Some new links between graph theory and optimal charging/discharging control strategies

Madhu N. Belur
EE, IIT Bombay

http://www.ee.iitb.ac.in/~belur/talks/

21st April, 2015

Outline

- Optimal charging/discharging of RLC circuits
- Actual energy stored in state v_{0} is geometric mean of
- 'minimum required' energy for charging state v_{0}, and
- 'maximum extractable' energy while discharging from v_{0}.
- Generalization to the multi-state case of the 'geometric' mean
- Positive real balancing in Model Order Reduction
(1) Generalize the intuitive notion: a port needed for controlling a circuit
(2) Formulate port/capacitor/inductor relative locations which cause common eigenspaces in
- state transition matrix A (of any state space realization)
- required supply energy matrix $K_{\text {reqd }}$
- available storage energy matrix $K_{\text {avail }}$
- Generalize the geometric mean property to the matrix (multistate) case

Graph Laplacian

- For an undirected graph $G(V, E)$: with $|V|=n$ nodes, the Laplacian $L \in \mathbb{R}^{n \times n}$

$$
L:=D-N
$$

D is the diagonal 'degree' matrix (degree of a node: number of edges incident on that node) N is the neighbourhood (adjacency) matrix:
$N_{i j}:=1$, if nodes v_{i} and v_{j} are neighbours, 0 otherwise.

$$
L=\left[\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 2 & -1 & 0 \\
-1 & -1 & 3 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right]
$$

L is symmetric and positive semi-definite matrix: at least one eigenvalue at 0

Graph Laplacian

- For an undirected graph $G(V, E)$: with $|V|=n$ nodes, the Laplacian $L \in \mathbb{R}^{n \times n}$

$$
L:=D-N
$$

D is the diagonal 'degree' matrix (degree of a node: number of edges incident on that node) N is the neighbourhood (adjacency) matrix:
$N_{i j}:=1$, if nodes v_{i} and v_{j} are neighbours, 0 otherwise.

$$
L=\left[\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 2 & -1 & 0 \\
-1 & -1 & 3 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right]
$$

L is symmetric and positive semi-definite matrix: at least one eigenvalue at 0

For graph $G(V, E)$, associate unit resistor to each edge in E

For graph $G(V, E)$, associate unit resistor to each edge in E Introduce a ground node 0 , connect unit capacitor between node i in V to node 0

For graph $G(V, E)$, associate unit resistor to each edge in E Introduce a ground node 0 , connect unit capacitor between node i in V to node 0

For graph $G(V, E)$, associate unit resistor to each edge in E Introduce a ground node 0 , connect unit capacitor between node i in V to node 0

$$
L=\left[\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 2 & -1 & 0 \\
-1 & -1 & 3 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right]
$$

For graph $G(V, E)$, associate unit resistor to each edge in E Introduce a ground node 0 , connect unit capacitor between node i in V to node 0

$$
L=\left[\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 2 & -1 & 0 \\
-1 & -1 & 3 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right]
$$

For graph $G(V, E)$, associate unit resistor to each edge in E Introduce a ground node 0 , connect unit capacitor between node i in V to node 0

$$
L=\left[\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 2 & -1 & 0 \\
-1 & -1 & 3 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right]
$$

- Second smallest eigenvalue of L (for a connected graph): algebraic connectivity decides 'mixing time': time-constant for equalizing voltage across capacitors.
- Edge conductances \leftrightarrow edge weights \leftrightarrow off-diagonal terms in L
- Capacitances different? Need 'balancing': this talk

For graph $G(V, E)$, associate unit resistor to each edge in E Introduce a ground node 0 , connect unit capacitor between node i in V to node 0

$$
L=\left[\begin{array}{cccc}
3 & -1 & -1 & -1 \\
-1 & 2 & -1 & 0 \\
-1 & -1 & 3 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right]
$$

- Second smallest eigenvalue of L (for a connected graph): algebraic connectivity decides 'mixing time': time-constant for equalizing voltage across capacitors.
- Edge conductances \leftrightarrow edge weights \leftrightarrow off-diagonal terms in L
- Capacitances different? Need 'balancing': this talk
- With ports: * optimal charging/discharging
* port location for controllability: general LTI systems

Hinged graphs: decoupled: uncontrollable?

Hinged graphs: decoupled: uncontrollable?

