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Motivation

Goal: Computing the minimal polynomial basis (MPB) of a given
polynomial matrix

Current state of the art:
Involves explicit knowledge of entries of polynomial matrix
Examples: matrix pencils, LQ factorization of Toeplitz matrices.
Aim: numerically robust algorithms

This work:
Generic case: use just degrees of entries to determine degrees of
entries in MPB
For specific case, this gives upper bound on degree structure of
MPB.
No numerical computation: we use degree-structure and
block-Toeplitz structure
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Minimal Polynomial Basis

R[s]: polynomials in s with real coefficients
Rm×n[s]: m × n matrix with entries from R[s]. (Suppose m < n)
Suppose R(s) ∈ Rm×n[s] and has rank m
Consider matrix M(s) ∈ Rn×(n−m) of rank n −m and
R(s)M(s) = 0
Look for M(s) with ‘least column degrees’
Sort columns of M(s) to be increasing/nondecreasing degrees
Find M with least total column degree ≡

least individual column
degrees
When minimum, these columns ≡: ‘minimal polynomial basis’

Basis for the polynomial and/or rational nullspace of R(s).
Degrees of M(s) are unique, though M(s) is not unique.
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Minimal Polynomial Basis: why and where

These minimum degrees also called: Forney indices:
convolutional coding
Helpful for calculating left/right coprime factorization of MIMO
G(s)

Linked to Kronecker canonical form of a matrix pencil: sE − A
and [sI − A B]

Helps in ‘parametrizing’ all system trajectories:
optimization/optimal control

Examples: R1 = [s s2 + 2s − 1], take M1 =

[
s2 + 2s − 1
−s

]

for R2 =
[
sI − A B

]
with A =

[
0 1
0 0

]
, B =

[
0
−1

]
take M2 =

[
1
s

]
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Problem Formulation

Do the degrees of the polynomial matrix M(s) depend on

just degrees of entries of R(s), or
both: degrees and coefficients of R(s).

Answer: depends on both.
When there are ‘common factors’, then degrees drop.
For example: both R1 =

[
(s + 1) (s2 + 3s + 2)

]
and R2 = [1 s + 2]

have minimal polynomial basis M(s) =

[
s + 2
−1

]
.

Note that common factors are not ‘typical/likely’.
More precisely,
given two nonzero polynomials p(s) and q(s) with coefficients
‘randomly’ chosen, then it is unlikely that p and q have a common
factor.

For R3 =
[
(s + 1.001) (s2 + 3s + 2)]

]
, MPB M3(s) =

[
s2 + 3s + 2
−s − 1.001

]
.
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Genericity of parameters

Algebraic variety - set of solutions, Eq ⊆ Rn to a system of
polynomial equations.
Zero equation ≡ variety trivial: variety is the whole of Rn.
Nontrivial algebraic variety is a thin-set (i.e. ‘set of measure
zero’).

Genericity

Property P in terms of variables p1,p2, . . . ,pn ∈ R is said to be
satisfied generically if the set of values p1,p2, . . . ,pn that do NOT
satisfy P form a nontrivial algebraic variety in Rn.

Examples
Two nonzero polynomials are generically coprime.
A square matrix with all entries generically from R is nonsingular.
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Problem Formulation

Given R ∈ Rm×n[s], define D ∈ Zm×n such that
[D]ij := deg[R]ij .
If [R]ij = 0, then [D]ij := −∞ (Degree of the 0 polynomial)

Define the sets:

Z+ = {z ∈ Z|z > 0}
Z̄+ = Z+ ∪ {−∞}

Given R ∈ Rm×n[s], can construct unique D ∈ Z̄m×n
+

Call D the degree structure of R.
Given D, there exist many R with that degree structure.
D(R) := {R ∈ Rm×n[s] with degree structure D ∈ Z̄m×n

+ }
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Problem formulation and main observation

Problem 1

Consider R ∈ Rm×n[s], with degree structure D ∈ Z̄m×n
+ .

Suppose M ∈ Rn×(n−m)[s] gives an MPB of R and let K is degree
structure of M.
Can we determine K from D?

