
Software Development in Engineering and
Science (SDES)

Using Linux Tools

FOSSEE team
(In particular: Puneet Chaganti, C. Madhusudan, Asokan Pichai,

2010)

Department of Aerospace Engineering
IIT Bombay

FOSSEE (IIT Bombay) Using Linux Tools 1 / 83

Outline

1 Introduction
2 Getting Started
3 Getting Help
4 Basic File Handling
5 Linux File Hierarchy, Permissions & Ownership
6 Looking at files
7 The Command Shell
8 More text processing
9 Simple Shell Scripts

10 Control structures and Operators
11 Miscellaneous Tools

FOSSEE (IIT Bombay) Using Linux Tools 2 / 83

Introduction

Outline

1 Introduction
2 Getting Started
3 Getting Help
4 Basic File Handling
5 Linux File Hierarchy, Permissions & Ownership
6 Looking at files
7 The Command Shell
8 More text processing
9 Simple Shell Scripts

10 Control structures and Operators
11 Miscellaneous Tools

FOSSEE (IIT Bombay) Using Linux Tools 3 / 83

Introduction

What is the Linux OS?
Free Open Source Operating System

Free Free as in Free Speech, not Free Beer
Open-Source Permit modifications and redistribution of source

code
Unix-inspired
Linux Kernel + Application software
Runs on a variety of hardware
Also called GNU/Linux

FOSSEE (IIT Bombay) Using Linux Tools 4 / 83

Introduction

Why Linux?

Free as in Free Speech
Secure & versatile

Why Linux for Scientific Computing?
Free as in Free Speech
Can run for ever
Libraries
Parallel Computing

FOSSEE (IIT Bombay) Using Linux Tools 5 / 83

Getting Started

Outline

1 Introduction
2 Getting Started
3 Getting Help
4 Basic File Handling
5 Linux File Hierarchy, Permissions & Ownership
6 Looking at files
7 The Command Shell
8 More text processing
9 Simple Shell Scripts

10 Control structures and Operators
11 Miscellaneous Tools

FOSSEE (IIT Bombay) Using Linux Tools 6 / 83

Getting Started

Logging in

GNU/Linux does have a GUI
Command Line for this module
Hit Ctrl + Alt + F1 (learn how to come out of that first!)
(Please note: this is keyboard dependent, and GNU/Linux
distribution specific.)
Login
logout command logs you out

FOSSEE (IIT Bombay) Using Linux Tools 7 / 83

Getting Started

Where am I?

Logged in. Where did we reach?
pwd command gives the present working directory

$ pwd
/home/user

Think of a tree rooted at ‘/’

$

is called the ‘bash prompt’ (or shell prompt).
Type command argument at the prompt $: i.e.
$ command argument
You can change the prompt $ (bash syntax: $PS1).
Some commands do not need an argument.
Almost all commands can be provided with additional options:
$ command -o1 -o2 arguments

FOSSEE (IIT Bombay) Using Linux Tools 8 / 83

Getting Started

What is in there?

ls command lists contents of pwd

$ ls
jeeves.rst psmith.html blandings.html Music

Can also pass directory as argument

$ ls Music
one.mp3 two.mp3 three.mp3

The GNU/Linux world is case sensitive.
Commands, arguments, directory names: almost all.
There is a space between command, options, arguments:
some options can be combined.
Avoid spaces in general. In SDES course: spaces (and some
more characters) are banned (from filenames)!

FOSSEE (IIT Bombay) Using Linux Tools 9 / 83

Getting Started

New folders

mkdir creates new directories

$ mkdir sdes
$ ls

Special characters need to be escaped OR quoted

$ mkdir software\ engineering
$ mkdir "software engg"

Generally, use hyphens or underscores instead of spaces in
names

FOSSEE (IIT Bombay) Using Linux Tools 10 / 83

Getting Started

Moving around

cd command changes the pwd

$ cd sdes
$ pwd
/home/user/sdes/

Alternately written as cd ./sdes (. : current)
Specifying path relative to pwd
.. takes one level up the directory structure (.. : ‘parent’)

$ cd ..

