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Outline

Optimal charging/discharging of RLC circuits

Actual energy stored in state v0 is geometric mean of
‘minimum required’ energy for charging state v0, and
‘maximum extractable’ energy while discharging from v0.

Generalization to the multi-state case of the ‘geometric’ mean

Positive real balancing in Model Order Reduction
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Problem formulation

1 Generalize the intuitive notion: a port needed for controlling a circuit

2 Formulate port/capacitor/inductor relative locations which cause
common eigenspaces in

state transition matrix A (of any state space realization)
required supply energy matrix Kreqd

available storage energy matrix Kavail

3 Generalize the geometric mean property to the matrix (multistate) case
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Graph Laplacian

For an undirected graph G(V,E): with |V | = n nodes, the Laplacian L ∈ Rn×n

L := D −N

D is the diagonal ‘degree’ matrix
(degree of a node: number of edges incident on that node)
N is the neighbourhood (adjacency) matrix:
Nij := 1, if nodes vi and vj are neighbours, 0 otherwise.

v4

e1

e2
e5

e3

e4

v2

v1

v3

L =


3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2



L is symmetric and positive semi-definite matrix: at least one eigenvalue at 0
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For graph G(V,E), associate unit resistor to each edge in E

Introduce a ground node 0, connect unit capacitor between node i in V to node 0
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Second smallest eigenvalue of L (for a connected graph): algebraic connectivity
decides ‘mixing time’: time-constant for equalizing voltage across capacitors.

Edge conductances ↔ edge weights ↔ off-diagonal terms in L

Capacitances different? Need ‘balancing’: this talk

With ports: ? optimal charging/discharging
? port location for controllability: general LTI systems
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Hinged graphs: decoupled: uncontrollable?

P
o
rt
/C
o
n
tr
o
ll
e
r

? Electrical networks: much structure
? General (sparse) LTI systems have less graph structure
? Bipartite graphs: edges between equation set and variable set
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4Port/

Controller Constant edge

Nonconstant edge

Two types of equations (left nodes):
plant equations (left-top nodes): given to us
controller equations (left-bottom nodes): what we
connect at the port: to-be-designed

? feedback controller: additional laws

Plant structure: equation-variable interaction

Controller structure: sensor/actuator interaction
constraint

Controlled system: square polynomial matrix: plant
and controller/port equations

# equations = # variables:
(determined system of equations)

One-to-one correspondence ≡ ‘marriage’ ≡ matching

All nodes get matched ≡ perfect matching

Terms in determinant ↔ perfect matchings
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Pole-placement, structural controllability

Given equation-variable graph structure of the plant and controller:

find conditions on controller structure for arbitrary pole-placement

Those edges that occur in some perfect matching:
‘admissible’.

Discard the rest

Resulting graph if connected: elementary bipartite
graph: well-studied (Lovasz & Plummer)

Classify edges into plant/controller edges
(plant edges: constant and non-constant)

1 1

2 2

3 3

4

V
ar
ia
b
le
s

E
q
u
at
io
n
s

4Port/

Controller Constant edge

Nonconstant edge

Theorem

Given plant and controller structure, following are equivalent

arbitrary pole-placement possible

every admissible plant edge occurs in some loop containing controller edges

(with R. Kalaimani and S. Krishnan (Math): Linear Algebra & its Applications:
2013)
Techniques from matching theory aspects of graph theory

Belur, CC, EE (IIT Bombay) Graph theoretic aspects in ARE 21st April, 15 7 / 16



Pole-placement, structural controllability

Given equation-variable graph structure of the plant and controller:

find conditions on controller structure for arbitrary pole-placement

Those edges that occur in some perfect matching:
‘admissible’.

Discard the rest

Resulting graph if connected: elementary bipartite
graph: well-studied (Lovasz & Plummer)

Classify edges into plant/controller edges
(plant edges: constant and non-constant)

1 1

2 2

3 3

4

V
ar
ia
b
le
s

E
q
u
at
io
n
s

4Port/

Controller Constant edge

Nonconstant edge

Theorem

Given plant and controller structure, following are equivalent

arbitrary pole-placement possible

every admissible plant edge occurs in some loop containing controller edges

(with R. Kalaimani and S. Krishnan (Math): Linear Algebra & its Applications:
2013)
Techniques from matching theory aspects of graph theory

