Moment matching using Arnoldi/Lanczos methods

Madhu N. Belur
Control and Computing group
Department of Electrical Engineering
Indian Institute of Technology Bombay

http://www.ee.iitb.ac.in/~belur/talks/

14th \& 15th April, 2015

- Moments of a transfer function (about $s_{0} \in \mathbb{C}$)
- Moments about $s=\infty$
- Relative degree of a transfer function
- Hessenberg form
- Tridiagonal form (for symmetric A in state space realization)
- Arnoldi method and Lanczos method for Hessenberg reduction
- Matching of moments
- Conclusion

Moments

- Recall Taylor series expansion (about $x=a$)

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+f^{\prime \prime}(a) \frac{(x-a)^{2}}{2!}+\cdots
$$

provided $f(a)$ is bounded (i.e. no 'pole' at $x=a$)

- If $G(s)$ has no pole at $s=0$, then

$$
G(s)=g(0)+g^{\prime}(0) s+g^{\prime \prime}(0) \frac{s^{2}}{2!}+\cdots
$$

- At $x=a$, all terms (except first term) are zero.
- $g(0)$ is zeroth moment of $G(s)$ about $s=0$.
- $g^{\prime}(0)$ is first moment of $G(s)$ about $s=0$, etc.
- Consider series in negative powers of s

$$
G(s)=G(\infty)+G_{1} s^{-1}+G_{2} \frac{s^{-2}}{2!}+\cdots
$$

- For $s \rightarrow \infty$, we get $s^{-1} \rightarrow 0$.
- $G(\infty)$ is zeroth moment of $G(s)$ about $s=\infty$.
- G_{1} is first moment of $G(s)$ about $s=\infty$, etc.

Moments

- Of course, for such an expansion about $s=a$, $G(s)$ ought not have pole at $s=a$.
- For expansion in series in negative powers in s, $G(s)$ should have no pole at $s=\infty$.
- When $s \rightarrow \infty$, we want $G(s)$ should not go unbounded
- $G(s)=\frac{n(s)}{d(s)}$ (with polynomials $n(s)$ and $\left.d(s)\right)$ is proper: numerator degree \leqslant denominator degree
- For MIMO systems: proper \equiv each entry in transfer matrix $G(s)$ is proper
- State space realization (A, B, C, D) exists, and then $G(\infty)=D:$ the feedthrough term
- In fact, for proper MIMO $G(s)$,

$$
G(s)=D+\frac{C B}{s}+\frac{C A B}{s^{2}}+\frac{C A^{2} B}{s^{3}}+\frac{C A^{3} B}{s^{4}} \cdots
$$

Moment matching model order reduction problem

- Given a large dynamical system (LTI, with transfer matrix) $G(s)$ of say order N
- Given a large dynamical system (LTI, with transfer matrix) $G(s)$ of say order N
- find \hat{G} : an approximant of G

Moment matching model order reduction problem

- Given a large dynamical system (LTI, with transfer matrix) $G(s)$ of say order N
- find \hat{G} : an approximant of G
- \hat{G} should have its first k moments the same as $G(s)$.

Moment matching model order reduction problem

- Given a large dynamical system (LTI, with transfer matrix) $G(s)$ of say order N
- find \hat{G} : an approximant of G
- \hat{G} should have its first k moments the same as $G(s)$.
- Moments about $s=s_{0} \in \mathbb{C}$: typically $s=0$ or $s=\infty$.
- More precisely,

Moment matching model order reduction problem

- Given a large dynamical system (LTI, with transfer matrix) $G(s)$ of say order N
- find \hat{G} : an approximant of G
- \hat{G} should have its first k moments the same as $G(s)$.
- Moments about $s=s_{0} \in \mathbb{C}$: typically $s=0$ or $s=\infty$.
- More precisely, Given $G(s)$ (of order $N)$ and $k \ll N$ and $s_{0} \in \mathbb{C}$,

