Some new links between graph theory and optimal charging/discharging control strategies

Madhu N. Belur EE, IIT Bombay

$http://www.ee.iitb.ac.in/{\sim}belur/talks/$

21st April, 2015

- Optimal charging/discharging of RLC circuits
- Actual energy stored in state v_0 is geometric mean of
 - 'minimum required' energy for charging state v_0 , and
 - 'maximum extractable' energy while discharging from v_0 .
- Generalization to the **multi-state** case of the 'geometric' mean
- Positive real balancing in Model Order Reduction

- Generalize the intuitive notion: a port needed for controlling a circuit
- Formulate port/capacitor/inductor relative locations which cause common eigenspaces in
 - state transition matrix A (of any state space realization)
 - required supply energy matrix K_{reqd}
 - available storage energy matrix K_{avail}

③ Generalize the geometric mean property to the matrix (multistate) case

• For an undirected graph G(V, E): with |V| = n nodes, the Laplacian $L \in \mathbb{R}^{n \times n}$

$$L := D - N$$

D is the diagonal 'degree' matrix (degree of a node: number of edges incident on that node) N is the neighbourhood (adjacency) matrix: $N_{ij} := 1$, if nodes v_i and v_j are neighbours, 0 otherwise.

L is symmetric and positive semi-definite matrix: at least one eigenvalue at 0

• For an undirected graph G(V, E): with |V| = n nodes, the Laplacian $L \in \mathbb{R}^{n \times n}$

$$L := D - N$$

D is the diagonal 'degree' matrix (degree of a node: number of edges incident on that node) N is the neighbourhood (adjacency) matrix: $N_{ij} := 1$, if nodes v_i and v_j are neighbours, 0 otherwise.

L is symmetric and positive semi-definite matrix: at least one eigenvalue at 0

For graph G(V, E), associate unit resistor to each edge in E

- Second smallest eigenvalue of L (for a connected graph): algebraic connectivity decides 'mixing time': time-constant for equalizing voltage across capacitors.
- Edge conductances \leftrightarrow edge weights \leftrightarrow off-diagonal terms in L
- Capacitances different? Need 'balancing': this talk

- Second smallest eigenvalue of L (for a connected graph): algebraic connectivity decides 'mixing time': time-constant for equalizing voltage across capacitors.
- Edge conductances \leftrightarrow edge weights \leftrightarrow off-diagonal terms in L
- Capacitances different? Need 'balancing': this talk
- With ports: ***** optimal charging/discharging
 - \star port location for controllability: general LTI systems

Belur, CC, EE (IIT Bombay) Graph theoretic aspects in ARE

Hinged graphs: decoupled: uncontrollable?

Hinged graphs: decoupled: uncontrollable?

- \star Electrical networks: much structure
- \star General (sparse) LTI systems have less graph structure
- \star Bipartite graphs: edges between equation set and variable set

Hinged graphs: decoupled: uncontrollable?

- \star Electrical networks: much structure
- \star General (sparse) LTI systems have less graph structure
- \star Bipartite graphs: edges between equation set and variable set
 - Two types of equations (left nodes):
 - plant equations (left-top nodes): given to us
 - controller equations (left-bottom nodes): what we connect at the port: to-be-designed
 * feedback controller: additional laws
 - Plant structure: equation-variable interaction
 - Controller structure: sensor/actuator interaction constraint
 - Controlled system: square polynomial matrix: plant and controller/port equations
 - # equations = # variables: (determined system of equations)
 - \bullet One-to-one correspondence \equiv 'marriage' \equiv matching
 - All nodes get matched \equiv **perfect** matching
 - $\bullet~{\rm Terms}$ in determinant $\leftrightarrow~{\rm perfect}$ matchings

Pole-placement, structural controllability

- Given equation-variable graph structure of the plant and controller: find conditions on controller structure for arbitrary pole-placement
- Those edges that occur in some perfect matching: 'admissible'.
- Discard the rest
- Resulting graph if connected: elementary bipartite graph: well-studied (Lovasz & Plummer)
- Classify edges into plant/controller edges (plant edges: constant and non-constant)

