Solving linear systems and least square fit

Kumar Appaiah & Mahesh B. Patil & Madhu N. Belur

Department of Electrical Engg, IIT Bombay http://www.ee.iitb.ac.in/%7Ebelur/talks/pdfs/cep19feb.pdf

CEP, Feb 2019

Kumar Appaiah, M.B. Patil & Belur (EE, IITB)

Solving Ax = b and least square fit

Solve for x_1 and x_2

$$x_1 + x_2 = 9$$

- Line in a plane. Plane: set of all x_1 and x_2 points: \mathbb{R}^2
- Multiple solutions
- 1 equation, 2 unknowns: under-determined

Simultaneous system of equations

Solve for x_1 and x_2

$$\begin{array}{rcrcr} x_1 + x_2 &=& 9\\ 2x_1 + 3x_2 &=& 19 \end{array}$$

• 2 equation, 2 unknowns: determined (if \cdots)

.

Kumar Appaiah, M.B. Patil & Belur (EE, IITB)

Solving Ax = b and least square fit

Solve for x_1 and x_2

$$\begin{array}{rcrcr} x_1 + x_2 &=& 9\\ 2x_1 + 3x_2 &=& 19 \end{array}$$

- 2 equation, 2 unknowns: determined (if \cdots)
- Two lines in a plane
- (Hopefully) intersect at one point
- Instead: parallel lines (no solution)
- Or same line (multiple solutions)

Over-determined system of equations

$$\begin{array}{rcl}
x_1 + x_2 &=& 9\\
2x_1 + 3x_2 &=& 19\\
2x_1 + 5x_2 &=& 10
\end{array}$$

• 3 equations, 2 unknowns: over-determined

Kumar Appaiah, M.B. Patil & Belur (EE, IITB)

Solving Ax = b and least square fit

CEP, Feb-2019 4/9

Over-determined system of equations

$$\begin{array}{rcl}
x_1 + x_2 &=& 9\\
2x_1 + 3x_2 &=& 19\\
2x_1 + 5x_2 &=& 10
\end{array}$$

- 3 equations, 2 unknowns: over-determined (insufficient 'degrees' of freedom)
- Unless some equations are 'repeat', maybe no exact solution
- We can aim for 'nearest' solution, i.e. find x_1 and x_2 to minimize

$$(x_1 + x_2 - 9)^2 + (2x_1 + 3x_2 - 19)^2 + (2x_1 + 5x_2 - 10)^2$$

(Least square fit)

More generality

Given $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$, solve for $x \in \mathbb{R}^n$ such that Ax = b.

- Rank: number of independent rows (same as number of independent columns): redundancy of equations taken care
- Under-determined : rank A < n
- Determined : rank A = n
- Over-determined : rank A > n

Given $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$, solve for $x \in \mathbb{R}^n$ such that Ax = b.

- Rank: number of independent rows (same as number of independent columns): redundancy of equations taken care
- Under-determined : rank A < n
- Determined : rank A = n
- Over-determined : rank A > n

Matrix 'language':

$x_1 + x_2$	=	9	[1	1]	[,,]	[9]
$2x_1 + 3x_2$	=	19	2	3	$\begin{vmatrix} x_1 \\ x \end{vmatrix} =$	19
$2x_1 + 5x_2$	=	10	2	5	$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} =$	[10]

Solving circuits, KCL/KVL, (differential)-equations, discretized system of equations, simulation, ...