Moment matching model order reduction problem

- Given a large dynamical system (LTI, with transfer matrix) $G(s)$ of say order N
- find \hat{G} : an approximant of G
- \hat{G} should have its first k moments the same as $G(s)$.
- Moments about $s=s_{0} \in \mathbb{C}$: typically $s=0$ or $s=\infty$.
- More precisely, Given $G(s)$ (of order N) and $k \ll N$ and $s_{0} \in \mathbb{C}$, find \hat{G} such that

Moment matching model order reduction problem

- Given a large dynamical system (LTI, with transfer matrix) $G(s)$ of say order N
- find \hat{G} : an approximant of G
- \hat{G} should have its first k moments the same as $G(s)$.
- Moments about $s=s_{0} \in \mathbb{C}$: typically $s=0$ or $s=\infty$.
- More precisely, Given $G(s)$ (of order N) and $k \ll N$ and $s_{0} \in \mathbb{C}$, find \hat{G} such that the first k moments about $s=s_{0}$ of \hat{G} and G are equal.
- Match moments of G.

Meaning

- Steady state analysis $\equiv s=0$
- $G(0)$ (zeroth moment about $s=0$) is steady state value for step input
- Higher moments \equiv 'rate of approaching' steady state value
- Immediate transients $(t \in(0, \epsilon)$ for small positive $\epsilon)$ moments of $G(s)$ about $s=\infty$.
- In fact, $G(\infty)$: the value step response jumps to at $t=0^{+}$.
- Match moments about $s=\infty \equiv$ transient response approximation
- Relevant for 'piece-wise' approximation (transients' analysis)
- Markov parameters \equiv moments of $G(s)$ about $s=\infty$
- In fact, impulse response $h(t)$ of $G(s)$

$$
h(t)=D \delta+C B t+C A B t^{2}+\cdots
$$

- More generally, Padé approximation: moment matching (about different points s_{0})
- Put Markov parameters in special structure: Hankel matrix

Hankel matrix

For $G(s)=D+\frac{C B}{s}+\frac{C A B}{s^{2}}+\frac{C A^{2} B}{s^{3}}+\frac{C A^{3} B}{s^{4}} \cdots$, define

$$
H=\left[\begin{array}{cccc}
D & C B & C A B & \ldots \\
C B & C A B & C A^{2} B & \ldots \\
C A B & C A^{2} B & C A^{3} B & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

- Though H is defined to have infinitely many rows and columns, rank is finite.
- Suppose D is zero and leave first column (for simplicity).
- Define $H_{n n}$: the first N rows and first N columns of above H.
- $H_{N N}$ (from this new matrix) is

$$
H_{n n}=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{N-1}
\end{array}\right]\left[\begin{array}{lll}
B & A B & \ldots A^{N-1} B
\end{array}\right]
$$

Realization theory link

- By Cayley Hamilton theorem, we know observability and controllability matrix ranks cannot keep increasing: atmost N each (if $G(s)$ has order N).
- Hankel matrix: very well-studied for state space realization from Markov paramters
- Given Markov parameters, find state space realization (A, B, C, D) that has precisely these Markov parameters
- For rational $G(s)$, Markov parameters are 'dependent' after N moments
- Like $\frac{10}{27}=0.370370370370370 \ldots$ (for any rational number)
- 'Dependency': Hankel matrix rank is bounded for rational $G(s)$
- Well-studied 50 years ago!

Model order reduction??