Theorem

Given plant and controller structure, following are equivalent

- arbitrary pole-placement possible
- every admissible plant edge occurs in some loop containing controller edges

Pole-placement, structural controllability

- Given equation-variable graph structure of the plant and controller: find conditions on controller structure for arbitrary pole-placement
- Those edges that occur in some perfect matching: 'admissible'.
- Discard the rest
- Resulting graph if connected: elementary bipartite graph: well-studied (Lovasz & Plummer)
- Classify edges into plant/controller edges (plant edges: constant and non-constant)

Theorem

Given plant and controller structure, following are equivalent

- arbitrary pole-placement possible
- every admissible plant edge occurs in some loop containing controller edges

(with R. Kalaimani and S. Krishnan (Math): Linear Algebra & its Applications: 2013)

Techniques from matching theory aspects of graph theory

Belur, CC, EE (IIT Bombay)

Graph theoretic aspects in ARE

Consider the RC circuit Initially (at $t = -\infty$) discharged: $v_C(-\infty) = 0$ Finally (at $t = +\infty$) discharged: $v_C(+\infty) = 0$ Actual energy at t = 0: $\frac{1}{2}Cv_0^2$ with $v_C(0) = v_0$ V Energy supplied/extracted from the port

Consider the RC circuit Initially (at $t = -\infty$) discharged: $v_C(-\infty) = 0$ Finally (at $t = +\infty$) discharged: $v_C(+\infty) = 0$ Actual energy at t = 0: $\frac{1}{2}Cv_0^2$ with $v_C(0) = v_0$ V Energy supplied/extracted from the port

 Charge optimally (from v_C(−∞) = 0) minimize net energy supplied at the port: 'required supply'

Consider the RC circuit Initially (at $t = -\infty$) discharged: $v_C(-\infty) = 0$ Finally (at $t = +\infty$) discharged: $v_C(+\infty) = 0$ Actual energy at t = 0: $\frac{1}{2}Cv_0^2$ with $v_C(0) = v_0$ V Energy supplied/extracted from the port

• Charge optimally (from $v_C(-\infty) = 0$) minimize net energy supplied at the port: 'required supply'

Charging: \star too quick (over short time interval) \equiv much $i^2 R_s$ losses in R_s

Consider the RC circuit Initially (at $t = -\infty$) discharged: $v_C(-\infty) = 0$ Finally (at $t = +\infty$) discharged: $v_C(+\infty) = 0$ Actual energy at t = 0: $\frac{1}{2}Cv_0^2$ with $v_C(0) = v_0$ V Energy supplied/extracted from the port

 Charge optimally (from v_C(−∞) = 0) minimize net energy supplied at the port: 'required supply'

Charging: \star too quick (over short time interval) \equiv much $i^2 R_s$ losses in R_s \star too slow (over wide time interval) $\equiv C$ discharges through R_p Consider the RC circuit Initially (at $t = -\infty$) discharged: $v_C(-\infty) = 0$ Finally (at $t = +\infty$) discharged: $v_C(+\infty) = 0$ Actual energy at t = 0: $\frac{1}{2}Cv_0^2$ with $v_C(0) = v_0$ V Energy supplied/extracted from the port

 Charge optimally (from v_C(−∞) = 0) minimize net energy supplied at the port: 'required supply'

Charging: \star too quick (over short time interval) \equiv much $i^2 R_s$ losses in R_s \star too slow (over wide time interval) $\equiv C$ discharges through R_p

• Discharge optimally (to $v_C(+\infty) = 0$): 'available storage' maximum net energy to be extracted from the port

Consider the RC circuit Initially (at $t = -\infty$) discharged: $v_C(-\infty) = 0$ Finally (at $t = +\infty$) discharged: $v_C(+\infty) = 0$ Actual energy at t = 0: $\frac{1}{2}Cv_0^2$ with $v_C(0) = v_0$ V Energy supplied/extracted from the port

 Charge optimally (from v_C(−∞) = 0) minimize net energy supplied at the port: 'required supply'

Charging: \star too quick (over short time interval) \equiv much $i^2 R_s$ losses in R_s \star too slow (over wide time interval) $\equiv C$ discharges through R_p