Belur, CC, EE (IIT Bombay) Graph theoretic aspects in ARE 21st April, 15 7 / 16



Optimal charging and discharging

Consider the RC circuit

Initially (at t = −∞) discharged: vC(−∞) = 0

Finally (at t = +∞) discharged: vC(+∞) = 0

Actual energy at t = 0: 1
2
Cv20 with vC(0) = v0 V

Energy supplied/extracted from the port

C −
Rp

Rs
+

Charge optimally (from vC(−∞) = 0)
minimize net energy supplied at the port: ‘required supply’

Charging: ? too quick (over short time interval) ≡ much i2Rs losses in Rs

? too slow (over wide time interval) ≡ C discharges through Rp

Discharge optimally (to vC(+∞) = 0): ‘available storage’
maximum net energy to be extracted from the port

? Optimize between too much i2Rs losses and simultaneous discharge through Rp

In general, suppose vC(0) = v0: available and required energies: quadratic in v0

1

2
Kavail v

2
0 6

1

2
Cv20 6

1

2
Kreqd v

2
0

Belur, CC, EE (IIT Bombay) Graph theoretic aspects in ARE 21st April, 15 8 / 16



Optimal charging and discharging

Consider the RC circuit

Initially (at t = −∞) discharged: vC(−∞) = 0

Finally (at t = +∞) discharged: vC(+∞) = 0

Actual energy at t = 0: 1
2
Cv20 with vC(0) = v0 V

Energy supplied/extracted from the port

C −
Rp

Rs
+

Charge optimally (from vC(−∞) = 0)
minimize net energy supplied at the port: ‘required supply’

Charging: ? too quick (over short time interval) ≡ much i2Rs losses in Rs

? too slow (over wide time interval) ≡ C discharges through Rp

Discharge optimally (to vC(+∞) = 0): ‘available storage’
maximum net energy to be extracted from the port

? Optimize between too much i2Rs losses and simultaneous discharge through Rp

In general, suppose vC(0) = v0: available and required energies: quadratic in v0

1

2
Kavail v

2
0 6

1

2
Cv20 6

1

2
Kreqd v

2
0

Belur, CC, EE (IIT Bombay) Graph theoretic aspects in ARE 21st April, 15 8 / 16



Optimal charging and discharging

Consider the RC circuit

Initially (at t = −∞) discharged: vC(−∞) = 0

Finally (at t = +∞) discharged: vC(+∞) = 0

Actual energy at t = 0: 1
2
Cv20 with vC(0) = v0 V

Energy supplied/extracted from the port

C −
Rp

Rs
+

Charge optimally (from vC(−∞) = 0)
minimize net energy supplied at the port: ‘required supply’

Charging: ? too quick (over short time interval) ≡ much i2Rs losses in Rs

? too slow (over wide time interval) ≡ C discharges through Rp

Discharge optimally (to vC(+∞) = 0): ‘available storage’
maximum net energy to be extracted from the port

? Optimize between too much i2Rs losses and simultaneous discharge through Rp

In general, suppose vC(0) = v0: available and required energies: quadratic in v0

1

2
Kavail v

2
0 6

1

2
Cv20 6

1

2
Kreqd v

2
0

Belur, CC, EE (IIT Bombay) Graph theoretic aspects in ARE 21st April, 15 8 / 16



Optimal charging and discharging

Consider the RC circuit

Initially (at t = −∞) discharged: vC(−∞) = 0

Finally (at t = +∞) discharged: vC(+∞) = 0

Actual energy at t = 0: 1
2
Cv20 with vC(0) = v0 V

Energy supplied/extracted from the port

C −
Rp

Rs
+

Charge optimally (from vC(−∞) = 0)
minimize net energy supplied at the port: ‘required supply’

Charging: ? too quick (over short time interval) ≡ much i2Rs losses in Rs

? too slow (over wide time interval) ≡ C discharges through Rp

Discharge optimally (to vC(+∞) = 0): ‘available storage’
maximum net energy to be extracted from the port

? Optimize between too much i2Rs losses and simultaneous discharge through Rp

In general, suppose vC(0) = v0: available and required energies: quadratic in v0

1

2
Kavail v

2
0 6

1

2
Cv20 6

1

2
Kreqd v

2
0

Belur, CC, EE (IIT Bombay) Graph theoretic aspects in ARE 21st April, 15 8 / 16



Optimal charging and discharging

Consider the RC circuit

Initially (at t = −∞) discharged: vC(−∞) = 0

Finally (at t = +∞) discharged: vC(+∞) = 0

Actual energy at t = 0: 1
2
Cv20 with vC(0) = v0 V

Energy supplied/extracted from the port

C −
Rp

Rs
+

Charge optimally (from vC(−∞) = 0)
minimize net energy supplied at the port: ‘required supply’