(no numerical calculation: just integer?)

Problem 2

Suppose R1,R2 ∈ D(R) and M1,M2 ∈ Rn×(n−m)[s] be their respective
MPBs. Let K1 and K2 denote the degree structures of M1 and M2
respectively. Then, is K1 = K2? generically?

Key observation (using Scilab)

Given degree structures K1,K2 of minimal polynomial bases
corresponding to the same degree structure D, K1 = K2.
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MPB computation: Block Toeplitz Matrices (Henrion,
et al)

Given R ∈ Rm×n[s] with degree d ,

R = R0 + R1s + · · ·+ Rdsd

where Ri ∈ Rm×n for i = 0,1, . . . ,d .
Construct a sequence of real structured matrices from the given
polynomial matrix as:

A0 :=


R0
R1
...

Rd

,A1 :=

 A0 0

0 A0

 ,A2 :=


A0 0 0

0
0 A0
0 0 A0

 , · · · (1)

Stop when (d + i + 1)m > (i + 1)n.
Right nullspaces of constant matrices Ai yield polynomial
nullspace of R(s).
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Degree Structure of MPB of generic 1× 3 R(s) case

Let R ∈ R1×3[s] have degree structure D =
[
a b c

]
and

M ∈ R3×2[s] with deg struct K form an MPB of R(s).
Assume: a ≤ b ≤ c (WLOG)

and (less trivially) 0 /∈ R; 2b > c.

Theorem 2
For even c, the degree structure of the MPB is:

K =

 c/2 c/2
c/2 c/2

b − c/2 b − c/2

 (2)

and for odd c is

K =

 (c − 1)/2 (c + 1)/2
(c − 1)/2 (c + 1)/2

(c − 1)/2− (c − b) (c + 1)/2− (c − b)

 (3)

When c = 2b + k , the MPB will contain the zero polynomial,
corresponding to a −∞ term in its degree structure.
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Example

Given D =
[

0 1 2
]
, find K =

 ∗ ∗
∗ ∗
∗ ∗

, such that DK = 0.

A0 =

 ∗ ∗ ∗
0 ∗ ∗
0 0 ∗

; A1 =


∗ ∗ ∗ 0 0 0
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ 0 ∗ ∗
0 0 0 0 0 ∗


A1 is a wide matrix. We have (D0 + D1s + D2s2)K = 0, where Di
corresponds to the coefficients of the degree i terms in the given
polynomial matrix.
Note: If a particular Ai yields only some columns of the MPB, the
remaining columns can be got by constructing Ai+1.
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Example

Need: Constant matrix P such that A1P = 0. For last row of A1 to
be annihilated, corresponding element(s) in K must be zero. This
effectively eliminates the last column of A1, as shown below:

P =


∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
0 0

, yielding K =

 1 1
1 1
0 0

.
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Saturation

Observe: degree structure of K independent of a.
Same algorithm can be used to determine degree structure of
minimal left indices of K , D1.
If D > D1 (component wise), and they have an MPB with the
same degree structure, K , then D is said to be saturated.
‘Unsaturated’ D ⇒ some degree of freedom to ‘change’ one or
more coefficients from 0 to a nonzero value, ∗.
Saturation: degree of freedom offered to replace zeros by
nonzeros in degree structure of D while maintaining that of K .

Proposition

When D =
[
a b c

]
∈ Z̄1×3

+ , and c 6 2b, Dsat =
[
b b c

]
.

Dsat for higher dimensions of D? Not (yet) known.
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Conclusions and future work

Degree structure of MPB of a given polynomial matrix depends
only on its degree structure, and not its coefficients: Scilab
observation.
Closed form degree structure of MPB obtained for generic case
for 1× 3. Upper bound for specific case: we used block Toeplitz
methods.
Genericity of parameters ensured matrices had full rank.
Saturation of a degree structure examined in the context of
freedom of making some zero coefficients nonzero.

Complete absence of extensive numerical computations -
results depended only on zero/ nonzero nature of coefficients.
Results for (n − 1)× n is easy.
Need to generalize to other cases: future work.
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Thank You
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