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Abstract: This paper addresses the crew scheduling for long-distance passenger train services. A heuristic
with bin packing features is developed to generate repeatable crew schedules that satisfy the operational and
crew allocation rules. By ensuring the connectivity of crew duties that can be repeated over periodic train
schedules, a better estimate of the crew requirement in a region is also obtained. Further, the heuristic ensures
a fair division of total workload and creates long duty cycles which also makes the process of cyclic rostering
easier. The paper also presents an exact approach for crew scheduling using a combination of constraint
programming and set covering formulations. The exact approach is not computationally viable for practical
scale problem instances, but the heuristic generates good quality solutions (often very close to optimal) even
on large data sets. We illustrate the approach on data from the Mumbai Division in Indian Railways and the
computational results show that there is potential to reduce the total number of crew duties in the region by
around 12%. The heuristic approach provides an efficient way to generate improved crew schedules every
time there is a change in the train timetable.

Keywords: Railway crew scheduling; Indian Railways; Constraint programming; Bin packing; Heuristic
algorithm

1 Introduction

Crew scheduling is an important activity in all transportation systems and shares many similarities. However,
each transportation mode has its own unique features and challenges associated with it. In rail transportation,
the considerations in crew scheduling vary with the type of service being operated. Train services are broadly
classified into passenger and freight services. Passenger services are operated based on a pre-determined
timetable, while freight services are a combination of scheduled and ad-hoc services. Passenger train services
can further be divided into three major categories: long-distance, suburban, and urban services, depending
on their operational territory. This work considers the crew planning for long-distance passenger train services.

A generic planning process for passenger train operations involves multiple steps as shown in fig.1 [1].
It starts with line planning that determines various lines, their origin/destination/in-between stations, and
types and frequencies of trains on each line to satisfy all the travel demands. Afterwards, train timetabling
is carried out by fixing each train’s arrival and departure times at each station in the section, ensuring all
appropriate safety constraints. The next step is train platforming, i.e., assigning the platforms to the trains



at the stations they halt. The following task is rolling stock scheduling wherein rolling stock units (railway
vehicles) are assigned to scheduled trains with a predefined timetable. Often, regular maintenance activities
are integrated into this planning step. Further, during the night and no rush hour, when the trains are not in
use or are in maintenance, they need to be parked in a shunting area near one of the stations or depots, and
it is known as a train unit shunting problem. The following two planning tasks concern the crew members,
i.e., the crew scheduling and rostering. Crew scheduling consists of creating anonymous duties covering all
the trains for a defined period based on a given timetable. Each duty specifies a sequence of tasks (or trips)
satisfying operational constraints and labour union rules. Finally, the duties are combined for a larger time
and assigned to individual crew members, known as crew rostering. A fair distribution of work, tracks and
rolling stock knowledge, vacations, etc., are considered while assigning duties to crew members.

Line Train Train Rolling Stock Train Unit Crew Crew
Planning Timetabling Platforming Scheduling Shunting Scheduling Rostering

Figure 1: Planning process for passenger train operations

From a hierarchical perspective, railway crew planning problems can be classified as follows [2]:

* Strategic level planning: Decisions such as number of crew regions required, locations of base stations
and crew change stations, allocation of duties among regions etc. It addresses system-wide issues to
ensure a smooth operation of the system.

* Tactical level planning: Determines the crew capacity required to operate a set of train schedules that
have been assigned to a region. The territory of decision-making is generally confined to a region.

* QOperational level planning: Manages daily operations with a short planning horizon of usually a week.
Crew scheduling and crew rostering are done at this level and adequate adjustments are made locally
from time to time to ensure an unhindered operation.

Railway crew scheduling as an operational-level problem has been studied widely over the years. However,
as pointed out by Suyabatmaz & Sahin [3], this may not completely help the tactical level planners to assess
the exact crew capacity required in a region. This is because the recurrence of crew schedules and rosters
over periodic train schedules are overlooked during this level of planning. Common practice is to follow a
hierarchical top-to-bottom approach wherein the crew capacities at various regions are decided first, followed
by the generation of crew schedules in accordance with it. Adequate adjustments are made at the operational
level to ensure the repeatability of the crew schedules/roasters prepared. However, it is more desirable to
reflect the concerns at the lower level planning to a higher level since this can lead to better overall utilization
of resources. In this paper, we try to determine the regional crew capacity required to operate a given set of
passenger train schedules by generating crew schedules which can be repeated over periodic train schedules
(connected crew schedules) without any conflict. This makes the problem more interesting and also bridges
the gap between tactical-level crew capacity planning and operational-level crew scheduling.

We consider the long-distance passenger train services operated by the Mumbai Division of Indian Rail-
ways and incorporate the crew allocation rules and guidelines applicable in the context. We develop a
heuristic by extending the idea of the classic bin packing problem to generate a set of repeatable crew
schedules for a given passenger train timetable. The long crew duty cycles generated using these schedules
also ensure a fair division of work over a period of time since each crew member performs all the train
tasks over a duty cycle (or multiple crew duty cycles). We also model the crew scheduling problem using a
combination of constraint programming and set covering formulations. The models can be solved in sequence



to obtain optimum solutions for small-sized problem instances. This provides a means for validating the crew
schedules generated by the heuristic and for obtaining valid lower bounds for larger problem instances. We
also compare the heuristic results with the existing crew schedules used by the Mumbai Division generated
via a manual and laborious exercise involving multiple stakeholders.

While there are numerous models and approaches reported in the literature for railway crew scheduling,
we identified that the existing models and approaches are inadequate to address the complex settings associ-
ated with large railway operators which are predominantly passenger carriers, like Indian Railways (Indian
Railways operates more than 13,000 passenger trains daily over a route length of more than 68,000 km). The
complexities include additional constraints related to home and outstation crew duties, differential rest times,
a limit on the time a crew can stay away from the home base and heterogeneity in: (i) train characteristics and
(i1) the number of trains operated on different days in a week. A solver-based exact solution approach is not
expected to be computationally feasible since the model might have to be solved for a period exceeding a week
(incorporating all the trains operated by a region on multiple routes) to ensure connectivity between crew
schedules. We develop an efficient heuristic-based approach which can be implemented at a regional level
where a single resource pool of crew is to be utilized for multiple routes or sections in an effective manner.
The heuristic is scalable (some regions can have more trains to be operated on more routes) and is found to
provide solutions which are within an optimality gap of 2.5% for the Mumbai Division data considered in the
study. Moreover, the approach can help the regional-level crew planners to generate better crew schedules in
a quick time. This can result in significant savings in crew expenses and the man hours expended to generate
a new crew schedule every time there is a change in the train timetable.