We could use absolute path instead of relative

$ cd /home/user/sdes/

FOSSEE (IIT Bombay) Using Linux Tools 11 / 83

Getting Started

New files

touch command creates a blank file

$ pwd
/home/user
$ cd sdes
$ touch first
$ ls
first

FOSSEE (IIT Bombay) Using Linux Tools 12 / 83

Getting Help

Outline

1 Introduction
2 Getting Started
3 Getting Help
4 Basic File Handling
5 Linux File Hierarchy, Permissions & Ownership
6 Looking at files
7 The Command Shell
8 More text processing
9 Simple Shell Scripts

10 Control structures and Operators
11 Miscellaneous Tools

FOSSEE (IIT Bombay) Using Linux Tools 13 / 83

Getting Help

What does a command do?

whatis gives a quick description of a command

$ whatis touch
touch (1) - change file timestamps

man command gives more detailed description

$ man touch

Shows all tasks that the command can perform
Hit q to quit the man page. (This is syntax of ‘less’.)
For more, see the man page of man

$ man man

less is more than more.
FOSSEE (IIT Bombay) Using Linux Tools 14 / 83

Getting Help

Using additional options

-h or -help give summary of command usage

$ ls --help

List out all files within a directory, recursively

$ ls -R

Create a new directory along with parents, if required

$ pwd
/home/user/
$ ls sdes/
$ mkdir -p sdes/linux-tools/scripts

FOSSEE (IIT Bombay) Using Linux Tools 15 / 83

Getting Help

Searching for a command

apropos searches commands based on their descriptions

$ apropos remove

Returns a list of all commands that contain the search term
In this case, we are interested in rm, rmdir

FOSSEE (IIT Bombay) Using Linux Tools 16 / 83

Basic File Handling

Outline

1 Introduction
2 Getting Started
3 Getting Help
4 Basic File Handling
5 Linux File Hierarchy, Permissions & Ownership
6 Looking at files
7 The Command Shell
8 More text processing
9 Simple Shell Scripts

10 Control structures and Operators
11 Miscellaneous Tools

FOSSEE (IIT Bombay) Using Linux Tools 17 / 83

Basic File Handling

Removing files

rm is used to delete files

$ rm foo

rm works only for files; not directories

Additional arguments required to remove a directory
-r stands for recursive.
Removes directory and all of it’s content

$ rm -r bar

rmdir can also be used; Explore

FOSSEE (IIT Bombay) Using Linux Tools 18 / 83

Basic File Handling

Copying Files

cp copies files from one location to another

$ cp linux-tools/scripts/foo linux-tools/

New file-name can be used at target location
foo copied to new location with the name bar

$ cp linux-tools/scripts/foo linux-tools/bar

cp overwrites files, unless explicitly asked not to
To prevent this, use the -i flag

$ cp -i linux-tools/scripts/foo linux-tools/bar
cp: overwrite ‘bar’?

FOSSEE (IIT Bombay) Using Linux Tools 19 / 83

Basic File Handling

Copying Directories

-r is required to copy a directory and all it’s content
Copying directories is similar to copying files

$ cd /home/user
$ cp -ir sdes course

FOSSEE (IIT Bombay) Using Linux Tools 20 / 83

Basic File Handling

Moving Files

cp and rm would be one way
mv command does the job
Also takes -i option to prompt before overwriting

$ cd /home/user
Assume course directory is already created
$ mv -i sdes/ course/

No prompt! Why?

