Generic degree structure of the minimal polynomial nullspace basis: a block Toeplitz matrix approach

Bhaskar Ramasubramanian, Swanand Khare \& Madhu N. Belur

Department of Electrical and Computer Engineering, University of Maryland, USA,
Department of Mathematics, IIT Kharagpur
Control \& Computing group, Department of Electrical Engineering, IIT Bombay

$$
\text { January 8, } 2015
$$

Motivation

Goal: Computing the minimal polynomial basis (MPB) of a given polynomial matrix

- Current state of the art:
- Involves explicit knowledge of entries of polynomial matrix
- Examples: matrix pencils, LQ factorization of Toeplitz matrices. Aim: numerically robust algorithms
- This work:
- Generic case: use just degrees of entries to determine degrees of entries in MPB
- For specific case, this gives upper bound on degree structure of MPB.
- No numerical computation: we use degree-structure and block-Toeplitz structure

Minimal Polynomial Basis

- $\mathbb{R}[s]$: polynomials in s with real coefficients
- $\mathbb{R}^{m \times n}[s]: m \times n$ matrix with entries from $\mathbb{R}[s]$. (Suppose $m<n$)
- Suppose $R(s) \in \mathbb{R}^{m \times n}[s]$ and has rank m
- Consider matrix $M(s) \in \mathbb{R}^{n \times(n-m)}$ of rank $n-m$ and $R(s) M(s)=0$
- Look for $M(s)$ with 'least column degrees’
- Sort columns of $M(s)$ to be increasing/nondecreasing degrees
- Find M with least total column degree \equiv

Minimal Polynomial Basis

- $\mathbb{R}[s]$: polynomials in s with real coefficients
- $\mathbb{R}^{m \times n}[s]: m \times n$ matrix with entries from $\mathbb{R}[s]$. (Suppose $m<n$)
- Suppose $R(s) \in \mathbb{R}^{m \times n}[s]$ and has rank m
- Consider matrix $M(s) \in \mathbb{R}^{n \times(n-m)}$ of rank $n-m$ and $R(s) M(s)=0$
- Look for $M(s)$ with 'least column degrees’
- Sort columns of $M(s)$ to be increasing/nondecreasing degrees
- Find M with least total column degree \equiv least individual column degrees

Minimal Polynomial Basis

- $\mathbb{R}[s]$: polynomials in s with real coefficients
- $\mathbb{R}^{m \times n}[s]: m \times n$ matrix with entries from $\mathbb{R}[s]$. (Suppose $m<n$)
- Suppose $R(s) \in \mathbb{R}^{m \times n}[s]$ and has rank m
- Consider matrix $M(s) \in \mathbb{R}^{n \times(n-m)}$ of rank $n-m$ and $R(s) M(s)=0$
- Look for $M(s)$ with 'least column degrees’
- Sort columns of $M(s)$ to be increasing/nondecreasing degrees
- Find M with least total column degree \equiv least individual column degrees
- When minimum, these columns \equiv : 'minimal polynomial basis'

Basis for the polynomial and/or rational nullspace of $R(s)$. Degrees of $M(s)$ are unique, though $M(s)$ is not unique.

Minimal Polynomial Basis: why and where

- These minimum degrees also called: Forney indices: convolutional coding
- Helpful for calculating left/right coprime factorization of MIMO $G(s)$
- Linked to Kronecker canonical form of a matrix pencil: $s E$ - A and $[s I-A B]$
- Helps in 'parametrizing' all system trajectories: optimization/optimal control
- Examples: $R_{1}=\left[\begin{array}{ll}s & s^{2}+2 s-1\end{array}\right]$, take $M_{1}=\left[\begin{array}{c}s^{2}+2 s-1 \\ -s\end{array}\right]$
for $R_{2}=\left[\begin{array}{ll}s I-A & B\end{array}\right]$ with $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{c}0 \\ -1\end{array}\right]$ take $M_{2}=\left[\begin{array}{l}1 \\ s\end{array}\right]$

Problem Formulation

Do the degrees of the polynomial matrix $M(s)$ depend on

- just degrees of entries of $R(s)$, or
- both: degrees and coefficients of $R(s)$.

Problem Formulation

Do the degrees of the polynomial matrix $M(s)$ depend on

- just degrees of entries of $R(s)$, or
- both: degrees and coefficients of $R(s)$.

