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Optimal charging/discharging of RLC circuits

Actual energy stored in state vo is geometric mean of

e ‘minimum required’ energy for charging state vg, and
e ‘maximum extractable’ energy while discharging from vg.

Generalization to the multi-state case of the ‘geometric’ mean

o Positive real balancing in Model Order Reduction
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Problem formulation

@ Generalize the intuitive notion: a port needed for controlling a circuit
@ Formulate port/capacitor/inductor relative locations which cause
common eigenspaces in

o state transition matrix A (of any state space realization)
e required supply energy matrix Kreqa
o available storage energy matrix K,yajl

@ Generalize the geometric mean property to the matrix (multistate) case
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Graph Laplacian

e For an undirected graph G(V, E): with |V| = n nodes, the Laplacian L € R™*"
L:=D—-N

D is the diagonal ‘degree’ matrix

(degree of a node: number of edges incident on that node)
N is the neighbourhood (adjacency) matrix:

N;j; :=1, if nodes v; and v; are neighbours, 0 otherwise.

U1
€1 €4 3 -1 -1 -1
Vs |71 2 -1 0
es v -1 -1 3 -1
€2 -1 0 -1 2
€5
V3

L is symmetric and positive semi-definite matrix: at least one eigenvalue at 0
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For graph G(V, E), associate unit resistor to each edge in F
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For graph G(V, E), associate unit resistor to each edge in F
Introduce a ground node 0, connect unit capacitor between node ¢ in V' to node 0

V2 Cy

=+ Y v.
1
g =1 =i = 1

1 2 -1 o0 ’ ’
1 -1 3 -1 ! !

Cs

L =

d V2 V2

— — —_ S
1 0 1 2 | -
V4 V4

@ Second smallest eigenvalue of L (for a connected graph): algebraic connectivity
decides ‘mixing time’: time-constant for equalizing voltage across capacitors.

o Edge conductances <+ edge weights <+ off-diagonal terms in L

o Capacitances different? Need ‘balancing’: this talk
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For graph G(V, E), associate unit resistor to each edge in F
Introduce a ground node 0, connect unit capacitor between node ¢ in V' to node 0
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U1 U1
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@ Second smallest eigenvalue of L (for a connected graph): algebraic connectivity
decides ‘mixing time’: time-constant for equalizing voltage across capacitors.

o Edge conductances <+ edge weights <+ off-diagonal terms in L

o Capacitances different? Need ‘balancing’: this talk

e With ports: , optimal charging/discharging

* port location for controllability: general LTI systems
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Hinged graphs: decoupled: uncontrollable?
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Hinged graphs: decoupled: uncontrollable?

* Electrical networks: much structure
* General (sparse) LTI systems have less graph structure
* Bipartite graphs: edges between equation set and variable set
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Hinged graphs: decoupled: uncontrollable?

* Electrical networks: much structure
* General (sparse) LTI systems have less graph structure
* Bipartite graphs: edges between equation set and variable set
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e Two types of equations (left nodes):

o plant equations (left-top nodes): given to us
o controller equations (left-bottom nodes): what we
connect at the port: to-be-designed
* feedback controller: additional laws

o Plant structure: equation-variable interaction

o Controller structure: sensor/actuator interaction
constraint

£ o Controlled system: square polynomial matrix: plant
5 and controller/port equations

Equations

<

Port/ 4=
Controller
<

——  Nonconstant edge

@ # equations = # variables:
(determined system of equations)

o One-to-one correspondence = ‘marriage’ = matching
o All nodes get matched = perfect matching

o Terms in determinant <+ perfect matchings
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Pole-placement, structural controllability

o Given equation-variable graph structure of the plant and controller:

find conditions on controller structure for arbitrary pole-placement

o Those edges that occur in some perfect matching;:
‘admissible’.

o Discard the rest
o Resulting graph if connected: elementary bipartite
graph: well-studied (Lovasz & Plummer)

o Classify edges into plant/controller edges
(plant edges: constant and non-constant)

Equations
Variables

Port/ 4
Controller

——  Nonconstant edge

Given plant and controller structure, following are equivalent

o arbitrary pole-placement possible
e every admissible plant edge occurs in some loop containing controller edges
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Pole-placement, structural controllability

o Given equation-variable graph structure of the plant and controller:

find conditions on controller structure for arbitrary pole-placement

Those edges that occur in some perfect matching:
‘admissible’.