Inner product/outer-product way of understanding

Note:
$$Ax = \begin{bmatrix} 1\\2\\2 \end{bmatrix} x_1 + \begin{bmatrix} 1\\3\\5 \end{bmatrix} x_2$$
 and inner-product $\begin{bmatrix} 7 & -2 & 2 \end{bmatrix} \begin{bmatrix} 1\\2\\5 \end{bmatrix} = 13$

Inner product/outer-product way of understanding

Note:
$$Ax = \begin{bmatrix} 1\\2\\2 \end{bmatrix} x_1 + \begin{bmatrix} 1\\3\\5 \end{bmatrix} x_2$$
 and inner-product $\begin{bmatrix} 7 & -2 & 2 \end{bmatrix} \begin{bmatrix} 1\\2\\5 \end{bmatrix} = 13$
Outer-product $\begin{bmatrix} 1\\2\\5 \end{bmatrix} \begin{bmatrix} 7 & -2 & 2 \end{bmatrix} = \begin{bmatrix} 7 & -2 & 2\\14 & -4 & 4\\35 & -10 & 10 \end{bmatrix}$

Kumar Appaiah, M.B. Patil & Belur (EE, IITB)

Solving Ax = b and least square fit

Inner product/outer-product way of understanding

Note:
$$Ax = \begin{bmatrix} 1\\2\\2 \end{bmatrix} x_1 + \begin{bmatrix} 1\\3\\5 \end{bmatrix} x_2$$
 and inner-product $\begin{bmatrix} 7 & -2 & 2 \end{bmatrix} \begin{bmatrix} 1\\2\\5 \end{bmatrix} = 13$
Outer-product $\begin{bmatrix} 1\\2\\5 \end{bmatrix} \begin{bmatrix} 7 & -2 & 2 \end{bmatrix} = \begin{bmatrix} 7 & -2 & 2\\14 & -4 & 4\\35 & -10 & 10 \end{bmatrix}$

Note: Matrix-matrix product: both inner-product and outer-product viewpoints work.

Recommended to use both viewpoints everywhere

(Under any sequence of) following operations) solution is unchanged

- Interchange two rows (equations)
- Scaling a row by nonzero number
- Adding an equation to another

Above is same as pre-multiplying A by a nonsingular matrix U (and same to b too).

For numerical accuracy purposes, we will deal with more special nonsingular matrices:

Orthogonal matrix U: special square, nonsingular matrix: $UU^T = I$ (identity matrix)

 U^T : Transpose of U.

Given $A \in \mathbb{R}^{m \times n}$, there exist orthogonal matrices U and V and a 'diagonal' matrix Σ such that $A = U \Sigma V^T$. The matrix $\Sigma \in \mathbb{R}^{m \times n}$ has along the diagonals $\sigma_1, \sigma_2, \cdots, \sigma_{\min(m,n)}$. Further, one can ensure that $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_{\min(m,n)} \ge 0$. Once this is ensured, $\sigma_1, \sigma_2, \ldots, \sigma_{\min(m,n)}$ are called the singular values. They are unique and depend only on A, though U and V might be nonunique. Note: because Σ is diagonal, $U\Sigma V^T = A$ can be viewed as expressing A as a sum of various rank-one matrices: each rank one matrix is an outer-product of two vectors u_i and v_i^T (and scaled by the singular value): these two vectors u_i and v_i are corresponding columns of orthogonal matrices U and V.

Following are equivalent.

- A has rank r.
- Solution Exactly *r* of the singular values $\sigma_1, \ldots, \sigma_r$ are nonzero and positive. Others are zero.
- When attempting to express *A* as a sum of *p* number of rank-1 matrices, then the smallest such *p* is *r*.
- Dimension of image of A is r, i.e. there are r number of independent vectors in the image of A. (Image A means range-space of A, i.e. column-span of A.)
- r satisfies n = r+ dimension of nullspace of A.
 Nullspace of A is also called kernel of A. This is set of all vectors x such that Ax = 0.
- When looking for $p \times p$ nonsingular submatrix within matrix A, the largest p such that there is a nonsingular submatrix is p = r.

Links for python codes used in the lecture: http://www.ee.iitb.ac.in/%7Ebelur/talks/pdfs/cep19svd.py http://www.ee.iitb.ac.in/%7Ebelur/talks/pdfs/cep19leastsq.py