$ ls course

sdes became a sub-directory of course
mv command doesn’t over-write directories
-i option is useful when moving files around
mv to rename — move to same location with new name

FOSSEE (IIT Bombay) Using Linux Tools 21 / 83

Linux File Hierarchy, Permissions & Ownership

Outline

1 Introduction
2 Getting Started
3 Getting Help
4 Basic File Handling
5 Linux File Hierarchy, Permissions & Ownership
6 Looking at files
7 The Command Shell
8 More text processing
9 Simple Shell Scripts

10 Control structures and Operators
11 Miscellaneous Tools

FOSSEE (IIT Bombay) Using Linux Tools 22 / 83

Linux File Hierarchy, Permissions & Ownership

Linux File Hierarchy

/ is called the root directory
It is the topmost level of the hierarchy
For details man hier

FOSSEE (IIT Bombay) Using Linux Tools 23 / 83

Linux File Hierarchy, Permissions & Ownership

Permissions and Access control

In a multi-user environment, access control is vital
Look at the output of ls -l

drwxr-xr-x 5 root users 4096 Jan 21 20:07 home

The first column shows the permission information
First character specifies type of the file
Files have -; Directories have d
3 sets of 3 characters — for user, group and others
r, w, x — for read, write, execute
Either the corresponding character or - is present

FOSSEE (IIT Bombay) Using Linux Tools 24 / 83

Linux File Hierarchy, Permissions & Ownership

Changing the permissions

Permissions can be changed by owner of the file
chmod command is used
-R option to recursively change for all content of a directory

Change permissions of foo.sh from -rw-r--r-- to
-rwxr-xr--

$ ls -l foo.sh
$ chmod ug+x foo.sh
$ ls -l foo.sh

FOSSEE (IIT Bombay) Using Linux Tools 25 / 83

Linux File Hierarchy, Permissions & Ownership

Symbolic modes

Reference Class Description
u user the owner of the file
g group users who are members of the file’s group
o others users who are not the owner of the file or

members of the group
a all all three of the above; is the same as ugo

Operator Description
+ adds the specified modes to the specified classes
- removes the specified modes from the specified classes
= the modes specified are to be made the exact modes for

the specified classes

Mode Name Description
r read read a file or list a directory’s contents
w write write to a file or directory
x execute execute a file or recurse a directory tree

FOSSEE (IIT Bombay) Using Linux Tools 26 / 83

Linux File Hierarchy, Permissions & Ownership

Changing Ownership of Files

chown changes the owner and group
By default, the user who creates file is the owner
The default group is set as the group of the file

$ chown alice:users wonderland.txt

Did it work? Not every user can change ownership
Super-user or root user alone is empowered

FOSSEE (IIT Bombay) Using Linux Tools 27 / 83

Looking at files

Outline

1 Introduction
2 Getting Started
3 Getting Help
4 Basic File Handling
5 Linux File Hierarchy, Permissions & Ownership
6 Looking at files
7 The Command Shell
8 More text processing
9 Simple Shell Scripts

10 Control structures and Operators
11 Miscellaneous Tools

FOSSEE (IIT Bombay) Using Linux Tools 28 / 83

Looking at files

cat

Displays the contents of files

$ cat foo.txt

Concatenates the text of multiple files

$ cat foo.txt bar.txt

Not-convenient to view long files

FOSSEE (IIT Bombay) Using Linux Tools 29 / 83

Looking at files

less

View contents of a file one screen at a time

$ less wonderland.txt

q: Quit
Arrows/Page Up/Page Down/Home/End: Navigation
ng: Jump to line number n
/pattern: Search. Regular expressions can be used
h: Help

FOSSEE (IIT Bombay) Using Linux Tools 30 / 83

Looking at files

wc

Statistical information about the file
the number of lines in the file
the number of words
the number of characters

$ wc wonderland.txt

FOSSEE (IIT Bombay) Using Linux Tools 31 / 83

Looking at files

head & tail

let you see parts of files, instead of the whole file
head – start of a file; tail – end of a file
show 10 lines by default

