
Moment matching using Arnoldi/Lanczos methods

Madhu N. Belur
Control and Computing group

Department of Electrical Engineering
Indian Institute of Technology Bombay

http://www.ee.iitb.ac.in/∼belur/talks/

14th & 15th April, 2015

Belur, CC, EE (IIT Bombay) Moment matching methods (NIT Srinagar 2015) Slide 1 / 15



Outline

Moments of a transfer function (about s0 ∈ C)

Moments about s =∞
Relative degree of a transfer function

Hessenberg form

Tridiagonal form (for symmetric A in state space realization)

Arnoldi method and Lanczos method for Hessenberg reduction

Matching of moments

Conclusion

Belur, CC, EE (IIT Bombay) Moment matching methods (NIT Srinagar 2015) Slide 2 / 15



Moments

Recall Taylor series expansion (about x = a)

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
(x− a)2

2!
+ · · ·

provided f(a) is bounded (i.e. no ‘pole’ at x = a)

If G(s) has no pole at s = 0, then

G(s) = g(0) + g′(0)s+ g′′(0)
s2

2!
+ · · ·

At x = a, all terms (except first term) are zero.

g(0) is zeroth moment of G(s) about s = 0.

g′(0) is first moment of G(s) about s = 0, etc.

Consider series in negative powers of s

G(s) = G(∞) +G1s
−1 +G2

s−2

2!
+ · · ·

For s→∞, we get s−1 → 0.

G(∞) is zeroth moment of G(s) about s =∞.

G1 is first moment of G(s) about s =∞, etc.
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Moments

Of course, for such an expansion about s = a,
G(s) ought not have pole at s = a.

For expansion in series in negative powers in s,
G(s) should have no pole at s =∞.

When s→∞, we want G(s) should not go unbounded

G(s) = n(s)
d(s)

(with polynomials n(s) and d(s)) is proper:
numerator degree 6 denominator degree

For MIMO systems: proper ≡ each entry in transfer matrix G(s) is proper

State space realization (A,B,C,D) exists, and then
G(∞) = D: the feedthrough term

In fact, for proper MIMO G(s),

G(s) = D +
CB

s
+
CAB

s2
+
CA2B

s3
+
CA3B

s4
· · ·
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Moment matching model order reduction problem

Given a large dynamical system (LTI, with transfer matrix) G(s) of say order N

find Ĝ: an approximant of G

Ĝ should have its first k moments the same as G(s).

Moments about s = s0 ∈ C: typically s = 0 or s =∞.

More precisely,
Given G(s) (of order N) and k << N and s0 ∈ C,
find Ĝ such that
the first k moments about s = s0 of Ĝ and G are equal.

Match moments of G.
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Meaning

Steady state analysis ≡ s = 0

G(0) (zeroth moment about s = 0) is steady state value for step input

Higher moments ≡ ‘rate of approaching’ steady state value

Immediate transients (t ∈ (0, ε) for small positive ε)
moments of G(s) about s =∞.

In fact, G(∞): the value step response jumps to at t = 0+.

Match moments about s =∞ ≡ transient response approximation

Relevant for ‘piece-wise’ approximation (transients’ analysis)
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More meaning

Markov parameters ≡ moments of G(s) about s =∞
In fact, impulse response h(t) of G(s)

h(t) = Dδ + CBt+ CABt2 + · · ·

More generally, Padé approximation:
moment matching (about different points s0)

Put Markov parameters in special structure: Hankel matrix
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Hankel matrix

For G(s) = D + CB
s

+ CAB
s2

+ CA2B
s3

+ CA3B
s4
· · · , define

H =


D CB CAB . . .
CB CAB CA2B . . .
CAB CA2B CA3B . . .

...
...

...
. . .


Though H is defined to have infinitely many rows and columns, rank is finite.

Suppose D is zero and leave first column (for simplicity).

Define Hnn: the first N rows and first N columns of above H.

HNN (from this new matrix) is

Hnn =


C
CA

...
CAN−1

 [B AB . . . AN−1B
]
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Realization theory link

By Cayley Hamilton theorem, we know observability and controllability matrix
ranks cannot keep increasing: atmost N each (if G(s) has order N).

Hankel matrix: very well-studied for state space realization from Markov
paramters

Given Markov parameters, find state space realization (A,B,C,D) that has
precisely these Markov parameters

For rational G(s), Markov parameters are ‘dependent’ after N moments

Like 10
27

= 0.370 370 370 370 370 . . . (for any rational number)

‘Dependency’: Hankel matrix rank is bounded for rational G(s)

Well-studied 50 years ago!
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Model order reduction??

Often state space realization of G(s) given: but N very large

Mechanical systems, FEM or FDM: we get A,B,C and D.

D plays no role. ‘Feedthrough’ term needs no states: assume D = 0.

Too much (computational) effort to calculate moments and then build lower
order Ĝ from the computed moments

Large memory involved in storing/computing for large matrices

Floating point error accumulation due to ill-conditioned [B AB A2B ] etc.

Power method tells for almost any nonzero v (and A), the vectors v, Av, A2v,
become parallel (after normalizing) ⇒ ill-conditioning
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Ill-conditioned matrices

Recall for square matrix A: ill-conditioned means
very large ‖A‖ × ‖A−1‖ =: κ(A)

Maximum singular value σmax: induced 2-norm (maximum amplification/gain
when measured in Euclidean/2-norm)

For induced 2-norm of matrix A,
large κ2(A) ⇒ singular values very separated: σmax >> σmin

Well-conditioned A: columns of A are roughly same length and quite mutually
orthogonal.

κ2(A) = 1 ⇔ A = cQ (for any constant c and orthogonal Q).

Recall a square matrix Q is called orthogonal if Q−1 = QT .

Qx just ‘rotates’ x and no change in length (for any x).

Not just rotations, but ‘reflections’ allowed too.

Givens rotators and Householder reflectors
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How to find Ĝ

Moment matching method: overall plan

Compute moments far more easily by changing basis

Change of basis using orthogonal transformation

Bring A to ‘Hessenberg’ form

If A was symmetric, then, in fact, tridiagonal form

Very scalable methods:
memory-wise,
computational effort-wise,
computational floating-point-error-wise

Computational procedure: Arnoldi (for unsymmetric A) and
Lanzos (for symmetric A)
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Hessenberg form

Not Heisenberg, of the Heisenberg uncertainty principle, but Hessenberg

Upper triangular matrix ⇒ upper Hessenberg

Upper triangular: diagonal and super-diagonals can be nonzero

All sub-diagonals have to be zero

Upper Hessenberg: upper triangular and first sub-diagonal can be nonzero

H =



? ? ? ? ? . . .
? ? ? ? ? . . .
0 ? ? ? ? . . .
0 0 ? ? ? . . .
0 0 0 ? ? . . .
...

...
. . .

. . .
...

...
0 0 . . . 0 ? ?
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Orthogonal similarity transform

Given (A,B,C) (recall that we assumed D = 0),
find change of coordinates: x = Qz such that

Q is orthogonal

QTAQ is upper Hessenberg

correspondingly find B and C

By x = Tz (with T nonsingular),

A→ T−1AT, B → T−1B, C → CT

For simplicity consider single input: B is just one column: b.

Well-known: if first column of Q is b (normalized to length one),
then all columns Q are just ‘orthonormal’ basis of the Krylov subspace

We will see Krylov subspace K(A, b, j) for a matrix A ∈ Rn×n, vector b ∈ Rn

and index j 6 n.
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