The paper is organized as follows: Section 2 presents a review of the literature on railway crew plan-
ning. Section 3 describes the problem and explains the crew scheduling in Indian Railways. The solution
approaches and the model formulations are presented in Section 4. Section 5 reports and discusses the results
and findings from the computational study. Section 6 concludes the work with the scope for future research.

2 Literature Review

The origins of the crew scheduling problem in the transportation industry date back to the 1950s and 1960s.
Arabeyre et al. [4] survey the different approaches adopted by airlines to optimize the allocation of crews to
flights. The area gained greater momentum with the advances in computational power in the 1980s. Wren
[5] examines various methodologies that have been applied to vehicle and crew scheduling for the bus transit
system. In the 1990s, the railway industry came to the forefront of crew scheduling research realizing the
potential savings that could be achieved by the application of various operations research techniques. Further,
the deregulation and privatization of the railway industry in Europe also forced the rail operators to achieve
cost-efficient utilization of various resources including the crew. The article by Caprara et al. [6] outlines
different ways of modelling the railway crew scheduling and rostering problems and the possible solution
methods. The research interest in railway crew scheduling has sustained over the last two decades. The recent
article by Heil et al. [1] provides a review of railway crew scheduling literature published since 2000.

Crew allocation is subject to various rules and guidelines governing the maximum duty times and mandatory
rest periods. The majority of these rules are country or region specific and are to be addressed at a local
level. For instance, Abbink et al. [7] consider the crew scheduling problem associated with the Dutch railway
operator and Neufeld et al. [8] consider the case of German railway operator DB Regio AG. Further, Khosravi
et al. [9] and Khosravi & Tamannaei [10] consider crew scheduling in the Iranian railway network. The
work by Kasliwal et al. [11] addresses the crew planning for commuter rail operations considering the case



of the Mumbai Suburban railway network in India. The present work is the first to consider crew scheduling
for long-distance passenger train services in Indian Railways to the full extent.

While generating connected and repeatable crew schedules for longer time periods, it is important to ensure
fair distribution of work across duties. For this, an appropriate mix of train tasks of different duration and
working conditions is to be maintained. The article by van Rossuma et al. [12] formulates an operational
railway crew scheduling problem with Sharing-Sweet-and-Sour rules, a framework introduced to ensure a fair
allocation of work by mixing appropriately the train tasks designated as sweet (attractive tasks) and sour (less
attractive tasks). The formulation is applied at an individual level and further, a sequential solution approach
is proposed to solve the problem considering the case of Netherlands Railways. The present work also
ensures a fair distribution of the total workload by incorporating selective addition of tasks while generating
duties. Further, the longer crew duty cycles generated by combining multiple crew duties ensure that each
crew member undertakes every train task in the long run.

From a methodological perspective, we find a wide application of column-generation, meta-heuristics and
heuristics-based approaches for solving crew scheduling problems of practical size. This is because the
standard railway crew scheduling problem is proven to be NP-hard and generating exact solutions using
approaches like integer programming is found to be a challenge. Exact solution approaches are thus limited
to small or sparse problem instances. Jiitte et al. [13] develop a crew-scheduling software based on a column-
generation solution technique at DB Schenker. Jiitte & Thonemann [14] present a column-generation based
decomposition algorithm and tests it on instances of a major European freight railway carrier. Hanafi & Kozan
[15] apply a hybrid constructive heuristic with simulated annealing to minimize the number of crew duties
while reducing idle transition times. Liu et al. [16] develop a genetic algorithm-based column-generation
heuristic to minimize the total cost of payment to passenger rail crew members in the North American context.
Further, Nishi et al. [17] propose dual inequalities for the Dantzig-Wolfe decomposition of railway crew
scheduling problems to reduce the number of replications in the column-generation procedure and improve its
convergence. Hoffmann et al. [18] develop a prototype for a multi-period railway crew scheduling problem
with attendance rates and apply a hybrid column-generation approach, which solves the pricing problem by
means of a genetic algorithm. Also, Hoffmann & Buscher [19] present an arc flow model for the railway crew
scheduling problem with attendance rates. The authors define various inequalities and perform computational
tests to estimate the influence of different valid inequalities on computation times and bounds of the linear
relaxation. An evolving methodological approach based on machine learning is also to be reported as seen
in the recent paper by Gattermann-Itschert et al. [20]. The authors use machine learning to learn and predict
planners’ preferences in crew scheduling. A random forest classifier is trained on planner feedback to predict
the probability that a duty is perceived as bad by the planners.

The article by Han & Li [21] addresses the crew scheduling problem for a Taipei mass rapid transit sys-
tem. The authors propose a constraint programming-based approach for duty generation and a set covering
problem formulation for duty optimization. The objective is to minimize the total number of duties subject
to constraints related to crew location, continuous driving time, rest and meal hours in a shift. Also, the
recent work by Chen et al. [22] adopt a similar approach combining constraint programming and integer
programming (set covering formulation) methodologies. The paper reports the application of the proposed
approach to the Kaohsiung depot of the Taiwan Railways Administration. In addition to the heuristic de-
veloped, the present work also adopts a similar combination of approaches to model the underlying crew
scheduling problem. However, the problem definition and setting have been modified in the context of long-
distance passenger services operated by Indian Railways. Further, the paper by Tapkan et al. [23] proposes
a constraint programming-based column generation approach for crew scheduling considering the case of
Kayseri Railway. However, the problem setting corresponds to a light rail system which is operated within a



smaller territory with no complexities related to multiple outstation relief points and rests.

The idea of the bin packing problem has been applied previously in crew scheduling problems. Feng & Rui-
hua [24] address the case of China’s urban rail transit system and treat crew scheduling as a one-dimensional
packing problem. The objective is to find the minimum number of drivers required, and constraints related
to continuous driving time, total driving time in a day and rest time are considered. The paper proposes a
best-fit algorithm to solve the problem. Further, Qiao et al. [25] apply the bin-packing algorithm to a vehicle
and crew scheduling problem for the bus transit system. The objective is to minimize the total costs of runs
while covering all the tasks and considering the constraints related to crew location, working hours and meal
breaks in a run.