- Discharge optimally (to $v_C(+\infty) = 0$): 'available storage' maximum net energy to be extracted from the port
- \star Optimize between too much $i^2 R_s$ losses and simultaneous discharge through R_p

Consider the RC circuit Initially (at $t = -\infty$) discharged: $v_C(-\infty) = 0$ Finally (at $t = +\infty$) discharged: $v_C(+\infty) = 0$ Actual energy at t = 0: $\frac{1}{2}Cv_0^2$ with $v_C(0) = v_0$ V Energy supplied/extracted from the port

 Charge optimally (from v_C(−∞) = 0) minimize net energy supplied at the port: 'required supply'

Charging: \star too quick (over short time interval) \equiv much $i^2 R_s$ losses in R_s \star too slow (over wide time interval) $\equiv C$ discharges through R_p

- Discharge optimally (to v_C(+∞) = 0): 'available storage' maximum net energy to be extracted from the port
- \star Optimize between too much i^2R_s losses and simultaneous discharge through R_p

In general, suppose $v_C(0) = v_0$: available and required energies: quadratic in v_0

$$\frac{1}{2}K_{\text{avail}} v_0^2 \leqslant \frac{1}{2}Cv_0^2 \leqslant \frac{1}{2}K_{\text{reqd}} v_0^2$$

- $\frac{1}{2}Cv_0^2$ is geometric mean of $\frac{1}{2}K_{\text{reqd}}v_0^2$ and $\frac{1}{2}K_{\text{avail}}v_0^2$
- Why geometric? Why not arithmetic/harmonic means?

- $\frac{1}{2}Cv_0^2$ is geometric mean of $\frac{1}{2}K_{\text{reqd}}v_0^2$ and $\frac{1}{2}K_{\text{avail}}v_0^2$
- Why geometric? Why not arithmetic/harmonic means?

(while charging)
$$\frac{C}{K_{\text{reqd}}} = \frac{K_{\text{avail}}}{C}$$
 (while discharging)

- $\frac{1}{2}Cv_0^2$ is geometric mean of $\frac{1}{2}K_{\text{reqd}}v_0^2$ and $\frac{1}{2}K_{\text{avail}}v_0^2$
- Why geometric? Why not arithmetic/harmonic means?

(while charging)
$$\frac{C}{K_{\text{reqd}}} = \frac{K_{\text{avail}}}{C}$$
 (while discharging)

• Perhaps not too surprising: at optimal (charging/discharging) rates same fraction of energy is best transferred across resistors.

For n number of 'memory elements' (L and C),

 $\star\,$ let $x\in\mathbb{R}^n\colon$ the state: vector of capacitor voltages and inductor currents

- $\frac{1}{2}Cv_0^2$ is geometric mean of $\frac{1}{2}K_{\text{reqd}}v_0^2$ and $\frac{1}{2}K_{\text{avail}}v_0^2$
- Why geometric? Why not arithmetic/harmonic means?

(while charging)
$$\frac{C}{K_{\text{reqd}}} = \frac{K_{\text{avail}}}{C}$$
 (while discharging)

• Perhaps not too surprising: at optimal (charging/discharging) rates same fraction of energy is best transferred across resistors.

For n number of 'memory elements' (L and C),

- $\star\,$ let $x\in\mathbb{R}^n\colon$ the state: vector of capacitor voltages and inductor currents
- * required supply $= x^T (K_{reqd}) x$ and available storage $= x^T (K_{avail}) x$ with
- * K_{avail} and K_{reqd} symmetric $n \times n$ matrices

- $\frac{1}{2}Cv_0^2$ is geometric mean of $\frac{1}{2}K_{\text{reqd}}v_0^2$ and $\frac{1}{2}K_{\text{avail}}v_0^2$
- Why geometric? Why not arithmetic/harmonic means?

(while charging)
$$\frac{C}{K_{\text{reqd}}} = \frac{K_{\text{avail}}}{C}$$
 (while discharging)

• Perhaps not too surprising: at optimal (charging/discharging) rates same fraction of energy is best transferred across resistors.