$ head wonderland.txt

-n option to change the number of lines

$ head -n 1 wonderland.txt

tail is commonly used to monitor files
-f option to monitor the file
Ctrl-C to interrupt

$ tail -f /var/log/dmesg

FOSSEE (IIT Bombay) Using Linux Tools 32 / 83

Looking at files

cut

Allows you to view only certain sections of lines
Let’s take /etc/passwd as our example

root:x:0:0:root:/root:/bin/bash

View only user names of all the users (first column)

$ cut -d : -f 1 /etc/passwd

-d specifies delimiter between fields (default TAB)
-f specifies the field number
Multiple fields by separating field numbers with comma

$ cut -d : -f 1,5,7 /etc/passwd

FOSSEE (IIT Bombay) Using Linux Tools 33 / 83

Looking at files

cut

Allows choosing on the basis of characters or bytes
Example below gets first 4 characters of /etc/passwd

$ cut -c 1-4 /etc/passwd

One of the limits of the range can be dropped
Sensible defaults are assumed in such cases

$ cut -c -4 /etc/passwd
$ cut -c 10- /etc/passwd

FOSSEE (IIT Bombay) Using Linux Tools 34 / 83

Looking at files

paste

Joins corresponding lines from two different files
students.txt marks.txt
Hussain 89 92 85
Dilbert 98 47 67
Anne 67 82 76
Raul 78 97 60
Sven 67 68 69

$ paste students.txt marks.txt
$ paste -s students.txt marks.txt

-s prints content, one below the other
If first column of marks file had roll numbers? How do we get a
combined file with the same output as above (i.e. without roll
numbers). We need to use cut & paste together. But how?

FOSSEE (IIT Bombay) Using Linux Tools 35 / 83

The Command Shell

Outline

1 Introduction
2 Getting Started
3 Getting Help
4 Basic File Handling
5 Linux File Hierarchy, Permissions & Ownership
6 Looking at files
7 The Command Shell
8 More text processing
9 Simple Shell Scripts

10 Control structures and Operators
11 Miscellaneous Tools

FOSSEE (IIT Bombay) Using Linux Tools 36 / 83

The Command Shell

Redirection and Piping

$ cut -d " " -f 2- marks1.txt \
> /tmp/m_tmp.txt
$ paste -d " " students.txt m_tmp.txt

or

$ cut -d " " -f 2- marks1.txt \
| paste -d " " students.txt -

The first solution used Redirection
The second solution uses Piping

FOSSEE (IIT Bombay) Using Linux Tools 37 / 83

The Command Shell

Redirection

The standard output (stdout) stream goes to the display
Not always, what we need
First solution, redirects output to a file
> states that output is redirected; It is followed by location to
redirect

$ command > file1

> creates a new file at specified location
» appends to a file at specified location

FOSSEE (IIT Bombay) Using Linux Tools 38 / 83

The Command Shell

Redirection . . .

Similarly, the standard input (stdin) can be redirected

$ command < file1

input and the output redirection could be combined

$ command < infile > outfile

Standard error (stderr) is the third standard stream
All error messages come through this stream
stderr can also be redirected

FOSSEE (IIT Bombay) Using Linux Tools 39 / 83

The Command Shell

Redirection . . .

Following example shows stderr redirection
Error is printed out in the first case
Error message is redirected, in the second case

$ cut -d " " -c 2- marks1.txt \
> /tmp/m_tmp.txt

$ cut -d " " -f 2- marks1.txt 1> \
/tmp/m_tmp.txt 2> /tmp/m_err.txt

1> redirects stdout; 2> redirects stderr

$ paste -d " " students.txt m_tmp.txt

FOSSEE (IIT Bombay) Using Linux Tools 40 / 83

The Command Shell

Piping

$ cut -d " " -f 2- marks1.txt \
| paste -d " " students.txt -

- instead of FILE asks paste to read from stdin

cut command is a normal command
the | seems to be joining the two commands
Redirects output of first command to stdin, which becomes
input to the second command
This is called piping; | is called a pipe

FOSSEE (IIT Bombay) Using Linux Tools 41 / 83

The Command Shell

Piping

Roughly same as – 2 redirects and a temporary file

$ command1 > tempfile
$ command2 < tempfile
$ rm tempfile

Any number of commands can be piped together

FOSSEE (IIT Bombay) Using Linux Tools 42 / 83

The Command Shell

Tab-completion

Hit tab to complete an incompletely typed word
Tab twice to list all possibilities when ambiguous completion
Bash provides tab completion for the following.