Answer: depends on both.

Problem Formulation

Do the degrees of the polynomial matrix $M(s)$ depend on

- just degrees of entries of $R(s)$, or
- both: degrees and coefficients of $R(s)$.

Answer: depends on both.
When there are 'common factors', then degrees drop.
For example: both $R_{1}=\left[\begin{array}{ll}(s+1) & \left(s^{2}+3 s+2\right)\end{array}\right]$ and $R_{2}=\left[\begin{array}{ll}1 & s+2\end{array}\right]$
have minimal polynomial basis $M(s)=\left[\begin{array}{c}s+2 \\ -1\end{array}\right]$.

Problem Formulation

Do the degrees of the polynomial matrix $M(s)$ depend on

- just degrees of entries of $R(s)$, or
- both: degrees and coefficients of $R(s)$.

Answer: depends on both.
When there are 'common factors', then degrees drop.
For example: both $R_{1}=\left[\begin{array}{ll}(s+1) & \left(s^{2}+3 s+2\right)\end{array}\right]$ and $R_{2}=\left[\begin{array}{ll}1 & s+2\end{array}\right]$
have minimal polynomial basis $M(s)=\left[\begin{array}{c}s+2 \\ -1\end{array}\right]$.
Note that common factors are not 'typical/likely'. More precisely,

Problem Formulation

Do the degrees of the polynomial matrix $M(s)$ depend on

- just degrees of entries of $R(s)$, or
- both: degrees and coefficients of $R(s)$.

Answer: depends on both.
When there are 'common factors', then degrees drop.
For example: both $R_{1}=\left[\begin{array}{ll}(s+1) & \left(s^{2}+3 s+2\right)\end{array}\right]$ and $R_{2}=\left[\begin{array}{ll}1 & s+2\end{array}\right]$
have minimal polynomial basis $M(s)=\left[\begin{array}{c}s+2 \\ -1\end{array}\right]$.
Note that common factors are not 'typical/likely'.
More precisely,
given two nonzero polynomials $p(s)$ and $q(s)$ with coefficients 'randomly' chosen,

Problem Formulation

Do the degrees of the polynomial matrix $M(s)$ depend on

- just degrees of entries of $R(s)$, or
- both: degrees and coefficients of $R(s)$.

Answer: depends on both.
When there are 'common factors', then degrees drop.
For example: both $R_{1}=\left[\begin{array}{ll}(s+1) & \left(s^{2}+3 s+2\right)\end{array}\right]$ and $R_{2}=\left[\begin{array}{ll}1 & s+2\end{array}\right]$
have minimal polynomial basis $M(s)=\left[\begin{array}{c}s+2 \\ -1\end{array}\right]$.
Note that common factors are not 'typical/likely'.
More precisely,
given two nonzero polynomials $p(s)$ and $q(s)$ with coefficients 'randomly' chosen, then it is unlikely that p and q have a common factor.

Problem Formulation

Do the degrees of the polynomial matrix $M(s)$ depend on

- just degrees of entries of $R(s)$, or
- both: degrees and coefficients of $R(s)$.

Answer: depends on both.
When there are 'common factors', then degrees drop.
For example: both $R_{1}=\left[\begin{array}{ll}(s+1) & \left(s^{2}+3 s+2\right)\end{array}\right]$ and $R_{2}=\left[\begin{array}{ll}1 & s+2\end{array}\right]$
have minimal polynomial basis $M(s)=\left[\begin{array}{c}s+2 \\ -1\end{array}\right]$.
Note that common factors are not 'typical/likely'.
More precisely,
given two nonzero polynomials $p(s)$ and $q(s)$ with coefficients 'randomly' chosen, then it is unlikely that p and q have a common factor.
For $R_{3}=\left[\begin{array}{ll}(s+1.001) & \left(s^{2}+3 s+2\right)\end{array}\right]$,

Problem Formulation

Do the degrees of the polynomial matrix $M(s)$ depend on

- just degrees of entries of $R(s)$, or
- both: degrees and coefficients of $R(s)$.