* Electrical networks: much structure
* General (sparse) LTI systems have less graph structure
\star Bipartite graphs: edges between equation set and variable set

Hinged graphs: decoupled: uncontrollable?

* Electrical networks: much structure
* General (sparse) LTI systems have less graph structure
\star Bipartite graphs: edges between equation set and variable set
- Two types of equations (left nodes):
- plant equations (left-top nodes): given to us
- controller equations (left-bottom nodes): what we connect at the port: to-be-designed
* feedback controller: additional laws
- Plant structure: equation-variable interaction
- Controller structure: sensor/actuator interaction constraint
Oontrolled system: square polynomial matrix: plant and controller/port equations
- \# equations = \# variables: (determined system of equations)
- One-to-one correspondence \equiv 'marriage' \equiv matching
- All nodes get matched \equiv perfect matching
- Terms in determinant \leftrightarrow perfect matchings

Pole-placement, structural controllability

- Given equation-variable graph structure of the plant and controller: find conditions on controller structure for arbitrary pole-placement
- Those edges that occur in some perfect matching: 'admissible'.
- Discard the rest
- Resulting graph if connected: elementary bipartite graph: well-studied (Lovasz \& Plummer)
- Classify edges into plant/controller edges (plant edges: constant and non-constant)

Theorem

Given plant and controller structure, following are equivalent

- arbitrary pole-placement possible
- every admissible plant edge occurs in some loop containing controller edges

Pole-placement, structural controllability

- Given equation-variable graph structure of the plant and controller: find conditions on controller structure for arbitrary pole-placement
- Those edges that occur in some perfect matching: 'admissible'.
- Discard the rest
- Resulting graph if connected: elementary bipartite graph: well-studied (Lovasz \& Plummer)
- Classify edges into plant/controller edges (plant edges: constant and non-constant)

Theorem

Given plant and controller structure, following are equivalent

- arbitrary pole-placement possible
- every admissible plant edge occurs in some loop containing controller edges
(with R. Kalaimani and S. Krishnan (Math): Linear Algebra \& its Applications: 2013)

Techniques from matching theory aspects of graph theory

Optimal charging and discharging

Consider the RC circuit
Initially (at $t=-\infty$) discharged: $v_{C}(-\infty)=0$
Finally (at $t=+\infty$) discharged: $v_{C}(+\infty)=0$
Actual energy at $t=0: \frac{1}{2} C v_{0}^{2}$ with $v_{C}(0)=v_{0} \mathrm{~V}$

Energy supplied/extracted from the port

Optimal charging and discharging

Consider the RC circuit
Initially (at $t=-\infty$) discharged: $v_{C}(-\infty)=0$
Finally (at $t=+\infty$) discharged: $v_{C}(+\infty)=0$
Actual energy at $t=0: \frac{1}{2} C v_{0}^{2}$ with $v_{C}(0)=v_{0} \mathrm{~V}$

Energy supplied/extracted from the port

- Charge optimally (from $\left.v_{C}(-\infty)=0\right)$ minimize net energy supplied at the port: 'required supply'

Optimal charging and discharging

Consider the RC circuit
Initially (at $t=-\infty$) discharged: $v_{C}(-\infty)=0$
Finally (at $t=+\infty$) discharged: $v_{C}(+\infty)=0$
Actual energy at $t=0: \frac{1}{2} C v_{0}^{2}$ with $v_{C}(0)=v_{0} \mathrm{~V}$

Energy supplied/extracted from the port

- Charge optimally (from $v_{C}(-\infty)=0$) minimize net energy supplied at the port: 'required supply'
Charging: \star too quick (over short time interval) \equiv much $i^{2} R_{s}$ losses in R_{s}

Optimal charging and discharging

Consider the RC circuit
Initially (at $t=-\infty$) discharged: $v_{C}(-\infty)=0$
Finally (at $t=+\infty$) discharged: $v_{C}(+\infty)=0$
Actual energy at $t=0: \frac{1}{2} C v_{0}^{2}$ with $v_{C}(0)=v_{0} \mathrm{~V}$

Energy supplied/extracted from the port

- Charge optimally (from $\left.v_{C}(-\infty)=0\right)$ minimize net energy supplied at the port: 'required supply'
Charging: \star too quick (over short time interval) \equiv much $i^{2} R_{s} \operatorname{losses}$ in R_{s} \star too slow (over wide time interval) $\equiv C$ discharges through R_{p}