1 File Names
2 Directory Names
3 Executable Names
4 User Names (when they are prefixed with a “∼” (tilde))
5 Host Names (when they are prefixed with a @)
6 Variable Names (when they are prefixed with a $)

FOSSEE (IIT Bombay) Using Linux Tools 43 / 83

The Command Shell

History

Bash saves history of commands typed
Up and down arrow keys allow to navigate history
Ctrl-r searches for commands used

FOSSEE (IIT Bombay) Using Linux Tools 44 / 83

The Command Shell

Shell Meta Characters

“meta characters” are special command directives
File-names shouldn’t have meta-characters
/<>!$%^&*|{}[]"’‘~;

$ ls file.*

Lists file.ext files, where ext can be anything

$ ls file.?

Lists file.ext files, where ext is only one character
See also the file command: no cheating file, though tab
completions can get cheated

FOSSEE (IIT Bombay) Using Linux Tools 45 / 83

More text processing

Outline

1 Introduction
2 Getting Started
3 Getting Help
4 Basic File Handling
5 Linux File Hierarchy, Permissions & Ownership
6 Looking at files
7 The Command Shell
8 More text processing
9 Simple Shell Scripts

10 Control structures and Operators
11 Miscellaneous Tools

FOSSEE (IIT Bombay) Using Linux Tools 46 / 83

More text processing

sort

sort can be used to get sorted content
Command below prints student marks, sorted by name

$ cut -d " " -f 2- marks1.txt \
| paste -d " " students.txt - \
| sort

The default is sort based on the whole line
sort can sort based on a particular field

FOSSEE (IIT Bombay) Using Linux Tools 47 / 83

More text processing

sort . . .

The command below sorts based on marks in first subject

$ cut -d " " -f 2- marks1.txt \
| paste -d " " students.txt -\
| sort -t " " -k 2 -rn

-t specifies the delimiter between fields
-k specifies the field to use for sorting
-n to choose numerical sorting
-r for sorting in the reverse order

FOSSEE (IIT Bombay) Using Linux Tools 48 / 83

More text processing

grep

grep is a command line text search utility
Command below searches & shows the marks of Anne alone

$ cut -d " " -f 2- marks1.txt \
| paste -d " " students.txt -
| grep Anne

grep is case-sensitive by default

FOSSEE (IIT Bombay) Using Linux Tools 49 / 83

More text processing

grep . . .

-i for case-insensitive searches

$ cut -d " " -f 2- marks1.txt \
| paste -d " " students.txt -
| grep -i Anne

-v inverts the search
To see everyone’s marks except Anne’s

$ cut -d " " -f 2- marks1.txt \
| paste -d " " students.txt -
| grep -iv Anne

FOSSEE (IIT Bombay) Using Linux Tools 50 / 83

More text processing

tr

tr translates or deletes characters
Reads from stdin and outputs to stdout
Given, two sets of characters, replaces one with other
The following, replaces all lower-case with upper-case

$ cat students.txt | tr a-z A-Z

-s compresses sequences of identical adjacent characters in
the output to a single one
Following command removes empty newlines

$ tr -s ’\n’ ’\n’

FOSSEE (IIT Bombay) Using Linux Tools 51 / 83

More text processing

tr . . .