For n number of 'memory elements' (L and C),

- $\star\,$ let $x\in\mathbb{R}^n\colon$ the state: vector of capacitor voltages and inductor currents
- * required supply $= x^T (K_{reqd}) x$ and available storage $= x^T (K_{avail}) x$ with
- * K_{avail} and K_{reqd} symmetric $n \times n$ matrices
- \star Standard Riccati equation procedures (from a state space representation of RLC network) to compute $K_{\rm avail}$ and $K_{\rm reqd}$
- ★ Geometric mean of matrices??

Multiple memory elements? Multiports?: Riccati equations

 $\dot{x} = Ax + Bi$ and v = Cx + Di: minimal state space realization of biproper impedance matrix Z(s)

x is vector of capacitor voltages and inductor currents and $x(0) = a \in \mathbb{R}^n$

 $\dot{x} = Ax + Bi$ and v = Cx + Di: minimal state space realization of biproper impedance matrix Z(s)

x is vector of capacitor voltages and inductor currents and $x(0) = a \in \mathbb{R}^n$ Suppose $x(0) = a \in \mathbb{R}^n$ is a given voltage/current configuration

• Required supply is $a^T K_{reqd} a$ and available storage is $a^T K_{avail} a$: K_{reqd} and K_{avail} are maximum and minimum solutions of the Algebraic Riccati Equation (ARE):

$$A^{T}K + KA + (KB - C^{T})(D + D^{T})^{-1}(B^{T}K - C) \leq 0$$

- Quadratic in unknown $K \in \mathbb{R}^{n \times n}$ (we seek symmetric solutions)
- Multi-state: symmetric solutions of ARE/ARI form a 'poset' (partially ordered set): K_{avail} and K_{reqd} are minimum/maximum elements
- My work so far: uncontrollable case (with D. Pal, S. Karikalan, C. Athalye: IJC 2014, SIAM 2008)
- Today: network topology link

Assume biproper impedance Z(s) and admittance Y(s): construct $\frac{\mathrm{d}}{\mathrm{d}t}x = A_z x + B_z i$, $v = C_z x + D_z i$ and $\frac{\mathrm{d}}{\mathrm{d}t}x = A_y x + B_y v$, $i = C_y x + D_y v$.

- Construct \hat{x} has 2n components: consists of x and 'dual state' λ :
 - \star original state x (capacitor voltage/inductor current), and
 - \star the dual/adjoint/Lagrange multiplier λ
 - * Admittance Y(s) gives $2n \times 2n$ matrix H_y
 - * Impedance Z(s) gives $2n \times 2n$ matrix H_z

Assume biproper impedance Z(s) and admittance Y(s): construct $\frac{\mathrm{d}}{\mathrm{d}t}x = A_z x + B_z i$, $v = C_z x + D_z i$ and $\frac{\mathrm{d}}{\mathrm{d}t}x = A_y x + B_y v$, $i = C_y x + D_y v$.

- Construct \hat{x} has 2n components: consists of x and 'dual state' λ :
 - \star original state x (capacitor voltage/inductor current), and
 - \star the dual/adjoint/Lagrange multiplier λ
 - * Admittance Y(s) gives $2n \times 2n$ matrix H_y
 - * Impedance Z(s) gives $2n \times 2n$ matrix H_z

Optimal trajectories dynamics: independent of impedance/admittance state-space realization:

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{x} = H_y\hat{x}, \qquad \frac{\mathrm{d}}{\mathrm{d}t}\hat{x} = H_z\hat{x} \quad \text{then} \quad H_y = H_z$$

Common eigenspaces

Suppose some capacitors form cutsets with ports: those states

 \star result in imaginary axis eigenvalues of A_z

Assume biproper impedance Z(s) and admittance Y(s): construct $\frac{\mathrm{d}}{\mathrm{d}t}x = A_z x + B_z i$, $v = C_z x + D_z i$ and $\frac{\mathrm{d}}{\mathrm{d}t}x = A_y x + B_y v$, $i = C_y x + D_y v$.

