Solving linear systems and least square fit

Kumar Appaiah \& Mahesh B. Patil \& Madhu N. Belur
Department of Electrical Engg, IIT Bombay
http://www.ee.iitb.ac.in/\~belur/talks/pdfs/cep19feb.pdf

CEP, Feb 2019

Simultaneous system of equations

Solve for x_{1} and x_{2}

$$
x_{1}+x_{2}=9
$$

- Line in a plane. Plane: set of all x_{1} and x_{2} points: \mathbb{R}^{2}
- Multiple solutions
- 1 equation, 2 unknowns: under-determined

Simultaneous system of equations

Solve for x_{1} and x_{2}

$$
\begin{aligned}
x_{1}+x_{2} & =9 \\
2 x_{1}+3 x_{2} & =19
\end{aligned}
$$

- 2 equation, 2 unknowns: determined (if \cdots)

Simultaneous system of equations

Solve for x_{1} and x_{2}

$$
\begin{aligned}
x_{1}+x_{2} & =9 \\
2 x_{1}+3 x_{2} & =19
\end{aligned}
$$

- 2 equation, 2 unknowns: determined (if \cdots)
- Two lines in a plane
- (Hopefully) intersect at one point
- Instead: parallel lines (no solution)
- Or same line (multiple solutions)

Over-determined system of equations

$$
\begin{aligned}
x_{1}+x_{2} & =9 \\
2 x_{1}+3 x_{2} & =19 \\
2 x_{1}+5 x_{2} & =10
\end{aligned}
$$

- 3 equations, 2 unknowns: over-determined

Over-determined system of equations

$$
\begin{aligned}
x_{1}+x_{2} & =9 \\
2 x_{1}+3 x_{2} & =19 \\
2 x_{1}+5 x_{2} & =10
\end{aligned}
$$

- 3 equations, 2 unknowns: over-determined (insufficient 'degrees' of freedom)
- Unless some equations are 'repeat', maybe no exact solution
- We can aim for 'nearest' solution, i.e. find x_{1} and x_{2} to minimize

$$
\left(x_{1}+x_{2}-9\right)^{2}+\left(2 x_{1}+3 x_{2}-19\right)^{2}+\left(2 x_{1}+5 x_{2}-10\right)^{2}
$$

(Least square fit)

More generality

Given $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^{m}$, solve for $x \in \mathbb{R}^{n}$ such that $A x=b$.

- Rank: number of independent rows (same as number of independent columns): redundancy of equations taken care
- Under-determined : $\operatorname{rank} A<n$
- Determined : $\operatorname{rank} A=n$
- Over-determined : $\operatorname{rank} A>n$

More generality

Given $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^{m}$, solve for $x \in \mathbb{R}^{n}$ such that $A x=b$.

- Rank: number of independent rows (same as number of independent columns): redundancy of equations taken care
- Under-determined : $\operatorname{rank} A<n$
- Determined : $\operatorname{rank} A=n$
- Over-determined : $\operatorname{rank} A>n$

Matrix 'language':

$$
\begin{aligned}
x_{1}+x_{2} & =9 \\
2 x_{1}+3 x_{2} & =19 \\
2 x_{1}+5 x_{2} & =10
\end{aligned} \quad\left[\begin{array}{ll}
1 & 1 \\
2 & 3 \\
2 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
9 \\
19 \\
10
\end{array}\right]
$$

Solving circuits, KCL/KVL, (differential)-equations, discretized system of equations, simulation, \cdots

Inner product/outer-product way of understanding

Note: $A x=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right] x_{1}+\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right] x_{2}$ and inner-product $\left[\begin{array}{lll}7 & -2 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 5\end{array}\right]=13$

Inner product/outer-product way of understanding

Note: $A x=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right] x_{1}+\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right] x_{2}$ and inner-product $\left[\begin{array}{lll}7 & -2 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 5\end{array}\right]=13$
Outer-product $\left[\begin{array}{l}1 \\ 2 \\ 5\end{array}\right]\left[\begin{array}{lll}7 & -2 & 2\end{array}\right]=\left[\begin{array}{ccc}7 & -2 & 2 \\ 14 & -4 & 4 \\ 35 & -10 & 10\end{array}\right]$

Inner product/outer-product way of understanding

Note: $A x=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right] x_{1}+\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right] x_{2}$ and inner-product $\left[\begin{array}{lll}7 & -2 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 5\end{array}\right]=13$
Outer-product $\left[\begin{array}{l}1 \\ 2 \\ 5\end{array}\right]\left[\begin{array}{lll}7 & -2 & 2\end{array}\right]=\left[\begin{array}{ccc}7 & -2 & 2 \\ 14 & -4 & 4 \\ 35 & -10 & 10\end{array}\right]$
Note: Matrix-matrix product: both inner-product and outer-product viewpoints work.
Recommended to use both viewpoints everywhere

More of matrix language and manipulations

(Under any sequence of) following operations) solution is unchanged

- Interchange two rows (equations)
- Scaling a row by nonzero number
- Adding an equation to another

Above is same as pre-multiplying A by a nonsingular matrix U (and same to b too).
For numerical accuracy purposes, we will deal with more special nonsingular matrices:
Orthogonal matrix U : special square, nonsingular matrix: $U U^{T}=I$ (identity matrix)
U^{T} : Transpose of U.

SVD: Singular Value Decomposition

Given $A \in \mathbb{R}^{m \times n}$, there exist orthogonal matrices U and V and a 'diagonal' matrix Σ such that
$A=U \Sigma V^{T}$.
The matrix $\Sigma \in \mathbb{R}^{m \times n}$ has along the diagonals $\sigma_{1}, \sigma_{2}, \cdots, \sigma_{\min (m, n)}$. Further, one can ensure that $\sigma_{1} \geqslant \sigma_{2} \geqslant \cdots \geqslant \sigma_{\min (m, n)} \geqslant 0$. Once this is ensured, $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\min (m, n)}$ are called the singular values. They are unique and depend only on A, though U and V might be nonunique. Note: because Σ is diagonal, $U \Sigma V^{T}=A$ can be viewed as expressing A as a sum of various rank-one matrices: each rank one matrix is an outer-product of two vectors u_{i} and v_{i}^{T} (and scaled by the singular value):
these two vectors u_{i} and v_{i} are corresponding columns of orthogonal matrices U and V.

SVD (contd)

Following are equivalent.
(1) A has rank r.
(2) Exactly r of the singular values $\sigma_{1}, \ldots, \sigma_{r}$ are nonzero and positive. Others are zero.
(3) When attempting to express A as a sum of p number of rank- 1 matrices, then the smallest such p is r.
(9) Dimension of image of A is r, i.e. there are r number of independent vectors in the image of A. (Image A means range-space of A, i.e. column-span of A.)
(3) r satisfies $n=r+$ dimension of nullspace of A. Nullspace of A is also called kernel of A. This is set of all vectors x such that $A x=0$.
(0) When looking for $p \times p$ nonsingular submatrix within matrix A, the largest p such that there is a nonsingular submatrix is $p=r$.

Links for python codes used in the lecture: http://www.ee.iitb.ac.in/\~belur/talks/pdfs/cep19svd.py http://www.ee.iitb.ac.in/\~belur/talks/pdfs/cep19leastsq.py