Charging: ? too quick (over short time interval) ≡ much i2Rs losses in Rs

? too slow (over wide time interval) ≡ C discharges through Rp

Discharge optimally (to vC(+∞) = 0): ‘available storage’
maximum net energy to be extracted from the port

? Optimize between too much i2Rs losses and simultaneous discharge through Rp

In general, suppose vC(0) = v0: available and required energies: quadratic in v0

1

2
Kavail v

2
0 6

1

2
Cv20 6

1

2
Kreqd v

2
0

Belur, CC, EE (IIT Bombay) Graph theoretic aspects in ARE 21st April, 15 8 / 16



Optimal charging and discharging

Consider the RC circuit

Initially (at t = −∞) discharged: vC(−∞) = 0

Finally (at t = +∞) discharged: vC(+∞) = 0

Actual energy at t = 0: 1
2
Cv20 with vC(0) = v0 V

Energy supplied/extracted from the port

C −
Rp

Rs
+

Charge optimally (from vC(−∞) = 0)
minimize net energy supplied at the port: ‘required supply’

Charging: ? too quick (over short time interval) ≡ much i2Rs losses in Rs

? too slow (over wide time interval) ≡ C discharges through Rp

Discharge optimally (to vC(+∞) = 0): ‘available storage’
maximum net energy to be extracted from the port

? Optimize between too much i2Rs losses and simultaneous discharge through Rp

In general, suppose vC(0) = v0: available and required energies: quadratic in v0

1

2
Kavail v

2
0 6

1

2
Cv20 6

1

2
Kreqd v

2
0

Belur, CC, EE (IIT Bombay) Graph theoretic aspects in ARE 21st April, 15 8 / 16



Optimal charging and discharging

Consider the RC circuit

Initially (at t = −∞) discharged: vC(−∞) = 0

Finally (at t = +∞) discharged: vC(+∞) = 0

Actual energy at t = 0: 1
2
Cv20 with vC(0) = v0 V

Energy supplied/extracted from the port

C −
Rp

Rs
+

Charge optimally (from vC(−∞) = 0)
minimize net energy supplied at the port: ‘required supply’

Charging: ? too quick (over short time interval) ≡ much i2Rs losses in Rs

? too slow (over wide time interval) ≡ C discharges through Rp

Discharge optimally (to vC(+∞) = 0): ‘available storage’
maximum net energy to be extracted from the port

? Optimize between too much i2Rs losses and simultaneous discharge through Rp

In general, suppose vC(0) = v0: available and required energies: quadratic in v0

1

2
Kavail v

2
0 6

1

2
Cv20 6

1

2
Kreqd v

2
0

Belur, CC, EE (IIT Bombay) Graph theoretic aspects in ARE 21st April, 15 8 / 16



Optimal charging/discharging: single state

1
2
Cv20 is geometric mean of 1

2
Kreqdv

2
0 and 1

2
Kavailv

2
0

Why geometric? Why not arithmetic/harmonic means?

(while charging)
C

Kreqd
=
Kavail

C
(while discharging)

Perhaps not too surprising: at optimal (charging/discharging) rates
same fraction of energy is best transferred across resistors.

For n number of ‘memory elements’ (L and C),

? let x ∈ Rn: the state: vector of capacitor voltages and inductor currents

? required supply = xT (Kreqd)x and available storage = xT (Kavail)x with

? Kavail and Kreqd symmetric n× n matrices

? Standard Riccati equation procedures (from a state space representation of RLC
network) to compute Kavail and Kreqd

? Geometric mean of matrices??
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? required supply = xT (Kreqd)x and available storage = xT (Kavail)x with

? Kavail and Kreqd symmetric n× n matrices

? Standard Riccati equation procedures (from a state space representation of RLC
network) to compute Kavail and Kreqd

? Geometric mean of matrices??
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Multiple memory elements? Multiports?: Riccati equations

ẋ = Ax+Bi and v = Cx+Di: minimal state space realization of biproper
impedance matrix Z(s)
x is vector of capacitor voltages and inductor currents and x(0) = a ∈ Rn

Suppose x(0) = a ∈ Rn is a given voltage/current configuration

Required supply is aTKreqd a and available storage is aTKavail a:
Kreqd and Kavail are maximum and minimum solutions of the Algebraic Riccati
Equation (ARE):

ATK +KA+ (KB − CT )(D +DT )−1(BTK − C) 6 0

Quadratic in unknown K ∈ Rn×n (we seek symmetric solutions)

Multi-state: symmetric solutions of ARE/ARI form a ‘poset’
(partially ordered set): Kavail and Kreqd are minimum/maximum elements

My work so far: uncontrollable case (with D. Pal, S. Karikalan, C. Athalye:
IJC 2014, SIAM 2008)

Today: network topology link
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New results

Assume biproper impedance Z(s) and admittance Y (s): construct
d
dt
x = Azx+Bzi, v = Czx+Dzi and d

dt
x = Ayx+Byv, i = Cyx+Dyv.