- Construct \hat{x} has 2n components: consists of x and 'dual state' λ :
 - \star original state x (capacitor voltage/inductor current), and
 - \star the dual/adjoint/Lagrange multiplier λ
 - * Admittance Y(s) gives $2n \times 2n$ matrix H_y
 - * Impedance Z(s) gives $2n \times 2n$ matrix H_z

Optimal trajectories dynamics: independent of impedance/admittance state-space realization:

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{x} = H_y\hat{x}, \qquad \frac{\mathrm{d}}{\mathrm{d}t}\hat{x} = H_z\hat{x} \quad \text{then} \quad H_y = H_z$$

Common eigenspaces

Suppose some capacitors form cutsets with ports: those states

- $\star\,$ result in imaginary axis eigenvalues of A_z
- * span common eigenspaces of A_z , K_{reqd} and K_{avail} (and all K)

Assume biproper impedance Z(s) and admittance Y(s): construct $\frac{\mathrm{d}}{\mathrm{d}t}x = A_z x + B_z i$, $v = C_z x + D_z i$ and $\frac{\mathrm{d}}{\mathrm{d}t}x = A_y x + B_y v$, $i = C_y x + D_y v$.

- Construct \hat{x} has 2n components: consists of x and 'dual state' λ :
 - \star original state x (capacitor voltage/inductor current), and
 - \star the dual/adjoint/Lagrange multiplier λ
 - * Admittance Y(s) gives $2n \times 2n$ matrix H_y
 - * Impedance Z(s) gives $2n \times 2n$ matrix H_z

Optimal trajectories dynamics: independent of impedance/admittance state-space realization:

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{x} = H_y\hat{x}, \qquad \frac{\mathrm{d}}{\mathrm{d}t}\hat{x} = H_z\hat{x} \quad \text{then} \quad H_y = H_z$$

Common eigenspaces

Suppose some capacitors form cutsets with ports: those states

- \star result in imaginary axis eigenvalues of A_z
- * span common eigenspaces of A_z , K_{reqd} and K_{avail} (and all K)
- \star are in the nullspace of $K_{\text{reqd}} K_{\text{avail}}$

Assume biproper impedance Z(s) and admittance Y(s): construct $\frac{\mathrm{d}}{\mathrm{d}t}x = A_z x + B_z i$, $v = C_z x + D_z i$ and $\frac{\mathrm{d}}{\mathrm{d}t}x = A_y x + B_y v$, $i = C_y x + D_y v$.

- Construct \hat{x} has 2n components: consists of x and 'dual state' λ :
 - \star original state x (capacitor voltage/inductor current), and
 - \star the dual/adjoint/Lagrange multiplier λ
 - * Admittance Y(s) gives $2n \times 2n$ matrix H_y
 - * Impedance Z(s) gives $2n \times 2n$ matrix H_z

Optimal trajectories dynamics: independent of impedance/admittance state-space realization:

$$\frac{\mathrm{d}}{\mathrm{d}t}\hat{x} = H_y\hat{x}, \qquad \frac{\mathrm{d}}{\mathrm{d}t}\hat{x} = H_z\hat{x} \quad \text{then} \quad H_y = H_z$$

Common eigenspaces

Suppose some capacitors form cutsets with ports: those states

- $\star\,$ result in imaginary axis eigenvalues of A_z
- * span common eigenspaces of A_z , K_{reqd} and K_{avail} (and all K)
- \star are in the nullspace of $K_{\text{reqd}} K_{\text{avail}}$

Also: for L forming loops with ports, and 'LC tanks' forming cutsets/loops with ports

Belur, CC, EE (IIT Bombay)

Recall: $K_{\text{reqd}} \times K_{\text{avail}} = c^2$. Generalize to many states?

- Assume multiport RC network
- 'Normalize' all states by c_i , i.e. $v_i \to \sqrt{\frac{c_i}{2}} v_i$
- In the new state variables, $v_0^T v_0$ is total actual energy
- Diagonal similarity transformation on A (of state space). Then

Recall: $K_{\text{reqd}} \times K_{\text{avail}} = c^2$. Generalize to many states?