Discard the rest

o Resulting graph if connected: elementary bipartite
graph: well-studied (Lovasz & Plummer)

Equations
Variables

Classify edges into plant/controller edges
(plant edges: constant and non-constant)

——  Nonconstant edge

Given plant and controller structure, following are equivalent

o arbitrary pole-placement possible

e every admissible plant edge occurs in some loop containing controller edges

(with R. Kalaimani and S. Krishnan (Math): Linear Algebra & its Applications:
2013)

Techniques from matching theory aspects of graph theory
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Optimal charging and discharging

Consider the RC circuit

Initially (at ¢ = —o0) discharged: ve(—o0) =0

Finally (at t = +00) discharged: ve(+00) =0 R,
Actual energy at t = 0: 2Cvg with v (0) = vo V -
Energy supplied/extracted from the port
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Optimal charging and discharging

Consider the RC circuit
Initially (at ¢ = —o0) discharged: ve(—o0) =0
Finally (at t = +00) discharged: ve(+00) =0 R,
Actual energy at t = 0: 2Cvg with v (0) = vo V -
Energy supplied/extracted from the port

o Charge optimally (from ve(—o0) = 0)

minimize net energy supplied at the port: ‘required supply’

* too quick (over short time interval) = much i’ R, losses in R,

Charging:
* too slow (over wide time interval) = C' discharges through R,

e Discharge optimally (to ve(+00) = 0): ‘available storage’
maximum net energy to be extracted from the port

* Optimize between too much i? R, losses and simultaneous discharge through R,
In general, suppose vc(0) = vo: available and required energies: quadratic in vo

1 2 1 2 2
iKavail Vo < 7C’UO < 7Krch Vo
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Optimal charging/discharging: single state

° %Cvg is geometric mean of %Kquvg and %Kavaiwg

o Why geometric? Why not arithmetic/harmonic means?
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Optimal charging/discharging: single state

1,2 . 1 2 1 2

° 501)0 is geometric mean of 5Kreqavy and 5 Kavaivg

o Why geometric? Why not arithmetic/harmonic means?
Kavail

(while charging) KO = (while discharging)
req

EE (IIT Bombay) ; in / 21st April, 15 9/ 16



Optimal charging/discharging: single state

° %Cvg is geometric mean of %Kquvg and %Kavaiwg

o Why geometric? Why not arithmetic/harmonic means?

K. avai . . .
(while charging) C _ Ko (while discharging)
Kreqd C
@ Perhaps not too surprising: at optimal (charging/discharging) rates
same fraction of energy is best transferred across resistors.

For n number of ‘memory elements’ (L and C),

* let z € R™: the state: vector of capacitor voltages and inductor currents
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Optimal charging/discharging: single state

° %Cvg is geometric mean of %Kquvg and %Kavaiwg

o Why geometric? Why not arithmetic/harmonic means?

Kavai . . .
(while charging) C _ Ko (while discharging)
Kreqd C
@ Perhaps not too surprising: at optimal (charging/discharging) rates
same fraction of energy is best transferred across resistors.

For n number of ‘memory elements’ (L and C'),
let x € R™: the state: vector of capacitor voltages and inductor currents
required supply = 27 (K eqa)x and available storage = 27 (Kavail) with

Kavail and Kreqa symmetric n X n matrices

X X

Standard Riccati equation procedures (from a state space representation of RLC
network) to compute Kavail and Kreqd

* Geometric mean of matrices??
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Multiple memory elements? Multiports?: Riccati equations

& = Az + Bi and v = Cx + Di: minimal state space realization of biproper
impedance matrix Z(s)
z is vector of capacitor voltages and inductor currents and z(0) = a € R™

EE (IIT Bombay)



Multiple memory elements? Multiports?: Riccati equations

& = Az + Bi and v = Cx + Di: minimal state space realization of biproper
impedance matrix Z(s)

z is vector of capacitor voltages and inductor currents and z(0) = a € R™
Suppose z(0) = a € R" is a given voltage/current configuration

o Required supply is aTKrch a and available storage is aT Kaovail a:
Kreqa and Kayail are maximum and minimum solutions of the Algebraic Riccati
Equation (ARE):

A"K + KA+ (KB-C")YD+D")y"Y(B"K -C) <0

e Quadratic in unknown K € R"*" (we seek symmetric solutions)

o Multi-state: symmetric solutions of ARE/ARI form a ‘poset’
(partially ordered set): Kavail and Kyeqd are minimum/maximum elements

My work so far: uncontrollable case (with D. Pal, S. Karikalan, C. Athalye:
1JC 2014, STAM 2008)

o Today: network topology link

Belur, CC, EE (IIT Bombay) Graph theoretic scts in / 21st April, 15 10 / 16



New results

Assume biproper impedance Z(s) and admittance Y (s): construct
%m =A,x+ B.i, v=C,x+ D,iand %m = Ayx + Byv, = Cyx+ Dyv.
o Construct  has 2n components: consists of x and ‘dual state’ :
* original state x (capacitor voltage/inductor current), and
* the dual/adjoint/Lagrange multiplier A
* Admittance Y (s) gives 2n x 2n matrix Hy
* Impedance Z(s) gives 2n X 2n matrix H,
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%55 N R )

Common eigenspaces

Suppose some capacitors form cutsets with ports: those states
* result in imaginary axis eigenvalues of A,

* span common eigenspaces of A., Kreqa and Kavai (and all K)

% are in the nullspace of K;eqd — Kavail
v

Also: for L forming loops with ports, and ‘LC tanks’ forming cutsets/loops with ports
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Geometric mean of matrices?

