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What, why: decentralized control
Graph theory

Markov chains, row-stochastic matrices
M matrices

Structural controllability

Matroids

Multi-agent systems

Consensus, formation-control
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Large systems are increasingly complex

Individual subsystems have local controllers
Each subsystem
has (local) actuator inputs
has (local) sensor measurements
interacts with a ‘few’ other subsystems (neighbours)
allows local controllers
Two options
e Central controller accesses all measurements and actuates all
actuator inputs
(Delhi decides Matunga garbage disposal truck route)
o Local controller (Muncipality decides on local issues)

o
o Interconnection of many simpler subsystems
o
o

(]

Centralized controller: could be more optimal
@ Decentralized controller: more effective
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Centralized vs decentralized controller

e Complexity of large systems
e Centralized controller requires too much communication
e Communication requirement: bandwidth, delays, reliability

@ Decentralized control:
Settle for (in general) sub-optimal performance, but far more
reliable.

e Reliable because: less need to communicate, controllers
spread out across large system

e Aim for robustness to absence/presence of interactions
(changing graphs)
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e Each subsystem’s controller can access only local system’s
variables

@ Structure very important, in addition to system parameters
o Computation of controller easier. More ‘scalable’

e For example: microgrid: ‘smart-grids’
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Microgrid /smartgrid
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Belur,

For an island, often no (large) grid reaches out to give power

Wind energy, tidal power, solar power, battery and diesel
generator connected together to form a ‘micro-grid’

Each DC source has a Voltage-Source-Inverter
Resulting AC sources are connected to form a grid
AC frequency (initially) set to 50Hz for each source

But two AC sources having frequency 50.001 and
50.000000001 will eventually go out of phase.

Frequency control: possible by ‘centralized controller’ which
measures phase angle of all sources

These days: time-stamped data from GPS: for
synchronization
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Decentralized frequency control

Alternatively:

e Each source ‘regulates’ its frequency decentrally so that all
sources converge to the same value

@ Decentralized frequency control

@ Possible? Can a local controller ensure global convergence of
frequency?

e Large grids, generators rarely go unstable
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Roof top PV panels

With rise in renewable interest:

e Many countries encourage individual houses to ‘tap’ solar
power and ‘feed up’ into the grid

e Each house can also ‘generate’ power now

e Frequency control:
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Roof top PV panels

With rise in renewable interest:

e Many countries encourage individual houses to ‘tap’ solar
power and ‘feed up’ into the grid

e Each house can also ‘generate’ power now

e Frequency control: pricing issues

e Concern about synchronized ON/OFF switching due to
pricing policies

e Frequency control law set by Government (Germany)
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Droop law: microgrid

o Consider island with a microgrid comprised of several AC
sources
@ Need to settle to a common frequency value:
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Droop law: microgrid

o Consider island with a microgrid comprised of several AC
sources

@ Need to settle to a common frequency value: quickly

@ Most common law: frequency decreases slightly when power
drawn exceeds rated power

e Mimic generators (large inertia)

e Linear law: frequency ‘droop’ proportional to increase in
power drawn

@ Droop law: results in stability for small droop shown first by
Chandorkar, Divan and Adapa (1991):
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Droop law: microgrid

o Consider island with a microgrid comprised of several AC
sources
@ Need to settle to a common frequency value: quickly
@ Most common law: frequency decreases slightly when power
drawn exceeds rated power
e Mimic generators (large inertia)
e Linear law: frequency ‘droop’ proportional to increase in
power drawn
@ Droop law: results in stability for small droop shown first by
Chandorkar, Divan and Adapa (1991):
for ring and radial mesh
e In 2011: for arbitrary graphs: Iyer, Belur and Chandorkar
e Laplacian matrix plays a role here too!
Where else?
Laplacian matrix: central to most multi-agent systems’ studies.
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Laplacian Matrix

e Consider an undirected unweighted graph G with vertices vy,
Vg, ... Uy, and edges F.

@ Define D € R™™" a diagonal ‘degree’ matrix: d;; is the degree
of V;.

o A € R™" is the adjacency matrix: a;; = 1 if v; and v; are
adjacent (there is an edge between them).

e Laplacian matrix L := D — A.

e L > 0 (non-negative definite matrix)
2T Lz > 0 for all vectors z € R”

e L > 0 (non-negative definite matrix)
2T Lz > 0 for all vectors z € R”
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Laplacian of a graph

o # eigenvalues at the origin: # connected components of the
graph

e For connected graph, second smallest eigenvalue: algebraic
connectivity v of the graph

e Graph connected < v > 0

e Corresponding eigenvector: zero/nonzero structure very
informative:
S. Pati and R.B. Bapat

e Adding edges can only increase v: Fiedler, 1973
Hence ‘connectivity’

@ Other notions of graph connectivity: computationally hard
NP-hard, etc.
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Laplacian of a graph

Connects to Markov chains (stochastic matrices)

Graph theory, combinatorial optimization

Matrix theory (M matrices, Hicks, positive matrices, Metzler,
Perron Frobenius theorem

