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What

Large systems are increasingly complex

Interconnection of many simpler subsystems

Individual subsystems have local controllers
Each subsystem

has (local) actuator inputs
has (local) sensor measurements
interacts with a ‘few’ other subsystems (neighbours)
allows local controllers

Two options
Central controller accesses all measurements and actuates all
actuator inputs
(Delhi decides Matunga garbage disposal truck route)
Local controller (Muncipality decides on local issues)

Centralized controller: could be more optimal

Decentralized controller: more effective
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Centralized vs decentralized controller

Complexity of large systems

Centralized controller requires too much communication

Communication requirement: bandwidth, delays, reliability

Decentralized control:
Settle for (in general) sub-optimal performance, but far more
reliable.

Reliable because: less need to communicate, controllers
spread out across large system

Aim for robustness to absence/presence of interactions
(changing graphs)
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Each subsystem’s controller can access only local system’s
variables

Structure very important, in addition to system parameters

Computation of controller easier. More ‘scalable’

For example: microgrid: ‘smart-grids’
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Microgrid/smartgrid

For an island, often no (large) grid reaches out to give power

Wind energy, tidal power, solar power, battery and diesel
generator connected together to form a ‘micro-grid’

Each DC source has a Voltage-Source-Inverter

Resulting AC sources are connected to form a grid

AC frequency (initially) set to 50Hz for each source

But two AC sources having frequency 50.001 and
50.000000001 will eventually go out of phase.

Frequency control: possible by ‘centralized controller’ which
measures phase angle of all sources

These days: time-stamped data from GPS: for
synchronization
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Decentralized frequency control

Alternatively:

Each source ‘regulates’ its frequency decentrally so that all
sources converge to the same value

Decentralized frequency control

Possible? Can a local controller ensure global convergence of
frequency?

Large grids, generators rarely go unstable
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Roof top PV panels

With rise in renewable interest:

Many countries encourage individual houses to ‘tap’ solar
power and ‘feed up’ into the grid

Each house can also ‘generate’ power now

Frequency control:

pricing issues

Concern about synchronized ON/OFF switching due to
pricing policies

Frequency control law set by Government (Germany)
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Droop law: microgrid

Consider island with a microgrid comprised of several AC
sources
Need to settle to a common frequency value:

quickly
Most common law: frequency decreases slightly when power
drawn exceeds rated power
Mimic generators (large inertia)
Linear law: frequency ‘droop’ proportional to increase in
power drawn
Droop law: results in stability for small droop shown first by
Chandorkar, Divan and Adapa (1991):
for ring and radial mesh
In 2011: for arbitrary graphs: Iyer, Belur and Chandorkar
Laplacian matrix plays a role here too!

Where else?
Laplacian matrix: central to most multi-agent systems’ studies.
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Laplacian Matrix

Consider an undirected unweighted graph G with vertices v1,
v2, . . . vn, and edges E.

Define D ∈ Rn×n a diagonal ‘degree’ matrix: dii is the degree
of vi.

A ∈ Rn×n is the adjacency matrix: aij = 1 if vi and vj are
adjacent (there is an edge between them).

Laplacian matrix L := D − A.

L > 0 (non-negative definite matrix)
xTLx > 0 for all vectors x ∈ Rn

L > 0 (non-negative definite matrix)
xTLx > 0 for all vectors x ∈ Rn
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Laplacian of a graph

# eigenvalues at the origin: # connected components of the
graph

For connected graph, second smallest eigenvalue: algebraic
connectivity ν of the graph

Graph connected ⇔ ν > 0

Corresponding eigenvector: zero/nonzero structure very
informative:
S. Pati and R.B. Bapat

Adding edges can only increase ν: Fiedler, 1973
Hence ‘connectivity’

Other notions of graph connectivity: computationally hard
NP-hard, etc.
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Laplacian of a graph

Connects to Markov chains (stochastic matrices)

Graph theory, combinatorial optimization

Matrix theory (M matrices, Hicks, positive matrices, Metzler,

Perron Frobenius theorem

Flocking matrix, Diffusion problems of discrete time

Note: L := D − A. But flocking matrix: D−1A: a stochastic
matrix (Vicsek model)

Many diffusion problems in discrete time: stochastic matrices

In multi-agent systems: information ‘diffuses’ (through
neighbours)

Belur, CC-EE (IIT Bombay) Decentralized control: overview VESIT, 10th July, 14 12 / 33



Multi-agent systems

Network of identical agents

Can communicate with immediate neighbours

May or may not have a ‘leader’

Leader (if any): some global communication, rest ≡
‘followers’

Multi-agents need to collectively achieve a task: surveillance.