The articles by Sahin & Yiiceoglu [2] and Suyabatmaz & Sahin [3] investigate tactical level crew capacity
planning problem in railways. The first article determines the number of crew required in a region to operate a
set of train duties satisfying the day-off requirement of the crew. The second article minimizes the number of
crew required in a region while both feasibility and connectivity of crew schedules are maintained. However,
these works do not consider the complex constraints that exist at the operational level crew scheduling like
differential rest periods, a limit on the time a crew can stay away from his home base etc. The present work
bridges the gap between operational level crew scheduling problem and tactical level crew capacity planning
problem by generating crew schedules that satisfy all the operational rules and which can be repeated over
periodic train schedules. This helps in providing an estimate of the actual crew capacity required in a region.
In the literature, integrated crew scheduling and rostering has also been attempted. Ernst et al. [26] propose
an integrated optimization model to solve crew scheduling and crew rostering problem. However, the authors
solve only a relaxed version of the optimization model. Lin & Tsai [27] propose a formulation that integrates
crew scheduling and rostering problems and develop a branch-and-price-and-cut algorithm and a depth-first
search-based algorithm to solve the composite problem. Further, Feng et al. [28] consider a crew scheduling
and rostering problem for metro operations based on the duty path. The paper proposes a model that can
solve the crew scheduling and rostering problems successively while considering duty types and practical
requirements such as maximum on-duty time constraints, maximum continuous working time constraints,
and meal constraints.

In the present work, we consider all the crew allocation rules and guidelines that are applicable in the
context of Indian Railways to generate crew schedules that can be repeated over time without any conflict.
Existing standard models and methodologies for railway crew scheduling do not address all these consider-
ations and cannot be applied directly for crew scheduling in Indian Railways. This is primarily because the
crew allocation rules vary from one country to another. In Indian Railways, there is a differential rest rule
for outstation and return journeys, rest rules that depend upon the duration of the trips and a limit on the
maximum time a crew can stay away from their home base. Further, in the case of long-distance passenger
train services, some tasks span multiple days and the crew may not be able to return to the home base on the
same day. Also, there is heterogeneity in the number of long-distance trains being operated on different days
of the week, i.e., some trains run weekly, some twice a week, etc. As a result, the problem is to be solved
for a longer duration (at least a week) to generate a crew schedule that can be used repeatedly. Currently, a
panel consisting of railway officers from the operations department and representatives of the labour union
for loco pilots and guards prepare the crew schedules for each route manually. The developed heuristic gives
a realistic estimate of the crew requirement in a region by generating repeatable crew schedules and also
provides a way to quickly update the crew schedules whenever there is a change in the corresponding train
schedules.



3 Problem Description

The rules and regulations governing crew scheduling differ from one country to another. In this section, we
describe the rules and guidelines for crew scheduling applicable in the context of Indian Railways.

3.1 Crew Scheduling in Indian Railways

Indian Railways is a statutory body that comes under the ownership of the Ministry of Railways, Government
of India. The Indian Railways network is one of the most extensive rail networks in the world with a total
route length of more than 68,000 km and more than 7,300 stations [29]. To manage and coordinate the
operations, the entire network is divided into 17 zones. These zones are further subdivided into a total of 71
smaller units called divisions for administrative purposes.

In Indian Railways, each crew member is affiliated with a division and is assigned to one of its crew
bases (also known as the home base of the crew). Typically, crew bases are the important terminals or
stations within a division. In the case of long-distance services, the entire train journey needs to be divided
into smaller tasks and are to be taken up by a series of crew members. The stations where the crew change
happens are called crew change points (CCP), which are generally the stations with a high frequency of train
services or stations at the border of a division’s jurisdiction. All CCPs are equipped with basic facilities like
resting rooms for the crew members. Note that every crew base is a CCP but not vice versa. Further, the
territory within which a crew (stationed at a crew base) is authorized to take up the duty (usually, this will
be a section between a pair of CCPs) is known as a crew beat. Lastly, a trip in which a crew member is
transported as a passenger to the home base or another CCP is known as a deadheading trip.

At present, in Indian Railways, a committee of experienced railway staff manually prepares the crew duties.
They prepare a so-called ‘detail book’ based on the given train timetable. The book lists the group of tasks
to be operated by the assigned crew member on a day and is known as a detail (as shown in Appendix A).
Further, these details are arranged in a specific sequence to construct longer duty cycles so that after operating
a particular detail, the crew operates the following detail in the cycle. Factors like the type of trains - daily or
non-daily, slow or fast, etc., are considered while preparing the detail. Although the cyclic nature of the plan
leads to a good balance of the total workload in the long term as everyone operates every task, this way of
preparing the duties is a timely and labour-intensive process which can easily lead to solutions which are far
from optimum. Moreover, this exercise is to be repeated every time there is an update in the train timetable.

3.2 Case Study: Mumbai Division, Central Railway

We consider the case of the Mumbai Division, which comes under the central zone of Indian Railways. The
division manages a total route length of more than 575 km. It is important to note that all the major terminals
and stations in the Mumbai region (like CSMT, LTT, etc.) act as a single CCP and have been referred to
as ‘Mumbai’ in this paper. Additionally, Mumbai is the only crew base in this division, i.e., all the crew
members are based out of here. The crew belonging to the Mumbai division operates long-distance passenger
trains in the following three routes: Mumbai - Igatpuri, Mumbai - Pune and Mumbai - Ratnagiri. However,
since Mumbai - Ratnagiri is a relatively longer section, crew tasks for low-speed trains are fixed up to Roha
(which comes ahead of Ratnagiri), to ensure that no task exceeds the maximum running time limit. This
results in a total of four sections and the resulting network is a star-type network as shown in fig.2. The
distance and traversal times for all the sections are shown on their respective arcs.

The distribution of train tasks over these sections and different days of the week are summarized in table 1.
Here, the UP direction refers journey towards Mumbai, and the DOWN direction refers journey away from
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Figure 2: Mumbai Division: Route map

Mumbai. Further, IGP is the station code for Igatpuri, PUNE for Pune, ROHA for Roha and RN for Ratnagiri.
In this work, we also compare the impact of the following two scenarios on crew utilization: section-wise
planning, where crew schedules are generated for a single section at a time and integrated planning, where
crew schedules are prepared for the entire Mumbai division with the crew being allotted tasks in any of the
sections in the division.

Table 1: Distribution of train tasks over a week

Sections Direction M Tu W Th F Sa Su Total tasks in a week
Mumbai - IGP UP 39 38 40 39 37 38 38 269
DOWN 39 36 42 36 37 42 37 269
Mumbai - PUNE UP 26 25 27 26 25 27 26 182
DOWN 25 26 27 26 25 27 26 182
Mumbai - RN UP 11 11 9 9 12 14 11 77
DOWN 12 9 12 13 11 11 9 77
Mumbai - ROHA UP 6 5 5 8 4 7 4 39
DOWN 4 7 5 5 6 5 7 39
Total tasks - 162 157 167 162 157 171 158 1134

3.3 Problem Objective and Crew Allocation Rules

The objective of this work is to find the minimum number of crew duties required to cover all the tasks in
a defined period (which cover all the recurring set of tasks) based on a given train timetable. The recurring
period in this case is a week since the maximum gap between repeating long-distance passenger services
operated by Indian Railways is a week. In this paper, a task refers to a trip that a crew can operate in a single
stretch and is characterized by starting and ending times and location. Additionally, duty refers to a sequence



of tasks, satisfying all the operational constraints and labour union rules, that can be assigned to a crew to
operate in the defined period.