Optimal charging and discharging

Consider the RC circuit
Initially (at $t=-\infty$) discharged: $v_{C}(-\infty)=0$
Finally (at $t=+\infty$) discharged: $v_{C}(+\infty)=0$
Actual energy at $t=0: \frac{1}{2} C v_{0}^{2}$ with $v_{C}(0)=v_{0} \mathrm{~V}$

Energy supplied/extracted from the port

- Charge optimally (from $v_{C}(-\infty)=0$) minimize net energy supplied at the port: 'required supply'

Charging: \star too quick (over short time interval) \equiv much $i^{2} R_{s}$ losses in R_{s} \star too slow (over wide time interval) $\equiv C$ discharges through R_{p}

- Discharge optimally (to $v_{C}(+\infty)=0$): 'available storage' maximum net energy to be extracted from the port

Optimal charging and discharging

Consider the RC circuit
Initially (at $t=-\infty$) discharged: $v_{C}(-\infty)=0$
Finally (at $t=+\infty$) discharged: $v_{C}(+\infty)=0$
Actual energy at $t=0: \frac{1}{2} C v_{0}^{2}$ with $v_{C}(0)=v_{0} \mathrm{~V}$

Energy supplied/extracted from the port

- Charge optimally (from $v_{C}(-\infty)=0$) minimize net energy supplied at the port: 'required supply'
Charging: \star too quick (over short time interval) \equiv much $i^{2} R_{s}$ losses in R_{s} \star too slow (over wide time interval) $\equiv C$ discharges through R_{p}
- Discharge optimally (to $v_{C}(+\infty)=0$): 'available storage' maximum net energy to be extracted from the port
* Optimize between too much $i^{2} R_{s}$ losses and simultaneous discharge through R_{p}

Optimal charging and discharging

Consider the RC circuit
Initially (at $t=-\infty$) discharged: $v_{C}(-\infty)=0$
Finally (at $t=+\infty$) discharged: $v_{C}(+\infty)=0$
Actual energy at $t=0: \frac{1}{2} C v_{0}^{2}$ with $v_{C}(0)=v_{0} \mathrm{~V}$

Energy supplied/extracted from the port

- Charge optimally (from $v_{C}(-\infty)=0$) minimize net energy supplied at the port: 'required supply'
Charging: \star too quick (over short time interval) \equiv much $i^{2} R_{s}$ losses in R_{s} \star too slow (over wide time interval) $\equiv C$ discharges through R_{p}
- Discharge optimally (to $v_{C}(+\infty)=0$): 'available storage' maximum net energy to be extracted from the port
* Optimize between too much $i^{2} R_{s}$ losses and simultaneous discharge through R_{p}

In general, suppose $v_{C}(0)=v_{0}$: available and required energies: quadratic in v_{0}

$$
\frac{1}{2} K_{\text {avail }} v_{0}^{2} \leqslant \frac{1}{2} C v_{0}^{2} \leqslant \frac{1}{2} K_{\text {reqd }} v_{0}^{2}
$$

Optimal charging/discharging: single state

- $\frac{1}{2} C v_{0}^{2}$ is geometric mean of $\frac{1}{2} K_{\text {reqd }} v_{0}^{2}$ and $\frac{1}{2} K_{\text {avail }} v_{0}^{2}$
- Why geometric? Why not arithmetic/harmonic means?

Optimal charging/discharging: single state

- $\frac{1}{2} C v_{0}^{2}$ is geometric mean of $\frac{1}{2} K_{\text {reqd }} v_{0}^{2}$ and $\frac{1}{2} K_{\text {avail }} v_{0}^{2}$
- Why geometric? Why not arithmetic/harmonic means?

$$
\text { (while charging) } \frac{C}{K_{\text {reqd }}}=\frac{K_{\text {avail }}}{C} \quad \text { (while discharging) }
$$

Optimal charging/discharging: single state

- $\frac{1}{2} C v_{0}^{2}$ is geometric mean of $\frac{1}{2} K_{\text {reqd }} v_{0}^{2}$ and $\frac{1}{2} K_{\text {avail }} v_{0}^{2}$
- Why geometric? Why not arithmetic/harmonic means?

$$
\text { (while charging) } \frac{C}{K_{\text {reqd }}}=\frac{K_{\text {avail }}}{C} \quad \text { (while discharging) }
$$

- Perhaps not too surprising: at optimal (charging/discharging) rates same fraction of energy is best transferred across resistors.