Computing also done distributedly: graph connectivity
calculation local to get an estimate of algebraic connectivity
(global parameter).

Stability, consensus, formation control

In spite of changing graphs (as long as some connectivity
remains across time-spans.)

A. Jadbabaie, Olfati-Saber, Ali Saberi
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Markov chains

Non-negative square matrices

Each row adds up to one: row-stochastic matrices

A ∈ Rn×n: ‘probabilities transition matrix’

p(k): (column) vector of probabilities (of being in state i) at
time k, then

pT (k + 1) := pT (k)A
is the vector of probabilities at the next instant k + 1.

For A, entries in each row add up to one ≡ [1 1 · · · 1]T is an
eigenvector corresponding to eigenvalue 1.
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‘Irreducible’ Markov chains

Matrix A gives an irreducible Markov chain if there is some
nonzero probability of reaching each state in finite time
starting in any state at k = 0

The corresponding directed graph is strongly connected

Perron Frobenius (PF) Theorem gives useful implications for
this case

Perron Frobenius Theorem: applicable for non-negative
matrices

Non-negative matrix: each entry of the matrix is non-negative

Non-negative matrix 6≡ Non-negative definite (semidefinite)
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Perron Frobenius Theorem

For a matrix A ∈ Rn×n, with all entries non-negative (A > 0)

there exists an eigenvalue λP > 0 (unless A = 0) with
eigenvector vP having non-negative components (vP > 0).

Further, assume A > 0.

Then all components in that eigenvector are positive.

Every other eigenvector has ‘mixed signs’

‘Farthest’ eigenvalue (spectral radius) = λP

Algebraic multiplicity of λP is one.

Take any v ∈ Rn with v > 0 (and nonzero).
Then Akv ‘turns towards’ vP as k →∞.

Google Page rank Algorithm (after Larry Page):
very quick for LARGE sparse matrices
Ranks web-pages based on a very quick sparse matrix calculation
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Perron Frobenius theorem: non-negative

A > 0: not sparse
A > 0: can be sparse
Close link between directed graph GA properties and
matrix properties of A
Irreducible : strongly connected
Consider A as a (row) stochastic matrix

Primitive (Ak is positive for some finite k)

Ergodic (limk→∞A
k is rank one)

Not primitive: some loops (repeated visits with probability one)
Non-negative matrices: closely linked with M matrix
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M matrices

Square matrices such that off-diagonal entries are nonpositive
and
diagonal entries are ‘quite’ positive

A with nonpositive off-diagonal entries is called an M matrix
if A = ρI −B
for a non-negative matrix B and ρ > spectral radius of B.

A with nonpositive off-diagonal entries is an M matrix if and
only if A−1 exists and is > 0.

If A is an M matrix, then −A is Hurwitz.

Belur, CC-EE (IIT Bombay) Decentralized control: overview VESIT, 10th July, 14 18 / 33



A is an M matrix

Interpret d
dt
x = −Ax as many stable subsystems (diagonal

terms),
with destabilizing ‘neighbour’ subsystems
This means diagonal term in −A is negative, and off-diagonal
is positive

Suppose: local subsystem ‘very’ stable compared to
destabilizing neighbour interactions

Competitive systems

Stability inspite of competing/destabilizing neighbours

Siljak: Robust interconnection stability
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Markov chains

Weighted graphs

Mixing time of Markov chains: rapidly mixing

Directed graphs, strongly connected graphs.

Bipartite graphs: matching theory.
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Distance matrix

Work by Bapat and Pati (more for Resistance distance matrix)
Conditionally positive definite matrices
Consider an undirected graph with vertices v1, . . . , vn.

Distance matrix D: d(i, j) is minimum number of edges to
use to reach j from i

Consider for just connected graphs (all entries finite)

Symmetric matrix (for undirected graphs)

All diagonal elements zero

Triangular inequality

OK to use the word distance

Resistance distance matrix: electrical analogy
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Resistance distance matrix

Conditionally positive definite matrices
Consider an undirected graph with vertices v1, . . . , vn.