In the Indian context, the crew allocation constraints are governed by the Railway Servants (Hours of
Work and Period of Rest) Rules, 2005. The rules get amended from time to time, but the important rules
applicable at the time of this study are as follows:

e Maximum continuous running (task) time for the crew is limited to nine hours
* Maximum task time for the crew from sign-on to sign-off is limited to 11 hours
* Maximum duty time for the crew in a fortnight is limited to 125 hours

* Crew should have a rest of at least 16 hours on returning to the home base

* Crew should have a rest of at least 8 hours at an outstation if the traversal time of the previous task is
more than eight hours. If the traversal time is less than eight hours, the rest duration should be at least
equal to the traversal time.

¢ Crew should return to the home base within 72 hours of leaving the home base

4 Solution Methodology

As an initial step, we model the crew scheduling problem using a combination of constraint programming
(CP) and set covering problem (SCP) formulations. This helps in understanding and representing the problem
in detail and also to assess its inherent complexity. This two-step approach is capable of solving smaller
problem instances, whereas, for larger practical size instances, it fails to provide optimum solutions due to
an explosion in combination possibilities. However, the partial solutions generated for such large instances
can be used as a benchmark to evaluate the solutions provided by the heuristic.

4.1 Mathematical Models

In this two-step methodology, the CP model is used for duty generation and the SCP model is used for duty
optimization. The first step is essentially a constraint satisfaction problem, and the objective is to generate
all the feasible duties, adhering to all the constraints related to crew allocation. The second step tries to find
the optimal set of duties from the set of all feasible duties, covering all tasks. However, there is a possibility
depending on the size of the problem that all the feasible duties cannot be generated in a reasonable time by
the CP model in the first phase. In that case, a Column-Generation (CG) procedure based on mathematical
programming or constraint programming approach can be applied to solve the problem approximately. On
the other hand, if the SCP is too large to solve, it can be relaxed as a large-scale linear programming problem,
and conventional CG techniques can be applied further.

4.1.1 CP Model for Duty Generation

The goal here is to enumerate all the feasible duties for a defined period based on a given train timetable. The
key advantage of the CP approach is that complex real-life constraints can be incorporated easily. Here, a duty
is defined as a sequence of tasks {x1, x2, ..., X, }, where x; € T is the i’ h task of the duty. The representation
of duty is shown in fig.3. In addition to that, each task in a duty is defined by the following five parameters:

e train number (num;),



* origin station (org;),
* departure time (dept;),
* destination station (dest,), and

e arrival time (arr;)

For each of the working tasks (W), these parameters are derived from the existing train timetable of the
Mumbai division.

Task x4 Rest Task o Rest Task xp, Rest
Orgi Num |Dest
Dept | | Arr

Figure 3: Representation of a duty

The parameter m limits the maximum number of tasks in a feasible duty and can be estimated by dividing
the maximum permissible duty time in the planning horizon with the traversal time of the shortest working
task. However, most feasible duties cannot include as many as m train tasks, and when this happens, dummy
tasks are assigned to the duty. For a dummy task (d), a null value is assigned to its train number, a large
number to its departure and arrival times and a dummy code for its origin and destination stations. The input
data and parameters with their notations are summarized in table 2. The parameters, sign-on time (s»,) and
sign-off time (s f;), are determined by providing some buffer (pw) before the scheduled departure time and
after the scheduled arrival time of a task (30 minutes in our case). The crew utilizes this time for completing
the paperwork and other checks before and after operating the task. The parameter, r#, defines the minimum
amount of rest to be provided to a crew after operating a task, whereas, dh, puts a limit to the maximum
permissible duty hours in a week. The parameter, r¢, sets the upper limit on the time the crew can remain
away from the home base at a stretch (72 hours in our case).

The constraints in this model are as follows:

sn; =dept; —pw,VteW (D
sfy=arr; +pw,VteW 2)
Constraints (1) and (2) calculate sign-on and sign-off time for every working task by providing additional

time before and after the scheduled departure and arrival time of the task, respectively.

The constraints related to maximum running time and time from sign-on to sign-off in a single stretch
are taken care by appropriately dividing the entire train journey into smaller tasks using CCPs.

Xis1 EW = orgy,,, =desty, Vie{l,2,...m—1} 3)

Constraint (3) is a location fit constraint that ensures that the following working task in the duty originates
from the same station where the previous task has ended.

m
Sfx; —sny, < dh 4)
i=l:x;eW



Table 2: CP model: Input data and parameters

Notation Description
T Set of all tasks (working and dummy)
w Set of working tasks
d A dummy task
home Home base station
num; Train number of task ¢
org; Originating station of task ¢
dest, Destination station of task ¢
dept, Departure time of task ¢
arr; Arrival time of task ¢
SHt Sign on time for task ¢
s fr Sign off time for task ¢
pw Time allotted for paper work and other checks
rh Minimum rest to be provided after operating a task
dh Maximum duty hours permissible in a week
rt Maximum time a crew can stay away from their home base
m Maximum number of permissible tasks in a duty

Constraint (4) ensures that the total duty time in a week doesn’t exceed the maximum permissible limit.

Xis1 €W = sny,,, —sfy, 2rh, Vie{l,2,...m—1} 5

Constraint (5) is the mandatory rest hour constraint that ensures sufficient rest is provided to a crew between
two consecutive working tasks.

In the Indian context, the mandatory rest, rh, is defined based on the station where the rest is to be provided
and the traversal time of the previous task undertaken by the crew.

16 hours, if dest,, = home
rh = {8 hours, if dest,, # home & sfy, — sny, > 8 hours (6)
Sfx; — Shy;,if desty, # home & sfy, — sny, < 8 hours

Constraint (6) caters to the different possible cases as follows:

* if the previous task has ended at the home base, then the next working task in the duty can start after a
rest of at least 16 hours.

* else if the previous task has ended at the outstation with a traversal time of 8 hours or more, then the
next working task in the duty can start after a rest of at least 8 hours.

* else if the previous task has ended at the outstation with a traversal time of less than 8 hours, then the
next train task in the duty can start after a rest equal to the traversal time of the previous task.

orgx; = home & sfx, —sny, 2rt & xj,x; €W =

& (7
Z(destxk = home) 2 1, Vi, j € {1,2,....,m}

k=i



Constraint (7) ensures the return of a crew within a specific time limit after leaving the home base.

The feasible duties generated from this CP model serve as an input to the SCP model, explained in the
next section.