Recall: Kreqa X Kavail = ¢*. Generalize to many states?
e Assume multiport RC' network
‘Normalize’ all states by ¢;, i.e. v; — \/C; Vi

o
o In the new state variables, vd vo is total actual energy
]

Diagonal similarity transformation on A (of state space). Then
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(Kavail) "' = Kreqa @ ‘geometric mean’ (post-normalization)
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Capacitor voltage normalizing achieves ‘positive real balancing’! J

o For a system with transfer matrix G(s),
passive = G(s) is positive real
(no poles in ORHP, and G(s) + G(—s)T > 0 for each s in complex RHP)
o Positive real balancing: find state-space basis such that:
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Recall: Kreqa X Kavail = ¢*. Generalize to many states?
e Assume multiport RC' network
o ‘Normalize’ all states by ¢;, i.e. v; — \/C; Vi

o In the new state variables, vd vo is total actual energy

o Diagonal similarity transformation on A (of state space). Then
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(Kavail) "' = Kreqa @ ‘geometric mean’ (post-normalization)

In other words,

Capacitor voltage normalizing achieves ‘positive real balancing’! J

o For a system with transfer matrix G(s),

passive = G(s) is positive real

(no poles in ORHP, and G(s) + G(—s)T > 0 for each s in complex RHP)
o Positive real balancing: find state-space basis such that:

AREl: ATK+ KA+ (KB-CT)YD+DT)"Y(BTK-C) =0 and
ARE2: PAT + AP + (PCT — B)(D+ DT)~Y(cP-BT) =0

have identical solution sets C R™*"
A (Kmax)71 - Kmin
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Why positive real balancing: MOR

e Balancing useful in Model Order Reduction (MOR)

e Balanced truncation:
discard those states that are ‘very’ uncontrollable and ‘very’ unobservable

@ Retain states only if:
* very controllable (low z7 P~'z) and
x very observable (high z7Qx)
Controllability Grammian P & Observability Grammian Q

LWe do not get diagonal solutions: so-called ‘principal-axis’ balanced
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Why positive real balancing: MOR

e Balancing useful in Model Order Reduction (MOR)

e Balanced truncation:
discard those states that are ‘very’ uncontrollable and ‘very’ unobservable

@ Retain states only if:
* very controllable (low z7 P~'z) and
x very observable (high z7Qx)
Controllability Grammian P & Observability Grammian Q
Procedure: simultaneous diagonalization of P and Q

e In general, positive real balancing: simultaneous diagonalization (of K and L)
Involves Riccati equation solution: then Cholesky factorization

o We showed® :

for RC circuits

capacitor voltage normalizing results in balancing.

o Also true for: RL, and ‘symmetric’ realizations A = AT (of the state space)
(Recall Laplacian L = LT in RC example: though no ports there)

LWe do not get diagonal solutions: so-called ‘principal-axis’ balanced
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Passivity preserving Model Order Reduction

Passive reduced-order LTI models: important for
@ circuit simulation and analysis,

o controller design

Nonlinear devices

Large order RLC part

Ports/sources

Obtain/build
Low order passive model
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Other RC like systems

RL systems

Multi-agents:
o Network of many agents to achieve a task collectively
o Surveillance pursuit-evasion games
o Controlled through port = one or more agents are ‘leaders’
o Laplacian matrix arises for single-integrator dynamics
o Network of Voltage-Source-Inverters (VSI) forming a microgrid
(after neglecting sufficiently quick dynamics):
with Iyer, Chandorkar: IEEE-Trans-PEL 2010 & IEEE-Trans-Energy Conv 2011

o Mass-damper systems

o Other so-called ZIP (Zero-Interlacing-Pole) systems
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Summary

o Controller locations that achieve controllability /pole-placement
e Optimal charging/discharging matrix relations with RLC locations

o Positive real balancing and state variable normalization
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Also thanks to:
e R.U. Chavan, R.K. Kalaimani, Dr. Krishnan (Math), Ameer K. Mulla.

e Vinamzi Samuel and Kaushik Mallick (MTP with me):
OpenModelica/Python/Scilab based package
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