For n number of 'memory elements' $(L$ and $C)$,
\star let $x \in \mathbb{R}^{n}:$ the state: vector of capacitor voltages and inductor currents

Optimal charging/discharging: single state

- $\frac{1}{2} C v_{0}^{2}$ is geometric mean of $\frac{1}{2} K_{\text {reqd }} v_{0}^{2}$ and $\frac{1}{2} K_{\text {avail }} v_{0}^{2}$
- Why geometric? Why not arithmetic/harmonic means?

$$
\text { (while charging) } \frac{C}{K_{\text {reqd }}}=\frac{K_{\text {avail }}}{C} \quad \text { (while discharging) }
$$

- Perhaps not too surprising: at optimal (charging/discharging) rates same fraction of energy is best transferred across resistors.

For n number of 'memory elements' $(L$ and $C)$,
\star let $x \in \mathbb{R}^{n}:$ the state: vector of capacitor voltages and inductor currents
\star required supply $=x^{T}\left(K_{\text {reqd }}\right) x$ and available storage $=x^{T}\left(K_{\text {avail }}\right) x$ with
$\star K_{\text {avail }}$ and $K_{\text {reqd }}$ symmetric $n \times n$ matrices

Optimal charging/discharging: single state

- $\frac{1}{2} C v_{0}^{2}$ is geometric mean of $\frac{1}{2} K_{\text {reqd }} v_{0}^{2}$ and $\frac{1}{2} K_{\text {avail }} v_{0}^{2}$
- Why geometric? Why not arithmetic/harmonic means?

$$
\text { (while charging) } \frac{C}{K_{\text {reqd }}}=\frac{K_{\text {avail }}}{C} \quad \text { (while discharging) }
$$

- Perhaps not too surprising: at optimal (charging/discharging) rates same fraction of energy is best transferred across resistors.

For n number of 'memory elements' $(L$ and $C)$,
\star let $x \in \mathbb{R}^{n}$: the state: vector of capacitor voltages and inductor currents
\star required supply $=x^{T}\left(K_{\text {reqd }}\right) x$ and available storage $=x^{T}\left(K_{\text {avail }}\right) x$ with
$\star K_{\text {avail }}$ and $K_{\text {reqd }}$ symmetric $n \times n$ matrices
\star Standard Riccati equation procedures (from a state space representation of RLC network) to compute $K_{\text {avail }}$ and $K_{\text {reqd }}$
\star Geometric mean of matrices??

Multiple memory elements? Multiports?: Riccati equations

$\dot{x}=A x+B i$ and $v=C x+D i$: minimal state space realization of biproper impedance matrix $Z(s)$
x is vector of capacitor voltages and inductor currents and $x(0)=a \in \mathbb{R}^{n}$

Multiple memory elements? Multiports?: Riccati equations

$\dot{x}=A x+B i$ and $v=C x+D i$: minimal state space realization of biproper
impedance matrix $Z(s)$
x is vector of capacitor voltages and inductor currents and $x(0)=a \in \mathbb{R}^{n}$
Suppose $x(0)=a \in \mathbb{R}^{n}$ is a given voltage/current configuration

- Required supply is $a^{T} K_{\text {reqd }} a$ and available storage is $a^{T} K_{\text {avail }} a$: $K_{\text {reqd }}$ and $K_{\text {avail }}$ are maximum and minimum solutions of the Algebraic Riccati Equation (ARE):

$$
A^{T} K+K A+\left(K B-C^{T}\right)\left(D+D^{T}\right)^{-1}\left(B^{T} K-C\right) \leqslant 0
$$

- Quadratic in unknown $K \in \mathbb{R}^{n \times n}$ (we seek symmetric solutions)
- Multi-state: symmetric solutions of ARE/ARI form a 'poset' (partially ordered set): $K_{\text {avail }}$ and $K_{\text {reqd }}$ are minimum/maximum elements
- My work so far: uncontrollable case (with D. Pal, S. Karikalan, C. Athalye: IJC 2014, SIAM 2008)
- Today: network topology link

New results

Assume biproper impedance $Z(s)$ and admittance $Y(s)$: construct
$\frac{\mathrm{d}}{\mathrm{d} t} x=A_{z} x+B_{z} i, \quad v=C_{z} x+D_{z} i$ and $\frac{\mathrm{d}}{\mathrm{d} t} x=A_{y} x+B_{y} v, \quad i=C_{y} x+D_{y} v$.