4.1.2 SCP Model for Duty Optimization

Set covering problem (SCP) is a well-known problem in combinatorial optimization and is proven to be
NP-hard. Given a collection of elements, the SCP aims to find the minimum number of sets required to
cover all these elements at least once. The other related problem is the set partitioning problem (SPP), where
the objective is the same but covers all elements exactly once. As far as crew planning is concerned, SCP
formulation is commonly used in the case of bus or railway modes of transportation where the deadheading
of a crew is not that costly. However, SPP is widely used in the airline industry, where deadheading a crew is
very expensive.

In this work, we use the SCP model and the input parameters used in the formulation are summarized
in table 3.

Table 3: SCP model: Input data and parameters

Notation Description
F Set of feasible duties
w Set of working tasks
ajij binary parameter, which takes a value 1 if the

feasible duty i contains train task j, and O otherwise

The model is as follows:

minimize Z Vi (8)
ieF
subject to,
Za,-jxinIVjGW ©)
ieF
1,if duty i contains task j Vi e F, j e W
ajj = . (10)
0, otherwise
1, if duty i is selected Vi € F
Vi = . (11D
0, otherwise

The objective (8) is to select the minimum number of duties covering all the working tasks. Constraint (9)
ensures that each working task is a part of at least one of the selected duties. Constraints (10) and (11)
define the binary input data (a;;) and decision variable (y;) to the problem, respectively. Note that if any task
appears in more than one selected duty, it would be a deadheading trip in all those duties except the one for
which it would be a working task.



4.2 Heuristic Approach

The heuristic developed in this work extends the idea of the classic bin-packing problem to a crew scheduling
setting with appropriate modifications. The bin packing problem is an optimization problem in which items
of varying sizes must be packed into a finite number of bins, each of a fixed given capacity, by minimizing
the number of bins used. Here, the crew tasks represent the items to be packed and crew duties represent the
bins. The difference from the classic bin-packing problem is that here all the bins (duties) are not active all
the time because of the location-fit constraints for the crew. Additionally, each new task that is being added
to a duty depends on the previous task due to the differential rest rules applicable between them. Therefore,
the selection of an appropriate bin (duty) for an item (task) is more complex in this setting.

In the heuristic also, a crew duty is defined in the same way it is described in the exact approach. The
input data and parameters used in the heuristic are summarized in table 4.

Table 4: Heuristic: Input data and parameters

Notation Description

w The set of train tasks

home Home base station

num; Train number of task ¢

org; Originating station of task ¢

dest, Destination station of task ¢

dept, Departure time of task ¢

arr; Arrival time of task ¢
SNy Sign on time for task ¢
sfr Sign off time for task ¢
pw Time required for paper work
rh Minimum rest to be provided after operating a task
dh Maximum duty hours permissible in a week

The heuristic has been designed considering the rail network of the Mumbai division, where there is a
central home base with all the outstation CCPs in the division connected to it. This characteristic ensures
that an outstation-to-home trip follows a home-to-outstation trip. The heuristic can be customized for other
divisions with minimal modifications. Further, the heuristic does not consider deadheading during duty
construction. Deadheading may not be needed because the passenger timetable is symmetric in numbers
in the two directions of travel and the services are quite frequent and are available throughout the day.
Deadheading may be required for freight services, which could very well be unbalanced in requirements, as
well as for certain extreme examples of passenger services. The current heuristic approach does not permit
an easy extension to cover deadheading options. Scheduling without deadheading trips can help reduce the
unproductive duty time in the system.

4.2.1 Heuristic for Duty Generation

The steps to constructively generate the crew duties are shown in the flowchart given in fig.4.

The idea behind the task allocation policy is to balance the total workload. Therefore, if the task originates
from an outstation CCP, it is assigned to the first available duty. This ensures that no crew waits at an
outstation for a longer duration. On the other hand, if the task originates from the home base CCP, it is
assigned to a least loaded duty. This way, when the crew is at home base and has undertaken relatively longer
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Figure 4: Flowchart of the heuristic



duty hours, they are given extra rest to balance the total workload. The tie-breaker is used if required. The
task allocation policy and the tie-breaker rule are given in table 5.

Table 5: Heuristic policy for constructive task allocation and for connecting duties

Task originating station Primary rule Tie breaker
Home base CCP Least loaded duty  First available duty
Outstation CCP First available duty ~ Least loaded duty

Phases in heuristic solution generation: The heuristic generates a complete solution in three phases. In
the first phase, the total number of duties required to cover all the given train tasks is estimated by linking
feasible train tasks following the proposed task allocation policy given in table 5. However, these duties are
not retained further since they do not ensure a uniform distribution of the total workload as the duties are
created as and when required. This estimate is used to generate the final crew duties (for a week) in the second
phase of the heuristic by ensuring uniform workload distribution to the extent possible. In the third phase,
an additional set of weekly crew duties are generated following the same procedure with the condition that it
should be feasible to connect the last and first tasks of each duty generated in the second and third phases,
respectively. This condition ensures the connection of duties over successive periods (weeks) and enables the
construction of longer duty cycles (one or more cycles) by sequencing the crew duties in a compatible manner.
Duty cycles ensure the connectivity of crew duties subject to time, location, and operational constraints. From
a crew duty cycle, a crew member can easily identify the crew duties to perform in succession. The same
allocation policy as given in table 5 is used to establish a connection between compatible duties. Here, the
total duty hours in the preceding week is considered to identify the least loaded duty.

The solution generated during all three phases of the heuristic for a sample problem instance (Mumbai-
ROHA section) is given in table 6. Here, the numbers represent train running tasks (details given in
Appendix B) and the alphabets represent duties, which consist of multiple tasks to be performed by a crew in
sequence, during a week. Further, in this example, four duty cycles are derived in phase three of the heuristic
from the 13 crew duties generated in phase two, respecting the relevant constraints, as shown in table 7. Duty
cycle is a cyclic sequence of the compatible crew duties to be undertaken over a longer duration, maybe over
some weeks/months. Each of the 13 duties generated in phase two of the heuristic will be a part of one of the
four duty cycles and the 13 crew members are required to undertake these duties in the order as given in the
corresponding duty cycle. Subsequently, each crew member will shift from one duty cycle to another and,
in the long run, will complete all the duty cycles (all the train tasks in the region), thus balancing the total
workload.

5 Results and Discussion

In this section, we discuss the computational results from the case study of the Mumbai Division.

5.1 Computational Results: Exact and Heuristic Approaches

The computational results obtained using the Exact and Heuristic approaches are presented in table 8. Here,
both the section-wise and integrated crew scheduling have been tried separately and the results are reported.