- Assume multiport *RC* network
- 'Normalize' all states by c_i , i.e. $v_i \to \sqrt{\frac{c_i}{2}} v_i$
- In the new state variables, $v_0^T v_0$ is total actual energy
- Diagonal similarity transformation on A (of state space). Then

In the new state-space basis, $K_{\text{avail}} \leq I \leq K_{\text{reqd}}$

Recall: $K_{\text{reqd}} \times K_{\text{avail}} = c^2$. Generalize to many states?

- Assume multiport *RC* network
- 'Normalize' all states by c_i , i.e. $v_i \to \sqrt{\frac{c_i}{2}} v_i$
- In the new state variables, $v_0^T v_0$ is total actual energy
- Diagonal similarity transformation on A (of state space). Then

In the new state-space basis, $K_{\text{avail}} \leq I \leq K_{\text{reqd}}$

 $(K_{\text{avail}})^{-1} = K_{\text{reqd}}$: 'geometric mean' (post-normalization)

Recall: $K_{\text{reqd}} \times K_{\text{avail}} = c^2$. Generalize to many states?

- Assume multiport *RC* network
- 'Normalize' all states by c_i , i.e. $v_i \to \sqrt{\frac{c_i}{2}} v_i$
- In the new state variables, $v_0^T v_0$ is total actual energy
- Diagonal similarity transformation on A (of state space). Then

In the new state-space basis, $K_{\text{avail}} \leq I \leq K_{\text{reqd}}$

 $(K_{\text{avail}})^{-1} = K_{\text{reqd}}$: 'geometric mean' (post-normalization)

In other words,

Capacitor voltage normalizing achieves 'positive real balancing'!

Recall: $K_{\text{reqd}} \times K_{\text{avail}} = c^2$. Generalize to many states?

- Assume multiport *RC* network
- 'Normalize' all states by c_i , i.e. $v_i \to \sqrt{\frac{c_i}{2}} v_i$
- In the new state variables, $v_0^T v_0$ is total actual energy
- Diagonal similarity transformation on A (of state space). Then

In the new state-space basis, $K_{\text{avail}} \leq I \leq K_{\text{reqd}}$

 $(K_{\text{avail}})^{-1} = K_{\text{reqd}}$: 'geometric mean' (post-normalization)

In other words,

Capacitor voltage normalizing achieves 'positive real balancing'!

- For a system with transfer matrix G(s), passive $\equiv G(s)$ is positive real (no poles in ORHP, and $G(s) + G(-s)^T \ge 0$ for each s in complex RHP)
- Positive real balancing:

Recall: $K_{\text{reqd}} \times K_{\text{avail}} = c^2$. Generalize to many states?

- Assume multiport *RC* network
- 'Normalize' all states by c_i , i.e. $v_i \to \sqrt{\frac{c_i}{2}} v_i$
- In the new state variables, $v_0^T v_0$ is total actual energy
- Diagonal similarity transformation on A (of state space). Then

In the new state-space basis, $K_{\text{avail}} \leq I \leq K_{\text{reqd}}$

 $(K_{\text{avail}})^{-1} = K_{\text{reqd}}$: 'geometric mean' (post-normalization)

In other words,

Capacitor voltage normalizing achieves 'positive real balancing'!

- For a system with transfer matrix G(s), passive $\equiv G(s)$ is positive real (no poles in ORHP, and $G(s) + G(-s)^T \ge 0$ for each s in complex RHP) Parities and helps from Galetta energy having much that
- Positive real balancing: find state-space basis such that:

ARE1:
$$A^T K + KA + (KB - C^T)(D + D^T)^{-1}(B^T K - C) = 0$$
 and
ARE2: $PA^T + AP + (PC^T - B)(D + D^T)^{-1}(CP - B^T) = 0$

have identical solution sets $\subset \mathbb{R}^{n \times n}$

Recall: $K_{\text{reqd}} \times K_{\text{avail}} = c^2$. Generalize to many states?

- Assume multiport *RC* network
- 'Normalize' all states by c_i , i.e. $v_i \to \sqrt{\frac{c_i}{2}} v_i$
- In the new state variables, $v_0^T v_0$ is total actual energy
- Diagonal similarity transformation on A (of state space). Then

In the new state-space basis, $K_{\text{avail}} \leq I \leq K_{\text{reqd}}$

 $(K_{\text{avail}})^{-1} = K_{\text{reqd}}$: 'geometric mean' (post-normalization)

In other words,

Capacitor voltage normalizing achieves 'positive real balancing'!