Answer: depends on both.
When there are 'common factors', then degrees drop.
For example: both $R_{1}=\left[\begin{array}{ll}(s+1) & \left(s^{2}+3 s+2\right)\end{array}\right]$ and $R_{2}=\left[\begin{array}{ll}1 & s+2\end{array}\right]$
have minimal polynomial basis $M(s)=\left[\begin{array}{c}s+2 \\ -1\end{array}\right]$.
Note that common factors are not 'typical/likely'.
More precisely,
given two nonzero polynomials $p(s)$ and $q(s)$ with coefficients 'randomly' chosen, then it is unlikely that p and q have a common factor.
For $R_{3}=\left[\begin{array}{ll}(s+1.001) & \left.\left(s^{2}+3 s+2\right)\right]\end{array}\right]$, MPB $M_{3}(s)=\left[\begin{array}{c}s^{2}+3 s+2 \\ -s-1.001\end{array}\right]$.

Genericity of parameters

- Algebraic variety - set of solutions, $E_{q} \subseteq \mathbb{R}^{n}$ to a system of polynomial equations.
- Zero equation \equiv variety trivial: variety is the whole of \mathbb{R}^{n}.
- Nontrivial algebraic variety is a thin-set (i.e. 'set of measure zero').

Genericity

Property P in terms of variables $p_{1}, p_{2}, \ldots, p_{n} \in \mathbb{R}$ is said to be satisfied generically if the set of values $p_{1}, p_{2}, \ldots, p_{n}$ that do NOT satisfy P form a nontrivial algebraic variety in \mathbb{R}^{n}.

- Examples
- Two nonzero polynomials are generically coprime.
- A square matrix with all entries generically from \mathbb{R} is nonsingular.

Problem Formulation

- Given $R \in \mathbb{R}^{m \times n}[s]$, define $D \in \mathbb{Z}^{m \times n}$ such that
- $[D]_{j i}:=\operatorname{deg}[R]_{j j}$.
- If $[R]_{i j}=0$, then $[D]_{i j}:=-\infty$ (Degree of the 0 polynomial)
- Define the sets:

$$
\begin{array}{r}
\mathbb{Z}_{+}=\{z \in \mathbb{Z} \mid z \geqslant 0\} \\
\overline{\mathbb{Z}}_{+}=\mathbb{Z}_{+} \cup\{-\infty\}
\end{array}
$$

- Given $R \in \mathbb{R}^{m \times n}[s]$, can construct unique $D \in \overline{\mathbb{Z}}_{+}^{m \times n}$
- Call D the degree structure of R.
- Given D, there exist many R with that degree structure.
- $D(R):=\left\{R \in \mathbb{R}^{m \times n}[s]\right.$ with degree structure $\left.D \in \overline{\mathbb{Z}}_{+}^{m \times n}\right\}$

Problem formulation and main observation

Problem 1

Consider $R \in \mathbb{R}^{m \times n}[s]$, with degree structure $D \in \overline{\mathbb{Z}}_{+}^{m \times n}$. Suppose $M \in \mathbb{R}^{n \times(n-m)}[s]$ gives an MPB of R and let K is degree structure of M.
Can we determine K from D ?

Problem formulation and main observation

Problem 1

Consider $R \in \mathbb{R}^{m \times n}[s]$, with degree structure $D \in \overline{\mathbb{Z}}_{+}^{m \times n}$. Suppose $M \in \mathbb{R}^{n \times(n-m)}[s]$ gives an MPB of R and let K is degree structure of M.
Can we determine K from D ? (no numerical calculation: just integer?)

Problem formulation and main observation

Problem 1

Consider $R \in \mathbb{R}^{m \times n}[s]$, with degree structure $D \in \overline{\mathbb{Z}}_{+}^{m \times n}$. Suppose $M \in \mathbb{R}^{n \times(n-m)}[s]$ gives an MPB of R and let K is degree structure of M.
Can we determine K from D ? (no numerical calculation: just integer?)

Problem 2

Suppose $R_{1}, R_{2} \in D(R)$ and $M_{1}, M_{2} \in \mathbb{R}^{n \times(n-m)}[s]$ be their respective MPBs. Let K_{1} and K_{2} denote the degree structures of M_{1} and M_{2} respectively. Then, is $K_{1}=K_{2}$?

Problem formulation and main observation

Problem 1

Consider $R \in \mathbb{R}^{m \times n}[s]$, with degree structure $D \in \overline{\mathbb{Z}}_{+}^{m \times n}$. Suppose $M \in \mathbb{R}^{n \times(n-m)}[s]$ gives an MPB of R and let K is degree structure of M.
Can we determine K from D ? (no numerical calculation: just integer?)