In the exact approach, both the CP and SCP formulations have been modelled using IBM ILOG CPLEX
Optimization Studio 22.1.0 (academic), and the experiments have been carried out on an Intel Xenon 3.5 GHz
64-bit personal computer with 16 GB RAM. Even though the recurring planning period for crew scheduling



Table 6: Heuristic solution: Mumbai - ROHA section

S. No. Phase one - Estimation Phase two - Week n Phase three - Week (n+1)
Duty Duty hours Duty Duty hours
1. 18132835516877 132834455772 (A) 22.52 41825415667 (H) 22.12
2. 7111834455874 62139536176 (B) 22.08 122227 43 48 65 (F) 21.25
3. 291530405569 72432466371 (C) 22.23 92331476470 (K) 21.8
4. 310142937526075 112035516877 (D) 22.62 1328344557 72 (A) 22.52
5. 416233139536278 142937526075 (E) 21.3 11 20 3551 68 77 (D) 22.62
6. 517243238546176 1222274348 65 (F) 21.25 1103344 58 74 (G) 22.55
7. 619 2541 46 63 11033445874 (G) 22.55 62139536176 (B) 22.08
8. 122026425772 41825415667 (H) 22.12 31738546278 (1) 22.92
0. 21334449 66 31738546278 (1) 22.92 1429 37 526075 (E) 21.3
10. 222743 48 65 21636505973 ) 23.43 519264249 66 (M) 21.02
11. 365056 67 71 92331476470 (K) 21.8 81530405569 (L) 22.38
12. 47 6470 8 1530405569 (L) 22.38 7243246 6371 (C) 22.23
13. 5973 519264249 66 (M) 21.02 21636505973 () 23.43

Table 7: Heuristic solution: Duty cycles for Mumbai - ROHA section derived from Table 6

S. No. Duty Cycles
1. A->H—->I-E->D->A

2. B—->F—>G—-B
3. C-oK->L->C
4. J-o-M-—>]

(to cover all the train tasks) is a week, it was not possible to solve the models for a week in any of the sections
due to the larger size of the problem. Hence, for all the sections, the experiments have been run for the
maximum time period possible (two - six days depending on the number of tasks). From table 8, it can be
observed that with an increase in the number of working tasks and/or the planning horizon, the number of
feasible duties explode due to combination possibilities and the CP model fails to generate all the feasible
duties in a reasonable time. Therefore, the sections with comparatively fewer tasks (like Mumbai - ROHA)
can be solved for a longer horizon than those with a larger number of tasks (like Mumbai- IGP). The partial
solutions (solutions for a shorter planning period) obtained from this approach serve as a reasonable lower
bound to compare the heuristic solutions.

The heuristic is coded in c++ and is found computationally efficient as it generates the complete solutions for
all the problem instances (sections) quickly (less than a second). A comparison between the partial solutions
(optimal for the corresponding shorter planning horizon) and the heuristic solutions can be made from table
8. The solution corresponding to the largest planning horizon that could be solved optimally in each scenario
is used for this comparison. The average optimality gap (in percentage) between the heuristic and partial
solutions, defined here as ((heuristic solution value - partial solution value)/partial solution value)x100, is
found to be 10.625% for the section-wise scenarios. For the integrated crew planning scenario, the optimality
gap is 2.5%. These optimality gap values indicate that the heuristic is able to generate reasonably good
solutions in a very quick time. Further, the results from the heuristic suggest that integrated planning covers
all the given train tasks with a 4% lesser number of crew duties than section-wise planning. Table 8 shows
that for section-wise planning, the total number of crew duties adds up to 141 (Mumbai - IGP: 57, Mumbai -
PUNE: 44, Mumbai - RN: 27 and Mumbai - ROHA: 13), while for integrated planning, the total number of



crew duties is 135. It is because the combination possibilities increase in integrated planning due to which
the waiting times at stations decrease, resulting in better crew utilization. This is further established in fig. 5
where statistics related to the total duty time in a week and waiting time after a task for different sections are
shown on their respective arcs. The statistics for integrated planning are shown outside the network. Note
that in the case of section-wise planning, the average duty hours (or the crew utilization) is significantly low
in the Mumbai - ROHA section due to the fact that there are fewer tasks in this section and they are of shorter
duration, which results in longer waiting times for the crew.

Table 8: Exact and Heuristic Results

Section Planning Working Exact solution Heuristic solution
horizon tasks Feasible Optimal CPU Time No. of duties
duty solutions  duties  (CP, SCP) (sec)

Mumbai - IGP 1 day 78 314 54 1, <1 54
2 days 152 16,254 54 85,2 54

3 days 234 >400,000 - - 57

4 days 309 - - 57

5 days 383 - - - 57

6 days 463 - - - 57

7 days 538 - - - 57

Mumbai - PUNE 1 day 51 103 40 <1, <1 40
2 days 102 2,788 42 15, <1 42

3 days 156 77,903 43 414, 11 43

4 days 208 >400,000 - - 44

5 days 258 - - - 44

6 days 312 - - - 44

7 days 364 - - - 44

Mumbai - RN 1 day 23 38 19 <1, <1 19
2 days 43 280 22 1, <1 22

3 days 64 2,640 22 14, <1 22

4 days 86 20,631 24 113,2 25

5 days 109 201,987 24 564, 57 27

6 days 134 >400,000 - - 27

7 days 154 - - - 27

Mumbai - ROHA 1 day 10 17 7 <1, <1 7
2 days 22 139 9 <1, <1 10

3 days 32 930 9 5,<1 10

4 days 45 6,499 10 34,<1 11

5 days 55 44,936 10 239, 3 12

6 days 67 280,199 10 985, 53 13

7 days 78 >400,000 - - 13
Mumbai Division 1 day 162 584 117 3, <1 118
(Integrated) 2 days 319 38,103 120 204, 10 123
3 days 486 >400,000 - - 126
4 days 648 - - - 130
5 days 805 - - - 132
6 days 976 - - - 135

7 days 1134 - - - 135




1. Igatpuri (IGP) ‘ Home Base

{11.1, 7.1}

"1'. Ratnagiri (RN)

| . i . Outstation
i .+ (34.88, 1.35) ;

i o (429,3.1) i

i Mumbai i

l . (38.63, 1.64) g

| .., {531,395 !

| % (22.17,0.69) .

| %% {14.49,7.2) )_. :

i w3 Pune (PUNE) |

! Ny :

: Roha (ROHA) |

i v Integrated
5 . | (37.48,2.29)
! (40.17,2.66) - | {5.36, 4.75)

total duty time in hrs (avg, stdev),
waliting time after a task in hrs {avg, stdev}