-d deletes all specified characters
Only a single character set argument is required
The following command removes carriage return characters
(converting file in DOS/Windows format to the Unix format)

$ cat foo.txt | tr -d ’\r’ > bar.txt

-c complements the first set of characters
The following command removes all non-alphanumeric
characters

$ tr -cd ’[:alnum:]’

FOSSEE (IIT Bombay) Using Linux Tools 52 / 83

More text processing

uniq

uniq command removes duplicates from sorted input

$ sort items.txt | uniq

uniq -u gives lines which do not have any duplicates
uniq -d outputs only those lines which have duplicates
-c displays the number of times each line occurs

$ sort items.txt | uniq -u
$ sort items.txt | uniq -dc

FOSSEE (IIT Bombay) Using Linux Tools 53 / 83

Simple Shell Scripts

Outline

1 Introduction
2 Getting Started
3 Getting Help
4 Basic File Handling
5 Linux File Hierarchy, Permissions & Ownership
6 Looking at files
7 The Command Shell
8 More text processing
9 Simple Shell Scripts

10 Control structures and Operators
11 Miscellaneous Tools

FOSSEE (IIT Bombay) Using Linux Tools 54 / 83

Simple Shell Scripts

Shell scripts

Simply a sequence of shell commands in a file
To save results of students in results.txt in marks dir

#!/bin/bash
mkdir ~/marks
cut -d " " -f 2- marks1.txt \
| paste -d " " students.txt - \
| sort > ~/marks/results.txt

FOSSEE (IIT Bombay) Using Linux Tools 55 / 83

Simple Shell Scripts

Shell scripts . . .

Save the script as results.sh
Make file executable and then run

$ chmod u+x results.sh
$./results.sh

What does the first line in the script do?
Specify the interpreter or shell which should be used to
execute the script; in this case bash

FOSSEE (IIT Bombay) Using Linux Tools 56 / 83

Simple Shell Scripts

Variables & Comments

$ name=FOSSEE
$ count=‘wc -l wonderland.txt‘
$ echo $count # Shows the value of count

It is possible to create variables in shell scripts
Variables can be assigned with the output of commands
NOTE: There is no space around the = sign
All text following the # is considered a comment
Could also use count = ${wc -l wonderland.txt}
(instead of the “open quote”: ‘)

FOSSEE (IIT Bombay) Using Linux Tools 57 / 83

Simple Shell Scripts

echo

echo command prints out messages

#!/bin/bash
mkdir ~/marks
cut -d " " -f 2- marks1.txt \
| paste -d " " students.txt - \
| sort > ~/marks/results.txt
echo "Results generated."

FOSSEE (IIT Bombay) Using Linux Tools 58 / 83

Simple Shell Scripts

Command line arguments

Shell scripts can be given command line arguments
Following code allows to specify the results file

#!/bin/bash
mkdir ~/marks
cut -d " " -f 2- marks1.txt \
| paste -d " " students.txt - \
| sort > ~/marks/$1
echo "Results generated."

$1 corresponds to first command line argument
$n corresponds to nth command line argument
It can be run as shown below

$./results.sh grades.txt

FOSSEE (IIT Bombay) Using Linux Tools 59 / 83

Simple Shell Scripts

PATH

The shell searches in a set of locations, for the command
Locations are saved in “environment” variable called PATH
echo can show the value of variables

$ echo $PATH

Put results.sh in one of these locations
It can then be run without ./

FOSSEE (IIT Bombay) Using Linux Tools 60 / 83

Control structures and Operators

Outline

1 Introduction
2 Getting Started
3 Getting Help
4 Basic File Handling
5 Linux File Hierarchy, Permissions & Ownership
6 Looking at files
7 The Command Shell
8 More text processing
9 Simple Shell Scripts