Problem 2

Suppose $R_{1}, R_{2} \in D(R)$ and $M_{1}, M_{2} \in \mathbb{R}^{n \times(n-m)}[s]$ be their respective MPBs. Let K_{1} and K_{2} denote the degree structures of M_{1} and M_{2} respectively. Then, is $K_{1}=K_{2}$? generically?

Problem formulation and main observation

Problem 1

Consider $R \in \mathbb{R}^{m \times n}[s]$, with degree structure $D \in \overline{\mathbb{Z}}_{+}^{m \times n}$. Suppose $M \in \mathbb{R}^{n \times(n-m)}[s]$ gives an MPB of R and let K is degree structure of M.
Can we determine K from D ? (no numerical calculation: just integer?)

Problem 2

Suppose $R_{1}, R_{2} \in D(R)$ and $M_{1}, M_{2} \in \mathbb{R}^{n \times(n-m)}[s]$ be their respective MPBs. Let K_{1} and K_{2} denote the degree structures of M_{1} and M_{2} respectively. Then, is $K_{1}=K_{2}$? generically?

Key observation (using Scilab)

Given degree structures K_{1}, K_{2} of minimal polynomial bases corresponding to the same degree structure $D, K_{1}=K_{2}$.

MPB computation: Block Toeplitz Matrices (Henrion, et al)

- Given $R \in \mathbb{R}^{m \times n}[s]$ with degree d,

$$
R=R_{0}+R_{1} s+\cdots+R_{d} s^{d}
$$

where $R_{i} \in \mathbb{R}^{m \times n}$ for $i=0,1, \ldots, d$.

- Construct a sequence of real structured matrices from the given polynomial matrix as:

$$
A_{0}:=\left[\begin{array}{c}
R_{0} \tag{1}\\
R_{1} \\
\vdots \\
R_{d}
\end{array}\right], A_{1}:=\left[\right], A_{2}:=\left[\begin{array}{c|c|c}
A_{0} & 0 & 0 \\
& & 0 \\
\hline 0 & A_{0} & \\
\cline { 2 - 3 } & 0 & A_{0}
\end{array}\right], \cdots
$$

Stop when $(d+i+1) m \geqslant(i+1) n$.

- Right nullspaces of constant matrices A_{i} yield polynomial nullspace of $R(s)$.

Degree Structure of MPB of generic $1 \times 3 R(s)$ case

- Let $R \in \mathbb{R}^{1 \times 3}[s]$ have degree structure $D=\left[\begin{array}{lll}a & b & c\end{array}\right]$ and $M \in \mathbb{R}^{3 \times 2}[s]$ with deg struct K form an MPB of $R(s)$.
- Assume: $a \leq b \leq c$ (WLOG)

Degree Structure of MPB of generic $1 \times 3 R(s)$ case

- Let $R \in \mathbb{R}^{1 \times 3}[s]$ have degree structure $D=\left[\begin{array}{lll}a & b & c\end{array}\right]$ and $M \in \mathbb{R}^{3 \times 2}[s]$ with deg struct K form an MPB of $R(s)$.
- Assume: $a \leq b \leq c$ (WLOG) and (less trivially) $0 \notin R ; 2 b \geqslant c$.

Degree Structure of MPB of generic $1 \times 3 R(s)$ case

- Let $R \in \mathbb{R}^{1 \times 3}[s]$ have degree structure $D=\left[\begin{array}{lll}a & b & c\end{array}\right]$ and $M \in \mathbb{R}^{3 \times 2}[s]$ with deg struct K form an MPB of $R(s)$.
- Assume: $a \leq b \leq c$ (WLOG) and (less trivially) $0 \notin R ; 2 b \geqslant c$.

Theorem 2

For even c, the degree structure of the MPB is:

$$
K=\left[\begin{array}{cc}
c / 2 & c / 2 \tag{2}\\
c / 2 & c / 2 \\
b-c / 2 & b-c / 2
\end{array}\right]
$$

and for odd c is

$$
K=\left[\begin{array}{cc}
(c-1) / 2 & (c+1) / 2 \tag{3}\\
(c-1) / 2 & (c+1) / 2 \\
(c-1) / 2-(c-b) & (c+1) / 2-(c-b)
\end{array}\right]
$$

- When $c=2 b+k$, the MPB will contain the zero polynomial, corresponding to a $-\infty$ term in its degree structure.

