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Goal: Computing the minimal polynomial basis (MPB) of a given
polynomial matrix
@ Current state of the art:

o Involves explicit knowledge of entries of polynomial matrix
o Examples: matrix pencils, LQ factorization of Toeplitz matrices.
Aim: numerically robust algorithms
o This work:
o Generic case: use just degrees of entries to determine degrees of
entries in MPB

o For specific case, this gives upper bound on degree structure of
MPB.

o No numerical computation: we use degree-structure and
block-Toeplitz structure
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Minimal Polynomial Basis

@ RJ[s]: polynomials in s with real coefficients
@ R™Ms]: m x n matrix with entries from R[s]. (Suppose m < n)
@ Suppose R(s) € R™*"[s] and has rank m
@ Consider matrix M(s) € R™ (=M of rank n — m and
R(s)M(s) =0
@ Look for M(s) with ‘least column degrees’
@ Sort columns of M(s) to be increasing/nondecreasing degrees
@ Find M with least total column degree =
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Minimal Polynomial Basis

@ RJ[s]: polynomials in s with real coefficients
@ R™Ms]: m x n matrix with entries from R[s]. (Suppose m < n)
@ Suppose R(s) € R™*"[s] and has rank m
@ Consider matrix M(s) € R™ (=M of rank n — m and
R(s)M(s) =0
@ Look for M(s) with ‘least column degrees’
@ Sort columns of M(s) to be increasing/nondecreasing degrees

@ Find M with least total column degree = least individual column
degrees

@ When minimum, these columns =: ‘minimal polynomial basis’

Basis for the polynomial and/or rational nullspace of R(s).
Degrees of M(s) are unique, though M(s) is not unique.
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Minimal Polynomial Basis: why and where

@ These minimum degrees also called: Forney indices:
convolutional coding

@ Helpful for calculating left/right coprime factorization of MIMO

G(s)
@ Linked to Kronecker canonical form of a matrix pencil: s — A
and [s/ — A B]

@ Helps in ‘parametrizing’ all system trajectories:
optimization/optimal control

2 p—
o Examples: Ry = [s 2 +2s — 1], take M; = [s +2s 1}

—S

. 0 1 0 1
for Ro = [s/— A B]wﬁhA:[O O},B:[_JtaKeMg:[s}
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Problem Formulation

Do the degrees of the polynomial matrix M(s) depend on

@ just degrees of entries of R(s), or
@ both: degrees and coefficients of R(Ss).
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Problem Formulation

Do the degrees of the polynomial matrix M(s) depend on

@ just degrees of entries of R(s), or
@ both: degrees and coefficients of R(Ss).

Answer: depends on both.
When there are ‘common factors’, then degrees drop.
For example: both Ry = [(s+1) (s?+3s+2)]and R =[1 s+2]
s+2

—1 .
Note that common factors are not ‘typical/likely’.
More precisely,
given two nonzero polynomials p(s) and g(s) with coefficients
‘randomly’ chosen, then it is unlikely that p and g have a common
factor.

For Ry = [(s+1.001) (52 +3s+2)]], MPB Ms(s) = [

have minimal polynomial basis M(s) =

s +3s+2
—-s—1.001]|"

5/15



Genericity of parameters

@ Algebraic variety - set of solutions, E; C R” to a system of
polynomial equations.

@ Zero equation = variety trivial: variety is the whole of R”.

@ Nontrivial algebraic variety is a thin-set (i.e. ‘set of measure
zero’).

Property P in terms of variables pi, p, ..., pn € R is said to be
satisfied generically if the set of values py, po, ..., pn that do NOT
satisfy P form a nontrivial algebraic variety in R".

@ Examples

@ Two nonzero polynomials are generically coprime.
o A square matrix with all entries generically from R is nonsingular.
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Problem Formulation

@ Given R € R™*"[g], define D € Z™*" such that
o [D]; := deg[Al;.
o If [R]; = 0, then [D]; := —oo (Degree of the 0 polynomial)

@ Define the sets:
7, ={zeZ|z> 0}
Z+ = Z+ U {—OO}
@ Given R € R™"[g], can construct unique D € Z7*"
@ Call D the degree structure of R.

@ Given D, there exist many R with that degree structure.
o D(R) := {R € R™"[s] with degree structure D € Z7*"}
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Problem formulation and main observation

Problem 1

Consider R € R™"[s], with degree structure D € ZT*".

