A tool for periodic timetabling (for suburban railways)

Soumya Dutta, Narayan Rangaraj, K.N. Singh and Madhu N. Belur

Dept of Electrical Engineering, Industrial Engineering and Operations Research

Indian Institute of Technology Bombay (IITB)

This talk at: http://www.ee.iitb.ac.in/%7Ebelur/railways/

16th Feb, 2017

- Objectives of the tool: <u>'IITB-Suburban-Service-Timetabler'</u>
- Types of constraints
- Data formats: input and output
- Methods/techniques
- Further plans

- Timetabling: Herculean task when done manually
- Various complex constraints
- Only few experts can modify manually
- Can only 'tweak' existing timetable
- Periodic constraints: need of the 'hour'

- Desired: hourly timetable
- Only minute-value to remember (for each service)
- Need not be exactly evenly spaced
- Repeats each hour: for example:
- from CST to Vashi, say 3 services per hour:
 - 8:13, 8:40, 8:52,
 - 9:13, 9:40, 9:52,
 - 10:13, 10:40, 10:52
- Aim: 'quite' well-spaced within the hour

Hard constraints:

- Headway constraints
- Frequency of service
- Minimum traversal times
- Turn-around constraints

Soft constraints:

• Spacing between consecutive 'similar' services

Inputs offline (for now): Different infrastructural parameters:

- Stations, tracks
- types of services:

Inputs Online: web-version:

- Passenger demands, traversal times
- turnaround times at terminals

Timetable downloadable from the website in a few hours (or minutes)

A feasible periodic timetable Guaranteed to satisfy:

- headway, turnaround, traversal constraints
- specified frequency

Incorporated into timetable generation Output-format: One up-file, and one down-file

Rake linkage chart:

- Rake cycles list of services to be performed by each rake
- Number of rakes also calculated

A terminal occupancy chart: Occupancy of each major station Number of trains occupying terminal resources plotted time-wise

Future plan: A graphical way of viewing terminal occupancy

Planned improvements

- Line planning can be incorporated
- Proper platform allocation at all stations
- A graphical editing tool for viewing the network and changing any infrastructure

PRESENT PLAN

- As of now inputs will be taken from the Central Railways office through a web-interface.
- The inputs asked will be frequency, turnaround time and traversal times.
- The outputs will be displayed on a web page within a day

Arrival and departure timings

CS	a CSTd	VDRDa	VDRDd	TNAa	TNAd	TUHa	TUHd	MNKDa	MNKDd	VSHa	VSHd	NERa	NERd	BEPRa	BEPRd	PNVLa	PNVLd	BAa	BAd	ANDa	ANDd
	53	10	10.5					30.5	31	38	38.5	46.5	47	52	52.5	8.5					
	24.5	41.5	42.5					2.5	3	10	11	19	20	25	25.5	41.5					
	36	53	53.5					13.5	14	21	22	30	31	36	37	53					
	15.5	32.5	33.5					53.5	54	1	1.5	9.5	10	15	15.5	31.5					
	5.5	22.5	23.5					43.5	44	51	52	0	0.5	5.5	6	22					
	8.5	25.5	26.5					46.5	47	54	55	3	3.5	8.5							
	33	50	50.5					10.5	11	18	18.5	26.5	27	32							
	50	7	7.5					27.5	28	35	35.5	43.5	44	49							
	30	47	47.5					7.5	8	15											
	57	14	14.5					34.5	35	42											

Each column: arrival or departure at station

Each row: one service Hour-value not required, minute-values $45.5 \equiv 45$ minutes, 30 seconds

Sample: rake linkage

Service- type	Service num- ber	Sou	rce-De	st.	Dep-	Arr.	linking service
1 2 4 4 1 8 8 1	6 15 12 19 18 5 34 31 8	PNVL CST BEPR CST VSH CST PNVL VDRD PNVL	CST BEPR CST VSH CST PNVL VDRD PNVL CST	28 50 55 57 48 36 1 3.5 4.5	45 49 54 42 33 53 0.5 1.5 21.5	linked with linked with linked with linked with linked with linked with linked with linked with	service number 15 service number 12 service number 19 service number 18 service number 5 service number 34 service number 31 service number 3

Service no. 10 enters CST as PNVL-CST service at 30.0 and leaves at 33.0 as CST-BEPR service with service no. 13

Service no. 18 enters CST as VSH-CST service at 33.0 and leaves at 36.0 as CST-PNVL service with service no. 5