Construct x̂ has 2n components: consists of x and ‘dual state’ λ:
? original state x (capacitor voltage/inductor current), and
? the dual/adjoint/Lagrange multiplier λ
? Admittance Y (s) gives 2n× 2n matrix Hy

? Impedance Z(s) gives 2n× 2n matrix Hz

Optimal trajectories dynamics: independent of impedance/admittance state-space
realization:

d

dt
x̂ = Hyx̂,

d

dt
x̂ = Hzx̂ then Hy = Hz

Common eigenspaces

Suppose some capacitors form cutsets with ports: those states

? result in imaginary axis eigenvalues of Az

? span common eigenspaces of Az, Kreqd and Kavail (and all K)

? are in the nullspace of Kreqd −Kavail

Also: for L forming loops with ports, and ‘LC tanks’ forming cutsets/loops with ports
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Geometric mean of matrices?

Recall: Kreqd ×Kavail = c2. Generalize to many states?

Assume multiport RC network

‘Normalize’ all states by ci, i.e. vi →
√

ci
2
vi

In the new state variables, vT0 v0 is total actual energy

Diagonal similarity transformation on A (of state space). Then

In the new state-space basis, Kavail 6 I 6 Kreqd

(Kavail)
−1 = Kreqd : ‘geometric mean’ (post-normalization)

In other words,

Capacitor voltage normalizing achieves ‘positive real balancing’ !

For a system with transfer matrix G(s),
passive ≡ G(s) is positive real
(no poles in ORHP, and G(s) + G(−s)T > 0 for each s in complex RHP)
Positive real balancing: find state-space basis such that:

ARE1: ATK + KA + (KB − CT )(D + DT )−1(BTK − C) = 0 and
ARE2: PAT + AP + (PCT −B)(D + DT )−1(CP −BT ) = 0

have identical solution sets ⊂ Rn×n

⇔ (Kmax)−1 = Kmin
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Why positive real balancing: MOR

Balancing useful in Model Order Reduction (MOR)

Balanced truncation:
discard those states that are ‘very’ uncontrollable and ‘very’ unobservable

Retain states only if:
? very controllable (low xTP−1x) and
? very observable (high xTQx)

Controllability Grammian P & Observability Grammian Q

Procedure: simultaneous diagonalization of P and Q

In general, positive real balancing: simultaneous diagonalization (of K and L)
Involves Riccati equation solution: then Cholesky factorization

We showed1 :

for RC circuits

capacitor voltage normalizing results in balancing.

Also true for: RL, and ‘symmetric’ realizations A = AT (of the state space)
(Recall Laplacian L = LT in RC example: though no ports there)

1We do not get diagonal solutions: so-called ‘principal-axis’ balanced
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Passivity preserving Model Order Reduction

Passive reduced-order LTI models: important for

circuit simulation and analysis,

controller design

Ports/sources

Nonlinear devices

Large order RLC part

Obtain/build

Low order passive model
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Other RC like systems

RL systems

Multi-agents:
Network of many agents to achieve a task collectively
Surveillance pursuit-evasion games
Controlled through port ≡ one or more agents are ‘leaders’
Laplacian matrix arises for single-integrator dynamics

Network of Voltage-Source-Inverters (VSI) forming a microgrid
(after neglecting sufficiently quick dynamics):
with Iyer, Chandorkar: IEEE-Trans-PEL 2010 & IEEE-Trans-Energy Conv 2011

Mass-damper systems

Other so-called ZIP (Zero-Interlacing-Pole) systems
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Summary

Controller locations that achieve controllability/pole-placement

Optimal charging/discharging matrix relations with RLC locations

Positive real balancing and state variable normalization

Thank you for your attention

Also thanks to:
• R.U. Chavan, R.K. Kalaimani, Dr. Krishnan (Math), Ameer K. Mulla.

• Vinamzi Samuel and Kaushik Mallick (MTP with me):
OpenModelica/Python/Scilab based package
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