = aN +bI is the number of interconnections

for no-dilation condition.
Controller Canonical Form: Now we consider another class

of systems, where Ās is in the controller canonical form and
B̄T = ?enT . Here, enT is the last column of the (nT ⇥ nT )

identity matrix. For example, Ās =
h

0 ? 0
0 0 ?
? ? ?

i
. Notice that, when

Ās is in the controller canonical form, then B(Ās) has a
perfect matching. The composite system does not have dilation
even without using any interconnection edge. For an optimum
matching M?

H
in B(ĀT , B̄T ,NH), we get aN +bI = 0. Further,

D(Ās) is irreducible. This gives |E?
I
| = Q = k� 1, since each

subsystem is a non-top linked SCC and exactly one subsystem
is accessible without using any interconnections.

C. Multi-input Case

The algorithm and results given in this paper extend to the
multi-input case. We briefly explain the outline of the extension
in this subsection.

In the multi-input case of Lemma 4.2, all the input nodes
are matched in an optimum matching M of B(ĀT , B̄T ). In other
words, |M\[k

i=1EUi | = mT , where mT is the total number of
inputs. Consequently, there are mT number of right unmatched
nodes in M that are accessible (using the same argument in
Lemma 4.3). The multi-input version of Lemma 4.3 con-
cludes that corresponding to an optimum matching M of
B(ĀT , B̄T ) there are mT number of unmatched accessible nodes.
Similarly, Lemma 4.4 extends to the multi-input case with
|M?

H
\ [

k
i=1EUi | = mT , where M?

H
is an optimum matching

in B(Ā, B̄,NH). Lemma 4.5 is based on the existence of
an unmatched accessible node in an optimum matching M
of B(ĀT , B̄T ). Note that, the uniqueness of the unmatched
accessible node is not required in the proof. The only dif-
ference in the proof of Lemma 4.5 is that the bipartite graph
B(ĀT , B̄T )�M0

H
consists of aN + bI nodes on the left side

and aN +bI +mT nodes on the right side. B(ĀT , B̄T )�M0
H

has a perfect matching in the multi-input case because of the
same reason in Lemma 4.5 and the rest of the proof follows.
Finally, Lemma 4.6 and Theorem 4.1 hold for the multi-input
case as they are based on previous lemmas, which hold for the
multi-input case.

Now we explain the key steps in the algorithm for multi-
input case. For a multi-input case, consider any optimum
matching M?

H
obtained in Step 4 of Algorithm 4.1. Then, |M?

H
\

[
k
i=1EUi |= mT . If not, then one can use the same argument in

Lemma 4.2 and Lemma 4.4 to construct another matching M0
H

such that |M0
H
\[

k
i=1EUi |=mT , as each input node is connected

to at least one state node, and cH(M0H)< cH(M?
H
) contradicting

the optimality. Let |M?
H
\ EN | = aN and |M?

H
\ EI| = bI .

The matching eMH constructed in Step 7, consists of aN +bI

interconnections. Further, there exists at least one unmatched
accessible node corresponding to eMH. Thus, one can obtain a
matching M̂H in B(ĀT , B̄T ) with |M̂H \ EI| = aN + bI such
that aN SCCs are accessible using the interconnections in
M̂H. In other words, one can achieve accessibility of aN non-
top linked SCCs using the same number of interconnections
as before. The remaining SCCs can be made accessible using
extra interconnections as in Step 19 of Algorithm 4.1. Note that
the proofs in this paper uses two concepts: (a) in an optimum
matching eMH there exists a node matched to some input node,
and (b) there exists an unmatched accessible node in eMH. Both
(a) and (b) continue to be true for the multi-input case also.
Thus the algorithm and results apply to the multi-input case.

6. CONCLUSION

In this paper, we studied structural controllability of an
LTI composite system consisting of several subsystems. The
objective was to obtain an optimal network topology de-
sign, i.e., find a minimum cardinality set of interconnections
among these subsystems, such that the composite system is
structurally controllable using a specified input matrix. The
analysis is done in a structured framework by using the
sparsity pattern of the system matrices. In this paper, we
considered subsystems whose state matrices have identical



sparsity pattern and proposed a polynomial time algorithm
for solving the optimal network topology design problem
(Problem 2.3). Given a set of structured subsystems, we
first gave a closed-form expression for the minimum number
of interconnections required to make the composite system
structurally controllable (Theorem 4.1), using two indices aN

and bI defined in the paper that quantifies the connectedness
of the composite system as noted in Remark 4.9. Then we
proposed an algorithm to obtain an interconnection edge set
of minimum cardinality (Algorithm 4.1). The algorithm given
in this paper identifies a neighbouring set of each subsystem,
i.e., the set of subsystems that it must communicate with,
to make the composite system structurally controllable with
least possible number of interconnections (Theorem 4.7). We
also proved that the proposed algorithm has polynomial time
complexity (Theorem 4.8). For notational convenience and
brevity, we discussed single input case in this paper. However,
all the analysis carried out here directly extends to the multi-
input case as discussed in Section 5-C. Needless to elaborate,
due to duality between controllability and observability in LTI
systems all results of this paper directly follow to the ob-
servability problem. Complexity analysis and deriving efficient
algorithm for the case where neighbours of each subsystem is
constrained is a topic of future research.
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APPENDIX