Flocking matrix, Diffusion problems of discrete time

Note: L := D — A. But flocking matrix: D~!A: a stochastic
matrix (Vicsek model)

Many diffusion problems in discrete time: stochastic matrices

In multi-agent systems: information ‘diffuses’ (through
neighbours)

Belur,
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Multi-agent systems
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Network of identical agents
Can communicate with immediate neighbours
May or may not have a ‘leader’

Leader (if any): some global communication, rest =
‘followers’

Multi-agents need to collectively achieve a task: surveillance.

e Computing also done distributedly: graph connectivity
calculation local to get an estimate of algebraic connectivity
(global parameter).

e Stability, consensus, formation control

e In spite of changing graphs (as long as some connectivity
remains across time-spans.)

A. Jadbabaie, Olfati-Saber, Ali Saberi
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Markov chains

e Non-negative square matrices
e Each row adds up to one: row-stochastic matrices
o A € R™": ‘probabilities transition matrix’

@ p(k): (column) vector of probabilities (of being in state i) at
time k, then
pT(k+1) :=pT(k)A
is the vector of probabilities at the next instant k& + 1.
e For A, entries in each row add up toone = [1 1 --- 1]7 is an
eigenvector corresponding to eigenvalue 1.
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‘Irreducible’ Markov chains

e Matrix A gives an irreducible Markov chain if there is some
nonzero probability of reaching each state in finite time
starting in any state at k =0

@ The corresponding directed graph is strongly connected

e Perron Frobenius (PF) Theorem gives useful implications for
this case

@ Perron Frobenius Theorem: applicable for non-negative
matrices

e Non-negative matrix: each entry of the matrix is non-negative

e Non-negative matrix # Non-negative definite (semidefinite)

Belur, CC-EE (IIT Bombay) Decentralized control: overview VESIT, 10th July, 14 15 / 33



Perron Frobenius Theorem

For a matrix A € R™", with all entries non-negative (A > 0)

e there exists an eigenvalue Ap > 0 (unless A = 0) with
eigenvector vp having non-negative components (vp > 0).

Further, assume A > 0.

Then all components in that eigenvector are positive.
Every other eigenvector has ‘mixed signs’
‘Farthest’ eigenvalue (spectral radius) = Ap

Algebraic multiplicity of Ap is one.

Take any v € R™ with v > 0 (and nonzero).
Then A*v ‘turns towards’ vp as k — oo.

Google Page rank Algorithm (after Larry Page):
very quick for LARGE sparse matrices
Ranks web-pages based on a very quick sparse matrix calculation
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Perron Frobenius theorem: non-negative

A > 0: not sparse

A > 0: can be sparse

Close link between directed graph G4 properties and
matrix properties of A

Irreducible : strongly connected

Consider A as a (row) stochastic matrix

e Primitive (A* is positive for some finite k)
o Ergodic (limy_,o A* is rank one)

Not primitive: some loops (repeated visits with probability one)
Non-negative matrices: closely linked with M matrix
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M matrices

@ Square matrices such that off-diagonal entries are nonpositive
and
diagonal entries are ‘quite’ positive

e A with nonpositive off-diagonal entries is called an M matrix
if A=pl — B
for a non-negative matrix B and p > spectral radius of B.

e A with nonpositive off-diagonal entries is an M matrix if and
only if A™! exists and is > 0.

o If Ais an M matrix, then —A is Hurwitz.

Belur, CC-EE (IIT Bombay) Decentralized control: overview VESIT, 10th July, 14 18 / 33



A is an M matrix

Belur,

Interpret %x = — Az as many stable subsystems (diagonal
terms),

with destabilizing ‘neighbour’ subsystems

This means diagonal term in — A is negative, and off-diagonal
is positive

Suppose: local subsystem ‘very’ stable compared to
destabilizing neighbour interactions

Competitive systems

Stability inspite of competing/destabilizing neighbours

Siljak: Robust interconnection stability
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Markov chains

o Weighted graphs

e Mixing time of Markov chains: rapidly mixing
@ Directed graphs, strongly connected graphs.

e Bipartite graphs: matching theory.
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Distance matrix

Work by Bapat and Pati (more for Resistance distance matrix)
Conditionally positive definite matrices
Consider an undirected graph with vertices vy, ..., v,.

e Distance matrix D: d(i, ) is minimum number of edges to
use to reach j from ¢

o Consider for just connected graphs (all entries finite)

e Symmetric matrix (for undirected graphs)

e All diagonal elements zero

e Triangular inequality

@ OK to use the word distance

Resistance distance matrix: electrical analogy
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Resistance distance matrix

Conditionally positive definite matrices
Consider an undirected graph with vertices vy, ..., v,.

e Resistance distance matrix R: 7(i, ) is effective resistance
between nodes i and j
e Consider again for just connected graphs (all entries finite)
e Symmetric matrix (for undirected graphs)
o All diagonal elements zero
e Triangular inequality: Bapat
@ Again OK to use the word distance
Resistance distance matrix: closely linked to Laplacian matrix

Boyd and Arpita Ghosh: use R to identify ‘best’ edge to add (for
algebraic connectivity improvement)
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Conditionally positive definite: symmetric matrix, at most one
negative eigenvalue, rest all positive.