Example

Given $D=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right]$, find $K=\left[\begin{array}{ll}* & * \\ * & * \\ * & *\end{array}\right]$, such that $D K=0$.
$A_{0}=\left[\begin{array}{lll}* & * & * \\ 0 & * & * \\ 0 & 0 & *\end{array}\right] ; A_{1}=\left[\begin{array}{cccccc}* & * & * & 0 & 0 & 0 \\ 0 & * & * & * & * & * \\ 0 & 0 & * & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & *\end{array}\right]$

- A_{1} is a wide matrix. We have $\left(D_{0}+D_{1} s+D_{2} s^{2}\right) K=0$, where D_{i} corresponds to the coefficients of the degree i terms in the given polynomial matrix.
- Note: If a particular A_{i} yields only some columns of the MPB, the remaining columns can be got by constructing A_{i+1}.

Example

- Need: Constant matrix P such that $A_{1} P=0$. For last row of A_{1} to be annihilated, corresponding element(s) in K must be zero. This effectively eliminates the last column of A_{1}, as shown below:

$P=\left[\begin{array}{cc}* & * \\ * & * \\ * & * \\ \hline * & * \\ * & * \\ 0 & 0\end{array}\right]$, yielding $K=\left[\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 0 & 0\end{array}\right]$.

Saturation

- Observe: degree structure of K independent of a.
- Same algorithm can be used to determine degree structure of minimal left indices of K, D_{1}.
- If $D \geqslant D_{1}$ (component wise), and they have an MPB with the same degree structure, K, then D is said to be saturated.
- 'Unsaturated' $D \Rightarrow$ some degree of freedom to 'change' one or more coefficients from 0 to a nonzero value, *.
- Saturation: degree of freedom offered to replace zeros by nonzeros in degree structure of D while maintaining that of K.

Proposition

When $D=\left[\begin{array}{lll}a & b & c\end{array}\right] \in \overline{\mathbb{Z}}_{+}^{1 \times 3}$, and $c \leqslant 2 b, D_{\text {sat }}=\left[\begin{array}{lll}b & b & c\end{array}\right]$.

- $D_{\text {sat }}$ for higher dimensions of D ? Not (yet) known.

Conclusions and future work

- Degree structure of MPB of a given polynomial matrix depends only on its degree structure, and not its coefficients: Scilab observation.
- Closed form degree structure of MPB obtained for generic case for 1×3. Upper bound for specific case: we used block Toeplitz methods.
- Genericity of parameters ensured matrices had full rank.
- Saturation of a degree structure examined in the context of freedom of making some zero coefficients nonzero.

Conclusions and future work

- Degree structure of MPB of a given polynomial matrix depends only on its degree structure, and not its coefficients: Scilab observation.
- Closed form degree structure of MPB obtained for generic case for 1×3. Upper bound for specific case: we used block Toeplitz methods.
- Genericity of parameters ensured matrices had full rank.
- Saturation of a degree structure examined in the context of freedom of making some zero coefficients nonzero.
- Complete absence of extensive numerical computations results depended only on zero/ nonzero nature of coefficients.

Conclusions and future work

- Degree structure of MPB of a given polynomial matrix depends only on its degree structure, and not its coefficients: Scilab observation.
- Closed form degree structure of MPB obtained for generic case for 1×3. Upper bound for specific case: we used block Toeplitz methods.
- Genericity of parameters ensured matrices had full rank.
- Saturation of a degree structure examined in the context of freedom of making some zero coefficients nonzero.
- Complete absence of extensive numerical computations results depended only on zero/ nonzero nature of coefficients.
- Results for $(n-1) \times n$ is easy.

Conclusions and future work

- Degree structure of MPB of a given polynomial matrix depends only on its degree structure, and not its coefficients: Scilab observation.
- Closed form degree structure of MPB obtained for generic case for 1×3. Upper bound for specific case: we used block Toeplitz methods.
- Genericity of parameters ensured matrices had full rank.
- Saturation of a degree structure examined in the context of freedom of making some zero coefficients nonzero.
- Complete absence of extensive numerical computations results depended only on zero/ nonzero nature of coefficients.
- Results for $(n-1) \times n$ is easy.
- Need to generalize to other cases: future work.

Thank You