10 Control structures and Operators
11 Miscellaneous Tools

FOSSEE (IIT Bombay) Using Linux Tools 61 / 83

Control structures and Operators

Control Structures

if-else

for loops
while loops

test command to test for conditions
A whole range of tests that can be performed

STRING1 = STRING2 – string equality
INTEGER1 -eq INTEGER2 – integer equality
-e FILE – existence of FILE

man page of test gives list of various tests

FOSSEE (IIT Bombay) Using Linux Tools 62 / 83

Control structures and Operators

if

Print message if directory exists in pwd

#!/bin/bash
if test -d $1

then
echo "Yes, the directory" \
$1 "is present"

fi

(indent recommended though not obligatory like in Python)

FOSSEE (IIT Bombay) Using Linux Tools 63 / 83

Control structures and Operators

if-else

Checks whether argument is negative or not

#!/bin/bash
if test $1 -lt 0
then
echo "number is negative"
else
echo "number is non-negative"
fi

$./sign.sh -11

FOSSEE (IIT Bombay) Using Linux Tools 64 / 83

Control structures and Operators

[] - alias for test

Square brackets ([]) can be used instead of test

#!/bin/bash
if [$1 -lt 0]
then
echo "number is negative"
else
echo "number is non-negative"
fi

spacing is important, when using the square brackets

FOSSEE (IIT Bombay) Using Linux Tools 65 / 83

Control structures and Operators

if-else

An example script to greet the user, based on the time

#!/bin/sh
Script to greet the user
according to time of day
hour=‘date | cut -c12-13‘
now=‘date +"%A, %d of %B, %Y (%r)"‘
if [$hour -lt 12]
then
mess="Good Morning \
$LOGNAME, Have a nice day!"
fi

FOSSEE (IIT Bombay) Using Linux Tools 66 / 83

Control structures and Operators

if-else . . .

if [$hour -gt 12 -a $hour -le 16]
then
mess="Good Afternoon $LOGNAME"
fi
if [$hour -gt 16 -a $hour -le 18]
then
mess="Good Evening $LOGNAME"
fi
echo -e "$mess\nIt is $now"

$LOGNAME has login name (env. variable)
backquotes store commands outputs into variables

FOSSEE (IIT Bombay) Using Linux Tools 67 / 83

Control structures and Operators

for

Problem
Given a set of .mp3 files, that have names beginning with numbers
followed by their names — 08 - Society.mp3 — rename the
files to have just the names. Also replace any spaces in the name
with hyphens.

Loop over the list of files
Process the names, to get new names
Rename the files

FOSSEE (IIT Bombay) Using Linux Tools 68 / 83

Control structures and Operators

for

A simple example of the for loop

for animal in rat cat dog man
do
echo $animal
done

List of animals, each animal’s name separated by a space
Loop over the list; animal is a dummy variable
Echo value of animal — each name in list

for i in {10..20}
do
echo $i
done

FOSSEE (IIT Bombay) Using Linux Tools 69 / 83

Control structures and Operators

for

Let’s start with echoing the names of the files

for i in ‘ls *.mp3‘
do
echo "$i"
done

Spaces in names cause trouble!
The following works better

for i in *.mp3
do
echo "$i"
done

FOSSEE (IIT Bombay) Using Linux Tools 70 / 83

Control structures and Operators

tr & cut

Replace all spaces with hyphens using tr -s

Use cut & keep only the text after the first hyphen

for i in *.mp3
do
echo $i|tr -s " " "-"|cut -d - -f 2-
done

Now mv, instead of just echoing

for i in *.mp3
do
mv $i ‘echo $i|tr -s " " "-"\
|cut -d - -f 2-‘
done

FOSSEE (IIT Bombay) Using Linux Tools 71 / 83

Control structures and Operators

while

Continuously execute a block of commands until condition
becomes false

program that takes user input and prints it back, until the input
is quit

while ["$variable" != "quit"]
do
read variable
echo "Input - $variable"
done
exit 0

FOSSEE (IIT Bombay) Using Linux Tools 72 / 83

Control structures and Operators

Environment Variables

Pass information from shell to programs running in it
Behavior of programs can change based on values of variables
Environment variables vs. Shell variables
Shell variables – only current instance of the shell
Environment variables – valid for the whole session
Convention – environment variables are UPPER CASE

$ echo $OSTYPE
linux-gnu
$ echo $HOME
/home/user

FOSSEE (IIT Bombay) Using Linux Tools 73 / 83

Control structures and Operators

Environment Variables . . .