Suppose M € R™("=m)[g] gives an MPB of R and let K is degree
structure of M.

Can we determine K from D?
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Problem formulation and main observation

Problem 1

Consider R € R™"[s], with degree structure D € ZT*".

Suppose M € R™("=m)[g] gives an MPB of R and let K is degree
structure of M.

Can we determine K from D? (no numerical calculation: just integer?)

y

Problem 2

Suppose Ry, R: € D(R) and My, M> € R™("=M[g] be their respective
MPBs. Let Ky and K> denote the degree structures of My and M.
respectively. Then, is Ky = K>? generically?

Key observation (using Scilab)

Given degree structures Ki, K> of minimal polynomial bases
corresponding to the same degree structure D, Ky = K.

A
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MPB computation: Block Toeplitz Matrices (Henrion,

et al)

@ Given R € R™"[s] with degree d,
R=Ry+ Rys+ -+ Rygs®

where R; € R™"forj=0,1,...,d.

@ Construct a sequence of real structured matrices from the given
polynomial matrix as:

Ro
FI’1 AO 0 Ao 0 8

AOZ: . ,A1 = 7A2:: 0 AO s (1)
A, 0 A 00| A

Stopwhen (d +i+1)m > (i+ 1)n.
@ Right nullspaces of constant matrices A; yield polynomial
nullspace of AR(s).
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Degree Structure of MPB of generic 1 x 3 R(s) case

@ Let R € R'3[s] have degree structure D= [a b c| and
M € R3*2[s] with deg struct K form an MPB of R(s).
@ Assume: a < b < ¢ (WLOG)
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Degree Structure of MPB of generic 1 x 3 R(s) case

@ Let R € R'3[s] have degree structure D= [a b c| and
M € R3*2[s] with deg struct K form an MPB of R(s).
o Assume: a < b < ¢ (WLOG) and (less trivially) 0 ¢ R; 2b > c.

For even c, the degree structure of the MPB is:

c/2 c/2 ]

K=| c¢/2 c/2

b—c/2 b—c/2

and for odd c is

[ (c—1)/2 (c+1)/2 ]
K= (c—1)/2 (c+1)/2 ()
(c—1)/2—(c—b) (c+1)/2—(c—Db)

@ When ¢ = 2b + k, the MPB will contain the zero polynomial,
corresponding to a —oo term in its degree structure.
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GivenD=[0 1 2 ],findK =

* X ¥
* x ¥
| S|

, such that DK = 0.

0
*
*

O * ¥ ¥
OO *x O

O O *x *

*
*

O O *
O * ¥
o O O *

0

* % O

*

o A is a wide matrix. We have (Dy + D;s + D»s?)K = 0, where D;
corresponds to the coefficients of the degree i terms in the given

polynomial matrix.

@ Note: If a particular A; yields only some columns of the MPB, the

remaining columns can be got by constructing A;+.
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@ Need: Constant matrix P such that A;P = 0. For last row of A; to
be annihilated, corresponding element(s) in K must be zero. This
effectively eliminates the last column of Ay, as shown below:

* * * 0 0
0 ® Ed # &
o o * 0 =*
—6—H—H—6——
* *
o »
0 0
* *
0 0
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@ Observe: degree structure of K independent of a.

@ Same algorithm can be used to determine degree structure of
minimal left indices of K, D;.

o If D > D; (component wise), and they have an MPB with the
same degree structure, K, then D is said to be saturated.

@ ‘Unsaturated’ D = some degree of freedom to ‘change’ one or
more coefficients from 0 to a nonzero value, .

@ Saturation: degree of freedom offered to replace zeros by
nonzeros in degree structure of D while maintaining that of K.

Proposition

WhenD=[a b c|]€Z** andc<2b, Dsz=1[b b cl.

@ Dy for higher dimensions of D? Not (yet) known.
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Conclusions and future work

@ Degree structure of MPB of a given polynomial matrix depends
only on its degree structure, and not its coefficients: Scilab
observation.

@ Closed form degree structure of MPB obtained for generic case
for 1 x 3. Upper bound for specific case: we used block Toeplitz
methods.

@ Genericity of parameters ensured matrices had full rank.

@ Saturation of a degree structure examined in the context of
freedom of making some zero coefficients nonzero.
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o Complete absence of extensive numerical computations -
results depended only on zero/ nonzero nature of coefficients.

@ Results for (n— 1) x nis easy.
@ Need to generalize to other cases: future work.
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Thank You
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