- Construct \hat{x} has $2 n$ components: consists of x and 'dual state' λ :
\star original state x (capacitor voltage/inductor current), and
* the dual/adjoint/Lagrange multiplier λ
\star Admittance $Y(s)$ gives $2 n \times 2 n$ matrix H_{y}
\star Impedance $Z(s)$ gives $2 n \times 2 n$ matrix H_{z}

New results

Assume biproper impedance $Z(s)$ and admittance $Y(s)$: construct
$\frac{\mathrm{d}}{\mathrm{d} t} x=A_{z} x+B_{z} i, \quad v=C_{z} x+D_{z} i$ and $\frac{\mathrm{d}}{\mathrm{d} t} x=A_{y} x+B_{y} v, \quad i=C_{y} x+D_{y} v$.

- Construct \hat{x} has $2 n$ components: consists of x and 'dual state' λ :
\star original state x (capacitor voltage/inductor current), and
\star the dual/adjoint/Lagrange multiplier λ
\star Admittance $Y(s)$ gives $2 n \times 2 n$ matrix H_{y}
\star Impedance $Z(s)$ gives $2 n \times 2 n$ matrix H_{z}

Optimal trajectories dynamics: independent of impedance/admittance state-space realization:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \hat{x}=H_{y} \hat{x}, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} \hat{x}=H_{z} \hat{x} \quad \text { then } \quad H_{y}=H_{z}
$$

Common eigenspaces

Suppose some capacitors form cutsets with ports: those states
\star result in imaginary axis eigenvalues of A_{z}

New results

Assume biproper impedance $Z(s)$ and admittance $Y(s)$: construct
$\frac{\mathrm{d}}{\mathrm{d} t} x=A_{z} x+B_{z} i, \quad v=C_{z} x+D_{z} i$ and $\frac{\mathrm{d}}{\mathrm{d} t} x=A_{y} x+B_{y} v, \quad i=C_{y} x+D_{y} v$.

- Construct \hat{x} has $2 n$ components: consists of x and 'dual state' λ :
\star original state x (capacitor voltage/inductor current), and
\star the dual/adjoint/Lagrange multiplier λ
\star Admittance $Y(s)$ gives $2 n \times 2 n$ matrix H_{y}
\star Impedance $Z(s)$ gives $2 n \times 2 n$ matrix H_{z}

Optimal trajectories dynamics: independent of impedance/admittance state-space realization:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \hat{x}=H_{y} \hat{x}, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} \hat{x}=H_{z} \hat{x} \quad \text { then } \quad H_{y}=H_{z}
$$

Common eigenspaces

Suppose some capacitors form cutsets with ports: those states
\star result in imaginary axis eigenvalues of A_{z}
\star span common eigenspaces of $A_{z}, K_{\text {reqd }}$ and $K_{\text {avail }}$ (and all K)

New results

Assume biproper impedance $Z(s)$ and admittance $Y(s)$: construct
$\frac{\mathrm{d}}{\mathrm{d} t} x=A_{z} x+B_{z} i, \quad v=C_{z} x+D_{z} i$ and $\frac{\mathrm{d}}{\mathrm{d} t} x=A_{y} x+B_{y} v, \quad i=C_{y} x+D_{y} v$.

- Construct \hat{x} has $2 n$ components: consists of x and 'dual state' λ :
\star original state x (capacitor voltage/inductor current), and
\star the dual/adjoint/Lagrange multiplier λ
\star Admittance $Y(s)$ gives $2 n \times 2 n$ matrix H_{y}
\star Impedance $Z(s)$ gives $2 n \times 2 n$ matrix H_{z}

Optimal trajectories dynamics: independent of impedance/admittance state-space realization:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \hat{x}=H_{y} \hat{x}, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} \hat{x}=H_{z} \hat{x} \quad \text { then } \quad H_{y}=H_{z}
$$

Common eigenspaces

Suppose some capacitors form cutsets with ports: those states
\star result in imaginary axis eigenvalues of A_{z}
\star span common eigenspaces of $A_{z}, K_{\text {reqd }}$ and $K_{\text {avail }}$ (and all K)
\star are in the nullspace of $K_{\text {reqd }}-K_{\text {avail }}$

New results

Assume biproper impedance $Z(s)$ and admittance $Y(s)$: construct
$\frac{\mathrm{d}}{\mathrm{d} t} x=A_{z} x+B_{z} i, \quad v=C_{z} x+D_{z} i$ and $\frac{\mathrm{d}}{\mathrm{d} t} x=A_{y} x+B_{y} v, \quad i=C_{y} x+D_{y} v$.