Resistance distance matrix R: r(i, j) is effective resistance
between nodes i and j

Consider again for just connected graphs (all entries finite)

Symmetric matrix (for undirected graphs)

All diagonal elements zero

Triangular inequality: Bapat

Again OK to use the word distance

Resistance distance matrix: closely linked to Laplacian matrix
Boyd and Arpita Ghosh: use R to identify ‘best’ edge to add (for
algebraic connectivity improvement)
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Conditionally positive definite: symmetric matrix, at most one
negative eigenvalue, rest all positive.
(positive/non-negative relaxations vary)
L: Laplacian

e−Lt: row-stochastic
(for symmetric L and A)

Connected graph, e−Lt is ergodic
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Much work on directed graphs (and corresponding unsymmetric
A and L matrices)
Doubly Stochastic matrices:

Non-negative matrices in which both rows and columns add up to
one. A convex set: on boundaries: permutation matrices
Good link between convexity properties of set of doubly stochastic
matrices
and Hamiltonian cycle problem (NP-hard):

Vivek Borkar, Vladimir Ejov, Jerzy A. Filar and Giang T. Nguyen
(Approximation algorithms: polynomial time)
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Rapidly mixing Markov Chain

Second farthest eigenvalue λ2 (say) of irreducible, aperiodic
Markov chain

Relates to the time-constant as arbitrary initial conditions
reach steady-state (stationary) distribution

Analogous to second smallest eigenvalue ν of Laplacian (for
connected graph): inverse of time-constant of network

Better connected ≡ Faster mixing
≡ smaller |λ2| (Markov chain) ≡ higher ν (Laplacian).

Depending on the context, both are ‘spectral gap’: ν and
1− |λ2|.
(For stochastic matrix, λP = 1 and for Laplacian matrix,
λn = 0.)

Boyd, Diaconis, Xiao: fastest mixing Markov chain: convexify the
problem
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Matroid techniques

Murota and van der Woude: structural controllability

Matroid: generalizes key properties from linear algebra
(vectors, independence) and graphs (trees, absence of loops)

M (a set of various subsets of a set E) is a matroid if the
objects in M satisfy following properties:

1 Empty set is in M
2 If T1 is in M, then every subset of T1 is also in M
3 If T1 and T2 are in M and |T1| < |T2|, then there is an

element t of T2 such that T1 ∪ t also is in M.

Think of a graph with edge set E and as elements of M ,
think of all sets of edges that do not contain a loop.
(Elements of M are Trees/forests)

Elements of M are called ‘independent sets’.
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Structural controllability

Siljak, van-der-Woude, Murota

Primarily state-space

Bipartite graph: matching technique

Rachel Kalaimani, Belur and Sivaramakrishnan: pole
placement
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Structural controllability

Key contributors:
Dragoslav D. Šiljak
M. Ikeda, M.E. Sezer
A.S. Morse

More recently,
A. Jadbabaie, Olfati-Saber, Ali Saberi
J. Alexander Fax and Richard M. Murray
Vicsek model (flocking matrices)
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More topics

Primitive matrices, disagreement dynamics,
generic: almost any: thin set
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Generic statements

Take randomly entries from R to build a matrix A ∈ Rn×n

Generically, A is nonsingular
Generically, matrices (A,B) is a controllable pair

For example:
One cart: with two inverted pendulums
controlled by one force: controllable for different lengths
Unlikely, that lengths are exactly equal
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Other works

Event triggered computing (in multi-agent systems)

Mesbahi and Zelazo: edge agreement: process noise within each
agent, and measurement noise at each edge: performance
limitations due to graph constraints

‘Manufacturing consent’: Vivek Borkar, EE, IIT Bombay

(Noam Chomsky and Hermann have a similarly titled book)
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Laplacian: −L is a (singular) M matrix

e−Lt is a flocking matrix (for any time t)

Discretize a continuous LTI system
(Continuous system → discrete time system)
limt→∞ e

−Lt: rank one matrix ⇔ (undirected) graph is connected

Ergodic
Siljak: Form I and Form II
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Conclusion

Decentralized control: frequency control

Active power for frequency,

Reactive power for Voltage magnitude control

Graph theory, matroids

Markov chains, row-stochastic matrices

M matrices

Structural controllability: generic controllability

Consensus, formation-control of multi-agent systems

Thank you

Belur, CC-EE (IIT Bombay) Decentralized control: overview VESIT, 10th July, 14 33 / 33



Conclusion

Decentralized control: frequency control

Active power for frequency,

Reactive power for Voltage magnitude control

Graph theory, matroids

Markov chains, row-stochastic matrices

M matrices

Structural controllability: generic controllability

Consensus, formation-control of multi-agent systems

Thank you

Belur, CC-EE (IIT Bombay) Decentralized control: overview VESIT, 10th July, 14 33 / 33