- For a system with transfer matrix G(s), passive $\equiv G(s)$ is positive real (no poles in ORHP, and $G(s) + G(-s)^T \ge 0$ for each s in complex RHP) Position and helps since find state energy basis such that:
- Positive real balancing: find state-space basis such that:

$$\begin{array}{ll} \text{ARE1:} & A^TK + KA + (KB - C^T)(D + D^T)^{-1}(B^TK - C) &= 0 & \text{and} \\ \text{ARE2:} & PA^T + AP + (PC^T - B)(D + D^T)^{-1}(CP - B^T) &= 0 \end{array}$$

have identical solution sets $\subset \mathbb{R}^{n \times n}$ $\Leftrightarrow (K_{\max})^{-1} = K_{\min}$

Why positive real balancing: MOR

- Balancing useful in Model Order Reduction (MOR)
- Balanced truncation: discard those states that are 'very' uncontrollable and 'very' unobservable
- Retain states only if:
 - \star very controllable (low $x^T P^{-1} x$) and
 - \star very observable (high $x^T Q x$)

Controllability Grammian P & Observability Grammian Q

¹We do not get diagonal solutions: so-called 'principal-axis' balanced

Why positive real balancing: MOR

- Balancing useful in Model Order Reduction (MOR)
- Balanced truncation: discard those states that are 'very' uncontrollable and 'very' unobservable
- Retain states only if:
 - \star very controllable (low $x^T P^{-1} x$) and
 - \star very observable (high $x^T Q x$)

Controllability Grammian P & Observability Grammian QProcedure: simultaneous diagonalization of P and Q

¹We do not get diagonal solutions: so-called 'principal-axis' balanced

Why positive real balancing: MOR

- Balancing useful in Model Order Reduction (MOR)
- Balanced truncation: discard those states that are 'very' uncontrollable and 'very' unobservable
- Retain states only if:
 - \star very controllable (low $x^T P^{-1} x$) and
 - \star very observable (high $x^T Q x$)
 - Controllability Grammian P & Observability Grammian Q
 - Procedure: simultaneous diagonalization of P and Q
- In general, positive real balancing: simultaneous diagonalization (of K and L) Involves Riccati equation solution: then Cholesky factorization
- \bullet We showed 1 :

for RC circuits

capacitor voltage normalizing results in balancing.

• Also true for: RL, and 'symmetric' realizations $A = A^T$ (of the state space) (Recall Laplacian $L = L^T$ in RC example: though no ports there)

¹We do not get diagonal solutions: so-called 'principal-axis' balanced

Passivity preserving Model Order Reduction

Passive reduced-order LTI models: important for

- circuit simulation and analysis,
- controller design

- RL systems
- Multi-agents:
 - Network of many agents to achieve a task collectively
 - Surveillance pursuit-evasion games
 - Controlled through port \equiv one or more agents are 'leaders'
 - Laplacian matrix arises for single-integrator dynamics
- Network of Voltage-Source-Inverters (VSI) forming a microgrid (after neglecting sufficiently quick dynamics): with Iyer, Chandorkar: IEEE-Trans-PEL 2010 & IEEE-Trans-Energy Conv 2011
- Mass-damper systems
- Other so-called ZIP (Zero-Interlacing-Pole) systems

- Controller locations that achieve controllability/pole-placement
- Optimal charging/discharging matrix relations with RLC locations
- Positive real balancing and state variable normalization

- Controller locations that achieve controllability/pole-placement
- Optimal charging/discharging matrix relations with RLC locations
- Positive real balancing and state variable normalization

Thank you for your attention

- Controller locations that achieve controllability/pole-placement
- Optimal charging/discharging matrix relations with RLC locations
- Positive real balancing and state variable normalization

Thank you for your attention

Also thanks to:

- R.U. Chavan, R.K. Kalaimani, Dr. Krishnan (Math), Ameer K. Mulla.
- Vinamzi Samuel and Kaushik Mallick (MTP with me): OpenModelica/Python/Scilab based package