Figure 5: Heuristic solution: Duty hours and waiting hours

5.2 Comparison with the Existing Crew Links used by Mumbai Division

The existing crew links (crew link is the term used internally by Indian Railways to represent a duty cycle)
used by the Mumbeai division cover all the given train tasks in a week with 170 duties, which includes around
180 deadheading tasks. The solution generated by the heuristic shows that the same set of tasks can be
covered with 135 duties. An additional 10% is usually reserved for periodical rest and possible fluctuations in
traversal times. Thus, the final rounded-off number comes to 150, which is almost 12% less than the existing
number of duties. This shows that there is potential for significant savings in terms of crew costs. The crew
links generated by the heuristic are found to be better because the existing method of generating crew links
is not fully integrated (crew links for daily and non-daily trains are prepared separately) and depend highly
on the skills of the personnel involved. In this work, we don’t distinguish based on the train type or crew
type and assume that any task can be assigned to any crew. We also find that there is scope for reducing the
deadheading tasks, which are unproductive and costly. However, in each case, the final crew requirement
would be more than the number of duties to compensate for the crew members on leave, training, etc., as
shown in table 9. These concerns are mostly handled at the crew rostering stage.

Table 9: Estimate of total crew requirement in Mumbai Division

Components Existing crew links Crew links generated by the heuristic
Crew duties [A] 170 150
(Deadheading trips) (180) 0)
Leave (10%) [B] 17 15
Other contingencies (5%) [C] 8 7

Total crew requirement [A+B+C] 195 172




6 Conclusion

Railway crew scheduling problems are complex, and finding an optimal solution for large-size, real-life
instances is a challenge due to an explosion in combination possibilities. This paper proposes a heuristic
which extends the idea of the classic bin-packing problem to generate crew schedules that can be repeated
over periodic train schedules (connected crew schedules) by incorporating the rules related to crew allocation.
By ensuring the connectivity of crew schedules, a more realistic estimate of the crew requirement in a region
is also obtained, thus linking both an operational-level crew scheduling problem and a tactical-level crew
capacity planning problem. Further, the crew duty cycles generated by the heuristic (by linking various crew
duties) also ensure a fair distribution of workload among the crew and in the long run, each crew takes up all
the train tasks associated with that crew region. These cyclic crew links also help in preparing cyclic crew
rosters in the subsequent planning stage.

In this work, we first implement an exact approach based on a combination of constraint programming
and set covering formulations to generate optimum crew schedules. We consider the additional constraints
like differential rest rules for outstation and return journeys, rest rules that depend upon the duration of the
trips, and a limit on the maximum time a crew can stay away from their home base, which are applicable in
the Indian context. Also, the heterogeneity in the number of long-distance passenger train services operated
on different days in a week extends the planning horizon to a week, thus making the problem more complex.
The models can be solved in sequence to obtain optimum solutions for small-sized problem instances. These
results are also used for validating the crew schedules generated by the heuristic and for obtaining valid lower
bounds for larger problem instances. A comparison of the heuristic results with the existing crew schedules
used by the Mumbai Division shows a possibility of reducing the total duty requirement by around 12%.
Based on the results, we also recommend integrated crew planning over section-wise planning as the former
results in better crew utilization due to more combination possibilities.

The heuristic approach provides an efficient way to generate improved crew schedules in the region whenever
there is any modification in the corresponding train schedules. Currently, a long and time-consuming manual
process is followed for crew duty generation which involves multiple stakeholders. The heuristic is developed
considering the Mumbai division network and it can be customized as required to be applied elsewhere. Also,
the heuristic can be improved further to make the subsequent crew rostering stage easier by incorporating
the periodical rest allotted to crew members in a systematic way. In the proposed integrated model, we
assume that all crew can operate any given task in a region. Even though this is found feasible with respect
to the familiarity of routes (route knowledge) in a region, there can be issues when a certain crew is not
trained to operate a particular type of locomotive or train set. In that case, the train tasks are to be split into
multiple sets and corresponding sets of crew cycles are to be generated by repeated execution of the proposed
heuristic. This ensures that each crew cycle contains only those tasks that can be operated by a particular set
of crew. In Indian Railways, a section of the senior crew members who are not trained for operating electric
locomotives are allocated tasks on trains with diesel locomotives on special request. Multiple sets of duty
cycles are generated in this case. Further, the effect of probable service delays and disruptions on crew duties
is handled in the following ways: (i) defining the train tasks by maintaining adequate buffer time between
the scheduled duration of the task and the maximum continuous running time of the crew, and (ii) adding an
additional 10% of the actual crew requirement to the crew strength as per industry standards. Future research
can focus on the following related aspects: (i) the addition of different types of train tasks and crew sets into
the model, and (ii) incorporating resilience parameters in the modelling framework to enhance the robustness
of the crew schedules.
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Appendix A

Snapshot of crew detail book used by Mumbai Division, Indian Railways (annotations given in blue
colour)

Direction Railway code for the Railway code for the station from where
Train number of service destination station the crew signs on for the task and the sign-on time
- UP/DN of the train
\
SIGN. : CSMT | T3 - [PunE SIGN. 12322 DN CSMT - HWH  KOLKATA Mail
ON 16:40 - Name of ON (via PCOI )
SIGN. : PUNE CSMT 17:10  PUN : the train |sien. : [1GP cSMT 2215 IGP 0:55
OFF 20:55 CSMT-KJT-LNL-SVJR-PUNE OFF 25 CSMT-DR-KYN-KSRA-IGP
DHRS : 415 . Dut DHRS : 3:40 Railway code for the station where
Railway code for Y the crew signs off from the task and
KMs @ 292 the source station aumb_?r. KMS 198 the sign-off time
it of the train ere | g
NDH : 0:00 represents NDH 3:25
seven
SIGN. : PUNE ( 2 ) — Irecurring [SIGN. : IGP 5
ON 225 tasks ON 7:35
12116 upP SUR - CSMT Siddheshwar Express = o 12110 UP MMR - CSMT Panchavati Express
SIGN. : CSMT since itis [siGn. . csmT
OFF 7:05 a daily OFF 11:15
PUNE 2:55  [csmT] 6:35 f IGP 805 CSMT 10:45
DHRS : 4:40 ~ PA-KYN= ?Dcsm\ train DHRS : 3:40 IGP-KYN-TNA-DR-CSMT
kms . 292 |Railway code for Railway code fof KMS . 198 Railway code for the major stations
won . 3 |the source station the destination station L (in sequence) which are part of the
N of the crew of the crew St section operated by the crew
SIGN. : LTT 11061 DN LTT - JYG Pawan Express SIGN. CSMT 11019 DN CSMT - BBS Konark Express
ON 11:00 ON 13:30
SIGN. : IGP LTI 11:30 ] IGP 12:10 SIGN. : PUNE csMT 1400 _PUNE 17:50
OFF 14:40 “TNA-KYN-KSRA-IGP OFF 18:20 CSMT-DR-TNA-KYN-KJT-LNL-PA
DHRS : 340 Tra;nfdepa;ture Train arrival DHRS | Duty hours (duration from sign-on to sign-off)
. time from the time at 2 (Task hours as per the nomenclature used in this work)
KMs ;o 182 source station e e Tasks of [KMs & B2
f the crew it -dail Total distance covered during the task (inkm)
NDH  :  0:00 o destination | Non-daily |NoH . o0:00 d
| trains
SIGN. : IGP / hnkEd SIGN. : PUNE 7
ON 18:20 with oN 0:45
12172 uP HW - LTT Express Wed,Sat| daily 12702 UP HYB - CSMT Hussain Sagar Exp
SIGN. : LTT 22512 up KYQ - LTT Express Mon train SIGN. : CSMT
OFF 22:00 OFF 5:25
11061 PUNE 115 CSMT 4:55
D.HRS : 340 IGP 18:50 Lm 21:30 D.HRS : 4:40 PA-KYN-DR-CSMT
R IGRICYN-ST. s, Night duty hours (NDH) within the task dration.
: : z :
P (Night task hours as per the nomenclature used
NDH :  0:00 |NOTE oG T T E e T T Ca NDH in this work.) Night shift: 10 PM to 6 AM