Service no. 16 enters CST as BEPR-CST service at 36.0 and leaves at 39.0 as CST-AND service with service no. 25 $\,$

Service no. 28 enters CST as BA-CST service at 39.0 and leaves at 42.0 as CST-BA service with service no. 27

Working time table (taken from Central Railway)

Train No.	99001	98025	98811	98027	98	303	987	11	980	029	980	31
Train Code	TPL 1	PL 21	B 11	PL 23		R3	AD				PLV	
	DC 12 CAR	DC	AC DC	AC DC	C	C	AC	DC	D	c	D	0
	12 CAR		9 00	69 ³ - 1	1	101			0			
Stations		1000		1.00		х			-	x)	¢ .
Code												
CSTM	TNA	06:00	06:04	06:08	0	6:12	0.0	:16	06	:20		6.325
MSD	06:20	06:03	06:07	06:11		6:15		:19		3:23		
SNRD		06:06	06:10	06:14		6:18		:22		3:26	L B	0
DKRD		06:08	06:12	06:16	lo	6:20		:24		5:28	1 v	/D 2
RRD	iv i de	06:10	06:14	06:18		6:22		:26		3:30	06	3:34
CTGN	80 A K.	06:12	06:16	06:20		6:24		:28		5:32		
SVE		06:15	06:19	06:23		6:27		5:31		6:35		542 - L
VDLR RVJ	1 1 × 46	06:18	06:22	06:26		6:30		5:34		6:38		5:42
KCE		06:20	06:24	06:28	+	6:32		3:36 3:38	10	6:40	10	6:45
MM	1.1	1.1.1	06:28					5:30 6:40			1	
BA			06:32	1.1				6:44				
KHR		121	00.02					6:48			1	1000
STC				1.0				6:51				
VLP								6:54				
ADH		1.0	1.1			_		6:58				
GTBN	10.4	06:22	1.1	06:30		06:34				06:42		06:47
CHF	1.1.2	06:25		06:33		06:37				06:4		06:50 06:53
CLA	1.0	06:28		06:36		06:40				06:4		06:53
TKNG		06:31	1.1	06:4		06:4				06:5		06:58
CMBR	1.1	06:33	1.1	06:4		06:4				06:5		07:01
GV		06:39		06:4		06:5				06:5		07:04
MNKD VSH	-	06:47		06:5		06:5			+	07:0		07:12
SNPD		06:49		06:5		07:0				07:0		07:14
JNJ	1.1	06:52		07:0		07:0				07:		07:17
NEU	06:51	06:56		07:0		07:0				07:		07:21
SWDV	06:55	06:59		07:0	7	07:1	1		1	07:	19	07:24
BEPR	06:58	07:02		07:1		07:1				07:	22	07:29
KHAG	07:02	07:06		07:1			-		-	07	26	07:33
MANR	07:02	07:09		07:1						07	:29	07:36
KNDS	07:08	07:12		07:3							:32	07:39
PNVL	07:13			07:3						07	:37	07:44
Rake will	TPL 1			4 PLA	D 5	BR	22	AD			. 28	PLVD 6
work as	07:24					07:	26	07	:06	07	:48	07:56
	1					ALC: UNKNOW	e hên ki	10.000	TTICK.	2016 37	11.11	and the second

Method/techniques used

- Mixed Integer Linear Programming (MILP) formulation
- Due to soft/hard (and integer) constraints
- Computationally difficult to solve
- Gurobi for solving MILP
- For pre-post processing: Python and Bash scripting
- Final output: xls-like file (csv file)
- Web-interface for input/output

Credits for Gurobi/Python implementation: Shashank Dangayach and Soumya Dutta

Method/techniques used

- Mixed Integer Linear Programming (MILP) formulation
- Due to soft/hard (and integer) constraints
- Computationally difficult to solve
- Gurobi for solving MILP
- For pre-post processing: Python and Bash scripting
- Final output: xls-like file (csv file)
- Web-interface for input/output

Credits for Gurobi/Python implementation: Shashank Dangayach and Soumya Dutta

Method/techniques used

- Mixed Integer Linear Programming (MILP) formulation
- Due to soft/hard (and integer) constraints
- Computationally difficult to solve
- Gurobi for solving MILP
- For pre-post processing: Python and Bash scripting
- Final output: xls-like file (csv file)
- Web-interface for input/output

Credits for Gurobi/Python implementation: Shashank Dangayach and Soumya Dutta

Thank you