- Construct \hat{x} has $2 n$ components: consists of x and 'dual state' λ :
\star original state x (capacitor voltage/inductor current), and
\star the dual/adjoint/Lagrange multiplier λ
\star Admittance $Y(s)$ gives $2 n \times 2 n$ matrix H_{y}
\star Impedance $Z(s)$ gives $2 n \times 2 n$ matrix H_{z}

Optimal trajectories dynamics: independent of impedance/admittance state-space realization:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \hat{x}=H_{y} \hat{x}, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} \hat{x}=H_{z} \hat{x} \quad \text { then } \quad H_{y}=H_{z}
$$

Common eigenspaces

Suppose some capacitors form cutsets with ports: those states
\star result in imaginary axis eigenvalues of A_{z}
\star span common eigenspaces of $A_{z}, K_{\text {reqd }}$ and $K_{\text {avail }}$ (and all K)
\star are in the nullspace of $K_{\text {reqd }}-K_{\text {avail }}$
Also: for L forming loops with ports, and 'LC tanks' forming cutsets/loops with ports

Geometric mean of matrices?

Recall: $K_{\text {reqd }} \times K_{\text {avail }}=c^{2}$. Generalize to many states?

- Assume multiport $R C$ network
- 'Normalize' all states by c_{i}, i.e. $v_{i} \rightarrow \sqrt{\frac{c_{i}}{2}} v_{i}$
- In the new state variables, $v_{0}^{T} v_{0}$ is total actual energy
- Diagonal similarity transformation on A (of state space). Then

Geometric mean of matrices?

Recall: $K_{\text {reqd }} \times K_{\text {avail }}=c^{2}$. Generalize to many states?

- Assume multiport $R C$ network
- 'Normalize' all states by c_{i}, i.e. $v_{i} \rightarrow \sqrt{\frac{c_{i}}{2}} v_{i}$
- In the new state variables, $v_{0}^{T} v_{0}$ is total actual energy
- Diagonal similarity transformation on A (of state space). Then

In the new state-space basis, $K_{\text {avail }} \leqslant I \leqslant K_{\text {reqd }}$

Geometric mean of matrices?

Recall: $K_{\text {reqd }} \times K_{\text {avail }}=c^{2}$. Generalize to many states?

- Assume multiport $R C$ network
- 'Normalize' all states by c_{i}, i.e. $v_{i} \rightarrow \sqrt{\frac{c_{i}}{2}} v_{i}$
- In the new state variables, $v_{0}^{T} v_{0}$ is total actual energy
- Diagonal similarity transformation on A (of state space). Then

In the new state-space basis, $K_{\text {avail }} \leqslant I \leqslant K_{\text {reqd }}$
$\left(K_{\text {avail }}\right)^{-1}=K_{\text {reqd }} \quad: \quad$ 'geometric mean' $($ post-normalization)

Geometric mean of matrices?

Recall: $K_{\text {reqd }} \times K_{\text {avail }}=c^{2}$. Generalize to many states?

- Assume multiport $R C$ network
- 'Normalize' all states by c_{i}, i.e. $v_{i} \rightarrow \sqrt{\frac{c_{i}}{2}} v_{i}$
- In the new state variables, $v_{0}^{T} v_{0}$ is total actual energy
- Diagonal similarity transformation on A (of state space). Then

In the new state-space basis, $K_{\text {avail }} \leqslant I \leqslant K_{\text {reqd }}$
$\left(K_{\text {avail }}\right)^{-1}=K_{\text {reqd }} \quad: \quad$ 'geometric mean' (post-normalization)
In other words,
Capacitor voltage normalizing achieves 'positive real balancing'!

Geometric mean of matrices?

Recall: $K_{\text {reqd }} \times K_{\text {avail }}=c^{2}$. Generalize to many states?