13 14
On Sunday, Tuesday, Thursday, and Friday, when connection tasks are not available, the crew will be deadheaded back to the source station
PLT (Piloting) - Code used by Indian Railway for a deadheading task




Appendix B

Details of Mumbai-ROHA tasks

Task Day Train Origin Departure Destination Arrival | Task Day Train Origin  Departure Destination Arrival
station time station time station time station time
1 M 11003 MUM 00:05 ROHA 02:50 40 Th 22629 MUM 20:40 ROHA 23:25
2 M 11085 MUM 05:33 ROHA 08:15 41 Th 11004 ROHA 03:33 MUM 06:40
3 M 10105 MUM 06:25 ROHA 09:05 42 Th 50104 ROHA 11:00 MUM 13:25
4 M 16345 MUM 11:40 ROHA 14:10 43 Th 22630 ROHA 12:20 MUM 15:00
5 M 50103 MUM 15:20 ROHA 17:30 44 Th 16346 ROHA 13:52 MUM 16:45
6 M 12450 MUM 23:10 ROHA 02:30 45 Th 10106 ROHA 17:35 MUM 20:10
7 M 11004 ROHA 03:33 MUM 06:40 46 F 11003  MUM 00:05 ROHA 02:50
8 M 50104 ROHA 11:00 MUM 13:25 47 F 10105 MUM 06:25 ROHA 09:05
9 M 16346 ROHA 13:52 MUM 16:45 48 F 16345 MUM 11:40 ROHA 14:10
10 M 10106 ROHA 17:35 MUM 20:10 49 F 50103 MUM 15:20 ROHA 17:30
11 Tu 11003 MUM 00:05 ROHA 02:50 50 F 11004 ROHA 03:33 MUM 06:40
12 Tu 10105 MUM 06:25 ROHA 09:05 51 F 50104 ROHA 11:00 MUM 13:25
13 Tu 16345 MUM 11:40 ROHA 14:10 52 F 16346 ROHA 13:52 MUM 16:45
14 Tu 50103 MUM 15:20 ROHA 17:30 53 F 11086 ROHA 14:13 MUM 17:10
15 Tu 19260 MUM 22:50 ROHA 01:30 54 F 10106 ROHA 17:35 MUM 20:10
16 Tu 11004 ROHA 03:33 MUM 06:40 55 F 19259 ROHA 20:10 MUM 23:10
17 Tu 12217 ROHA 09:35 MUM 12:45 56 Sa 11003 MUM 00:05 ROHA 02:50
18 Tu 50104 ROHA 11:00 MUM 13:25 57 Sa 11099 MUM 00:45 ROHA 03:15
19 Tu 16346 ROHA 13:52 MUM 16:45 58 Sa 12218  MUM 06:10 ROHA 09:20
20 Tu 11086 ROHA 14:13 MUM 17:10 59 Sa 10105 MUM 06:25 ROHA 09:05
21 Tu 10106 ROHA 17:35 MUM 20:10 60 Sa 16345 MUM 11:40 ROHA 14:10
22 Tu 12449 ROHA 18:40 MUM 21:05 61 Sa 50103 MUM 15:20 ROHA 17:30
23 W 11003 MUM 00:05 ROHA 02:50 62 Sa 12450 MUM 23:10 ROHA 02:30
24 w 10105 MUM 06:25 ROHA 09:05 63 Sa 11004 ROHA 03:33 MUM 06:40
25 w 20932 MUM 10:10 ROHA 12:55 64 Sa 50104 ROHA 11:00 MUM 13:25
26 w 16345 MUM 11:40 ROHA 14:10 65 Sa 20931 ROHA 12:20 MUM 15:10
27 w 50103 MUM 15:20 ROHA 17:30 66 Sa 16346 ROHA 13:52 MUM 16:45
28 W 11004 ROHA 03:33 MUM 06:40 67 Sa 10106 ROHA 17:35 MUM 20:10
29 w 50104 ROHA 11:00 MUM 13:25 68 Su 11003 ~MUM 00:05 ROHA 02:50
30 w 16346 ROHA 13:52 MUM 16:45 69 Su 10105 MUM 06:25 ROHA 09:05
31 W 10106 ROHA 17:35 MUM 20:10 70 Su 16345 MUM 11:40 ROHA 14:10
32 w 12449 ROHA 18:40 MUM 21:05 71 Su 50103 MUM 15:20 ROHA 17:30
33 Th 11003 MUM 00:05 ROHA 02:50 72 Su 11004 ROHA 03:33 MUM 06:40
34 Th 11085 MUM 05:33 ROHA 08:15 73 Su 12217 ROHA 09:35 MUM 12:45
35 Th 12218 MUM 06:10 ROHA 09:20 74 Su 50104 ROHA 11:00 MUM 13:25
36 Th 10105 MUM 06:25 ROHA 09:05 75 Su 22476 ROHA 12:20 MUM 15:10
37 Th 16345 MUM 11:40 ROHA 14:10 76 Su 16346 ROHA 13:52 MUM 16:45
38 Th 22475 MUM 14:15 ROHA 17:00 77 Su 10106 ROHA 17:35 MUM 20:10
39 Th 50103 MUM 15:20 ROHA 17:30 78 Su 11100 ROHA 21:20 MUM 23:45
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