(positive/non-negative relaxations vary)

L: Laplacian

e e Lt row-stochastic

for symmetric L and A)

o Connected graph, e~ is ergodic

Belur, EE (IIT Bombay) Decentralized control: overview VESIT, 10th July, 14



Much work on directed graphs (and corresponding unsymmetric
A and L matrices)
Doubly Stochastic matrices:

Non-negative matrices in which both rows and columns add up to
one. A convex set: on boundaries: permutation matrices

Good link between convexity properties of set of doubly stochastic
matrices

and Hamiltonian cycle problem (NP-hard):

Vivek Borkar, Vladimir Ejov, Jerzy A. Filar and Giang T. Nguyen
(Approximation algorithms: polynomial time)
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Rapidly mixing Markov Chain

e Second farthest eigenvalue Ay (say) of irreducible, aperiodic
Markov chain
o Relates to the time-constant as arbitrary initial conditions
reach steady-state (stationary) distribution
e Analogous to second smallest eigenvalue v of Laplacian (for
connected graph): inverse of time-constant of network
@ Better connected = Faster mixing
= smaller |\s| (Markov chain) = higher v (Laplacian).
@ Depending on the context, both are ‘spectral gap’: v and
1 —|Agl-
(For stochastic matrix, Ap = 1 and for Laplacian matrix,
A =0.)
Boyd, Diaconis, Xiao: fastest mixing Markov chain: convexify the
problem
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Matroid techniques

Murota and van der Woude: structural controllability

e Matroid: generalizes key properties from linear algebra
(vectors, independence) and graphs (trees, absence of loops)

o M (a set of various subsets of a set F) is a matroid if the
objects in M satisfy following properties:
Q@ Empty set isin M
@ If 77 is in M, then every subset of T} is also in M
@ If 7) and Ty are in M and |T}| < |T5|, then there is an
element t of T such that 77 Ut also is in M.

o Think of a graph with edge set E and as elements of M,
think of all sets of edges that do not contain a loop.
(Elements of M are Trees/forests)

o Elements of M are called ‘independent sets’.
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Structural controllability

e Siljak, van-der-Woude, Murota
e Primarily state-space
e Bipartite graph: matching technique

e Rachel Kalaimani, Belur and Sivaramakrishnan: pole
placement
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Structural controllability

Key contributors:
Dragoslav D. Siljak
M. Ikeda, M.E. Sezer
A.S. Morse

More recently,
A. Jadbabaie, Olfati-Saber, Ali Saberi

J. Alexander Fax and Richard M. Murray
Vicsek model (flocking matrices)
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More topics

Primitive matrices, disagreement dynamics,
generic: almost any: thin set
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Generic statements

Take randomly entries from R to build a matrix A € R™*"
Generically, A is nonsingular
Generically, matrices (A, B) is a controllable pair

For example:

One cart: with two inverted pendulums

controlled by one force: controllable for different lengths
Unlikely, that lengths are exactly equal
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Other works

Event triggered computing (in multi-agent systems)

Mesbahi and Zelazo: edge agreement: process noise within each
agent, and measurement noise at each edge: performance
limitations due to graph constraints

‘Manufacturing consent’: Vivek Borkar, EE, II'T Bombay

(Noam Chomsky and Hermann have a similarly titled book)
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Laplacian: —L is a (singular) M matrix

eIt is a flocking matrix (for any time t)
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Laplacian: —L is a (singular) M matrix

eIt is a flocking matrix (for any time t)

Discretize a continuous LTT system
(Continuous system — discrete time system)
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Laplacian: —L is a (singular) M matrix

eIt is a flocking matrix (for any time t)

Discretize a continuous LTT system
(Continuous system — discrete time system)
limy_,o, e~ 7*: rank one matrix < (undirected) graph is connected
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Laplacian: —L is a (singular) M matrix

eIt is a flocking matrix (for any time t)

Discretize a continuous LTT system
(Continuous system — discrete time system)
limy_,o, e~ 7*: rank one matrix < (undirected) graph is connected

Ergodic
Siljak: Form I and Form II
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Conclusion

@ Decentralized control: frequency control

e Active power for frequency,

e Reactive power for Voltage magnitude control

e Graph theory, matroids

@ Markov chains, row-stochastic matrices

e M matrices

e Structural controllability: generic controllability
°

Consensus, formation-control of multi-agent systems
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Conclusion

@ Decentralized control: frequency control

e Active power for frequency,

e Reactive power for Voltage magnitude control

e Graph theory, matroids

@ Markov chains, row-stochastic matrices

e M matrices

e Structural controllability: generic controllability

e Consensus, formation-control of multi-agent systems

Thank you
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