Proof of Lemma 4.2: Given M is an optimum matching of
B(ĀT , B̄T ). We prove the result using a contradiction argument.
Suppose (x01a,u1) /2 M, for all a 2 {1, . . . ,ns}. Note that, in
B(ĀT , B̄T ) the input node u1 connects to state node x1

a for
some a 2 {1, . . . ,ns}. Then, since M is a perfect matching,
(x01a,x

g
h) 2M for some node xg

h. Construct a new matching M0

by removing the edge (x01a,x
g
h) and including the edge (x01a,u1),

i.e., M0 = {M \ (x01a,x
g
h)}[ {(x

01
a,u1)}. Notice that cH(M0) <

cH(M). This contradicts the assumption that M is an optimum
matching in B(ĀT , B̄T ) and hence (x01a,u1) 2M, for some a 2
{1, . . . ,ns}.
Proof of Lemma 4.3: The bipartite graph B(ĀT , B̄T ) consists
of nT left side nodes and nT + 1 right side nodes, where one
extra node in the right side is the input node u1. Any perfect
matching in B(ĀT , B̄T ) has size nT and hence in M there is
one right unmatched node. Now we need to show that this
unmatched node is accessible in the digraph constructed using
vertex set [k

i=1VXi [ [
k
i=1VUi and edge set [k

i=1EXi [ [
k
i=1EUi [

EI
0 , where (xi

g,x
j
h) 2 EI

0 , (x0 jh ,x
i
g) 2M\EI . By Lemma 4.2,

all optimum perfect matchings in B(ĀT , B̄T ) contains an edge
(x0ig ,u1) for some node x0ig . Let (x0ig ,u1)2M. Then the node xi

g is
accessible in the specified digraph. Now in the matching M, the
node xi

g satisfies one of the following: (a) xi
g is unmatched, or

(b) xi
g is matched. In case (a), the proof follows. In case (b), let

(x0 jh ,x
i
g)2M. Then the node x j

h is accessible. Recursively using
the same argument as before, we can say that the unmatched
node in M is accessible in the digraph constructed using vertex
set [k

i=1VXi [ [
k
i=1VUi and edge set [k

i=1EXi [ [
k
i=1EUi [EI

0 .
The recursive argument terminates as the number of edges in
the matching is finite.
Proof of Lemma 4.4: We know that B(ĀT , B̄T ,NH) is a bipartite
graph with nT vertices on the left side and nT +1+Q vertices
on the right side. Given M?

H
is an optimum matching of

B(ĀT , B̄T ,NH). We prove the result using a contradiction
argument. Suppose (x01a,u1) /2M?

H
, for all a2 {1, . . . ,ns}. Note

that, in B(ĀT , B̄T ,NH) input u1 connects to state x1
a for some

a 2 {1, . . . ,ns}. Then, since M?
H

is a perfect matching in
B(ĀT , B̄T ,NH), (x01a,v)2M?

H
for some node v. Construct a new

matching M0
H

by removing the edge (x01a,v) and including the
edge (x01a,u1), i.e., M0

H
= {M?

H
\ (x01a,v)}[ {(x0

1
a,u1)}. Notice

that cH(M0H) < cH(M?
H
). This contradicts the assumption that

M?
H

is an optimum matching in B(ĀT , B̄T ,NH).
Proof of Lemma 4.5: Given M?

H
is an optimum perfect match-

ing in B(ĀT , B̄T ,NH). We first prove the existence of a perfect
matching eMH in B(ĀT , B̄T ) satisfying | eMH \ EI| = aN +bI .
For this we construct eMH, a matching in B(ĀT , B̄T ), from
M?

H
such that | eMH \ EI| = aN + bI . Given M?

H
satisfies

|M?
H
\EN |= aN and |M?

H
\EI|= bI . By Lemma 4.4, |M?

H
\

[
k
i=1EUi |= 1. Thus, |M?

H
\[

k
i=1EXi |= nT �(aN +bI +1). Let

M0
H
⇢ M?