The following commands show values of all the environment
variables

$ printenv | less
$ env

Use export to change Environment variables
The new value is available to all programs started from the
shell

$ export PATH=$PATH:$HOME/bin

FOSSEE (IIT Bombay) Using Linux Tools 74 / 83

Miscellaneous Tools

Outline

1 Introduction
2 Getting Started
3 Getting Help
4 Basic File Handling
5 Linux File Hierarchy, Permissions & Ownership
6 Looking at files
7 The Command Shell
8 More text processing
9 Simple Shell Scripts

10 Control structures and Operators
11 Miscellaneous Tools

FOSSEE (IIT Bombay) Using Linux Tools 75 / 83

Miscellaneous Tools

find

Find files in a directory hierarchy
Offers a very complex feature set
Look at the man page!

Find all .pdf files, in current dir and sub-dirs

$ find . -name ‘‘*.pdf’’

List all the directory and sub-directory names

$ find . -type d

FOSSEE (IIT Bombay) Using Linux Tools 76 / 83

Miscellaneous Tools

cmp

Compare two files

$ find . -name quick.c
./Desktop/programs/quick.c
./c-folder/quick.c
$ cmp Desktop/programs/quick.c \
c-folder/quick.c

No output when the files are exactly the same
Else, gives location where the first difference occurs

FOSSEE (IIT Bombay) Using Linux Tools 77 / 83

Miscellaneous Tools

diff

We know the files are different, but want exact differences

$ diff Desktop/programs/quick.c \
c-folder/quick.c

line by line difference between files
> indicates content only in second file
< indicates content only in first file

FOSSEE (IIT Bombay) Using Linux Tools 78 / 83

Miscellaneous Tools

tar

tarball – essentially a collection of files
May or may not be compressed
Eases the job of storing, backing-up & transporting files

FOSSEE (IIT Bombay) Using Linux Tools 79 / 83

Miscellaneous Tools

Extracting an archive

$ mkdir extract
$ cp allfiles.tar extract/
$ cd extract
$ tar -xvf allfiles.tar

-x — Extract files within the archive
-f — Specify the archive file
-v — Be verbose

FOSSEE (IIT Bombay) Using Linux Tools 80 / 83

Miscellaneous Tools

Creating an archive

$ tar -cvf newarchive.tar *.txt

-c — Create archive
Last argument is list of files to be added to archive

FOSSEE (IIT Bombay) Using Linux Tools 81 / 83

Miscellaneous Tools

Compressed archives

tar can create and extract compressed archives
Supports compressions like gzip, bzip2, lzma, etc.
Additional option to handle compressed archives

Compression Option
gzip -z
bzip2 -j
lzma --lzma

$ tar -cvzf newarchive.tar.gz *.txt

FOSSEE (IIT Bombay) Using Linux Tools 82 / 83

Miscellaneous Tools

Customizing your shell

Bash reads /etc/profile, ~/.bash_profile,
~/.bash_login, and ~/.profile in that order, when
starting up as a login shell.
~/.bashrc is read, when not a login shell
Put any commands that you want to run when bash starts, in
this file.

FOSSEE (IIT Bombay) Using Linux Tools 83 / 83

	Introduction
	Getting Started
	Getting Help
	Basic File Handling
	Linux File Hierarchy, Permissions & Ownership
	Looking at files
	The Command Shell
	More text processing
	Simple Shell Scripts
	Control structures and Operators
	Miscellaneous Tools