- Often state space realization of $G(s)$ given: but N very large
- Mechanical systems, FEM or FDM: we get A, B, C and D.
- D plays no role. 'Feedthrough' term needs no states: assume $D=0$.
- Too much (computational) effort to calculate moments and then build lower order \hat{G} from the computed moments
- Large memory involved in storing/computing for large matrices
- Floating point error accumulation due to ill-conditioned [$B A B A^{2} B$] etc.
- Power method tells for almost any nonzero v (and A), the vectors $v, A v, A^{2} v$, become parallel (after normalizing) \Rightarrow ill-conditioning
- Recall for square matrix A : ill-conditioned means very large $\|A\| \times\left\|A^{-1}\right\|=: \kappa(A)$
- Maximum singular value $\sigma_{\max }$: induced 2-norm (maximum amplification/gain when measured in Euclidean/2-norm)
- For induced 2-norm of matrix A, large $\kappa_{2}(A) \Rightarrow$ singular values very separated: $\sigma_{\max } \gg \sigma_{\min }$
- Well-conditioned A : columns of A are roughly same length and quite mutually orthogonal.
- $\kappa_{2}(A)=1 \Leftrightarrow A=c Q$ (for any constant c and orthogonal Q).
- Recall a square matrix Q is called orthogonal if $Q^{-1}=Q^{T}$.
- $Q x$ just 'rotates' x and no change in length (for any x).
- Recall for square matrix A : ill-conditioned means very large $\|A\| \times\left\|A^{-1}\right\|=: \kappa(A)$
- Maximum singular value $\sigma_{\max }$: induced 2-norm (maximum amplification/gain when measured in Euclidean/2-norm)
- For induced 2-norm of matrix A, large $\kappa_{2}(A) \Rightarrow$ singular values very separated: $\sigma_{\max } \gg \sigma_{\text {min }}$
- Well-conditioned A : columns of A are roughly same length and quite mutually orthogonal.
- $\kappa_{2}(A)=1 \Leftrightarrow A=c Q$ (for any constant c and orthogonal Q).
- Recall a square matrix Q is called orthogonal if $Q^{-1}=Q^{T}$.
- $Q x$ just 'rotates' x and no change in length (for any x).
- Not just rotations, but 'reflections' allowed too.
- Givens rotators and Householder reflectors

How to find \hat{G}

Moment matching method: overall plan

- Compute moments far more easily by changing basis
- Change of basis using orthogonal transformation
- Bring A to 'Hessenberg' form
- If A was symmetric, then, in fact, tridiagonal form
- Very scalable methods:
- memory-wise,
- computational effort-wise,
- computational floating-point-error-wise
- Computational procedure: Arnoldi (for unsymmetric A) and Lanzos (for symmetric A)

Hessenberg form

- Not Heisenberg, of the Heisenberg uncertainty principle, but Hessenberg
- Upper triangular matrix \Rightarrow upper Hessenberg
- Upper triangular: diagonal and super-diagonals can be nonzero

Hessenberg form

- Not Heisenberg, of the Heisenberg uncertainty principle, but Hessenberg
- Upper triangular matrix \Rightarrow upper Hessenberg
- Upper triangular: diagonal and super-diagonals can be nonzero All sub-diagonals have to be zero
- Upper Hessenberg: upper triangular and first sub-diagonal can be nonzero

$$
H=\left[\begin{array}{cccccc}
\star & \star & \star & \star & \star & \ldots \\
\star & \star & \star & \star & \star & \ldots \\
0 & \star & \star & \star & \star & \ldots \\
0 & 0 & \star & \star & \star & \ldots \\
0 & 0 & 0 & \star & \star & \ldots \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & \star & \star
\end{array}\right]
$$

Orthogonal similarity transform

- Given (A, B, C) (recall that we assumed $D=0$), find change of coordinates: $x=Q z$ such that
- Q is orthogonal
- $Q^{T} A Q$ is upper Hessenberg
- correspondingly find B and C
- By $x=T z$ (with T nonsingular),

$$
A \rightarrow T^{-1} A T, \quad B \rightarrow T^{-1} B, \quad C \rightarrow C T
$$

- For simplicity consider single input: B is just one column: b.
- Well-known: if first column of Q is b (normalized to length one), then all columns Q are just 'orthonormal' basis of the Krylov subspace
- We will see Krylov subspace $K(A, b, j)$ for a matrix $A \in \mathbb{R}^{n \times n}$, vector $b \in \mathbb{R}^{n}$ and index $j \leqslant n$.

Slides kept at:
http://www.ee.iitb.ac.in/~belur/talks/