H
is defined as M0

H
:= M?

H
\ {[

k
i=1EXi [ [

k
i=1EUi}.

Then |M0
H
| = nT � aN � bI . Note that M0

H
is a matching

in B(ĀT , B̄T ). Consider the bipartite graph B(ĀT , B̄T )�M0
H

,

where � denotes a difference operation in which all nodes
with non-zero degree in M0

H
and all the edges associated

with these nodes are removed from B(ĀT , B̄T ). More precisely,
B(ĀT , B̄T )�M0

H
consists of only those nodes in B(ĀT , B̄T ) that

are not matched in M0
H

and the edges in B(ĀT , B̄T ) between
those nodes. The bipartite graph B(ĀT , B̄T )�M0

H
consists of

aN +bI nodes on the left side and aN +bI +1 nodes on the
right side. Notice that B(ĀT , B̄T )�M0

H
has a perfect matching.

This is because since state matrices of all subsystems are
structurally identical and M0

H
= M?

H
\ {[

k
i=1EX 0i

[ [
k
i=1EUi},

where M?
H

is an optimum matching in B(ĀT , B̄T ,NH) under
cost function cH, the number of nodes in B(ĀT , B̄T )�M0

H

corresponding to each subsystem is the same in both left and
right sides except for one subsystem. For one subsystem (the
ith subsystem if (x0ig ,u1) 2M0

H
for some g 2 {1, . . . ,ns}) either

the number of nodes in the left side of B(ĀT , B̄T )�M0
H

is
one less than other subsystems or the number of nodes in the
right side is one more than the other subsystems. In both cases
there exists a perfect matching in B(ĀT , B̄T )�M0

H
. Let M00

H
be

an optimum perfect matching in B(ĀT , B̄T )�M0
H

using cost
function cH. Then M00

H
⇢ EI . This is because if an edge in

[
k
i=1EXi [ [

k
i=1EUi is present in M00

H
, then it contradicts the

optimality of M?
H

. Now eMH = M0
H
[M00

H
is a perfect matching

in B(ĀT , B̄T ). Note that, | eMH \ EI| = aN + bI . This proves
that there exists a perfect matching in B(ĀT , B̄T ) consisting of
aN +bI interconnections. Since eMH is constructed from M?

H

which is an optimum matching under cost function cH, the
optimality of eMH follows.
Proof of Lemma 4.6: We know from Lemma 4.5 that there
exists an optimum matching eMH in B(ĀT , B̄T ) such that
| eMH\EI|=aN +bI . Out of these aN +bI interconnections,
aN interconnections has left side nodes from distinct SCCs,
say N1, . . . ,NaN . Hence, at least aN left side nodes in
eMH \ EI are from aN distinct SCCs. Let x0ig be an arbitrary

node such that (x0ig ,x
j
h)2

eMH\EI , xi
g 2

ˆN , ˆN 2NH and ˆN is
inaccessible in the digraph with vertex set [k

i=1VXi [ [
k
i=1VUi

and edge set [k
i=1EXi [ [

k
i=1EUi [EI

0 . Now we describe an
edge reconstruction process to make ˆN accessible without
increasing the number of interconnections. By Lemma 4.3 we
know that there exists a unique unmatched node in eMH that is
accessible, say x̂. Then x̂ satisfies one of the following cases:
(a) x̂ is in the same subsystem as of ˆN , or (b) x̂ is not in the
subsystem of ˆN . We will resolve case (b) first. Construct a
new matching M̂H such that M̂H = { eMH \ (x0ig ,x

j
h)}[{(x

0i
g , x̂)}.

Note that in M̂H the number of interconnections is the same
as in eMH and further the SCC ˆN is accessible. Now we
will resolve case (a). In case (a), note that x̂ is in the same
subsystem as ˆN . Since the unique unmatched node x̂ is in the
ith subsystem and (x0ig ,x

j
h)2

eMH, there exists an interconnection
edge in eMH matching a left side node in jth subsystem to
some node in a different subsystem, say (x0 ja ,xv

d) 2
eMH, j 6= v.

Construct a new matching M̂0
H
= eMH \ {(x0 ja ,xv

d)}[ {(x
0 j
a , x̂)}.

This is possible since i 6= j. Notice that |M̂0
H
\EI|= aN +bI

and with respect to M̂0
H

the unique accessible unmatched
vertex is xv

d . If xv
d 2

ˆN , then ˆN is accessible and M̂H = M̂0
H

.
Otherwise, by a sequence of removal and inclusion of edges
(atmost ns times) node xi

g becomes accessible resulting in SCC
ˆN being accessible. Since x0ig is arbitrary the proof follows.