- Assume multiport $R C$ network
- 'Normalize' all states by c_{i}, i.e. $v_{i} \rightarrow \sqrt{\frac{c_{i}}{2}} v_{i}$
- In the new state variables, $v_{0}^{T} v_{0}$ is total actual energy
- Diagonal similarity transformation on A (of state space). Then

In the new state-space basis, $K_{\text {avail }} \leqslant I \leqslant K_{\text {reqd }}$
$\left(K_{\text {avail }}\right)^{-1}=K_{\text {reqd }} \quad: \quad$ 'geometric mean' (post-normalization)
In other words,
Capacitor voltage normalizing achieves 'positive real balancing'!

- For a system with transfer matrix $G(s)$, passive $\equiv G(s)$ is positive real (no poles in ORHP, and $G(s)+G(-s)^{T} \geqslant 0$ for each s in complex RHP)
- Positive real balancing:

Geometric mean of matrices?

Recall: $K_{\text {reqd }} \times K_{\text {avail }}=c^{2}$. Generalize to many states?

- Assume multiport $R C$ network
- 'Normalize' all states by c_{i}, i.e. $v_{i} \rightarrow \sqrt{\frac{c_{i}}{2}} v_{i}$
- In the new state variables, $v_{0}^{T} v_{0}$ is total actual energy
- Diagonal similarity transformation on A (of state space). Then

In the new state-space basis, $K_{\text {avail }} \leqslant I \leqslant K_{\text {reqd }}$
$\left(K_{\text {avail }}\right)^{-1}=K_{\text {reqd }} \quad: \quad$ 'geometric mean' (post-normalization)
In other words,
Capacitor voltage normalizing achieves 'positive real balancing'!

- For a system with transfer matrix $G(s)$, passive $\equiv G(s)$ is positive real
(no poles in ORHP, and $G(s)+G(-s)^{T} \geqslant 0$ for each s in complex RHP)
- Positive real balancing: find state-space basis such that:

ARE1: $\quad A^{T} K+K A+\left(K B-C^{T}\right)\left(D+D^{T}\right)^{-1}\left(B^{T} K-C\right) \quad=0 \quad$ and
ARE2: $\quad P A^{T}+A P+\left(P C^{T}-B\right)\left(D+D^{T}\right)^{-1}\left(C P-B^{T}\right)=0$
have identical solution sets $\subset \mathbb{R}^{n \times n}$

Geometric mean of matrices?

Recall: $K_{\text {reqd }} \times K_{\text {avail }}=c^{2}$. Generalize to many states?

- Assume multiport $R C$ network
- 'Normalize' all states by c_{i}, i.e. $v_{i} \rightarrow \sqrt{\frac{c_{i}}{2}} v_{i}$
- In the new state variables, $v_{0}^{T} v_{0}$ is total actual energy
- Diagonal similarity transformation on A (of state space). Then

In the new state-space basis, $K_{\text {avail }} \leqslant I \leqslant K_{\text {reqd }}$
$\left(K_{\text {avail }}\right)^{-1}=K_{\text {reqd }} \quad: \quad$ 'geometric mean' (post-normalization)
In other words,
Capacitor voltage normalizing achieves 'positive real balancing'!

- For a system with transfer matrix $G(s)$, passive $\equiv G(s)$ is positive real
(no poles in ORHP, and $G(s)+G(-s)^{T} \geqslant 0$ for each s in complex RHP)
- Positive real balancing: find state-space basis such that:
$\begin{array}{lrll}\text { ARE1: } & A^{T} K+K A+\left(K B-C^{T}\right)\left(D+D^{T}\right)^{-1}\left(B^{T} K-C\right) & =0 & \text { and } \\ \text { ARE2: } & P A^{T}+A P+\left(P C^{T}-B\right)\left(D+D^{T}\right)^{-1}\left(C P-B^{T}\right) & =0 & \end{array}$
ARE2: $\quad P A^{T}+A P+\left(P C^{T}-B\right)\left(D+D^{T}\right)^{-1}\left(C P-B^{T}\right) \quad=0$
have identical solution sets $\subset \mathbb{R}^{n \times n}$
$\Leftrightarrow\left(K_{\max }\right)^{-1}=K_{\text {min }}$

Why positive real balancing: MOR

- Balancing useful in Model Order Reduction (MOR)
- Balanced truncation:
discard those states that are 'very' uncontrollable and 'very' unobservable
- Retain states only if:
\star very controllable (low $x^{T} P^{-1} x$) and
* very observable (high $x^{T} Q x$)

Controllability Grammian P \& Observability Grammian Q

[^0]
Why positive real balancing: MOR

- Balancing useful in Model Order Reduction (MOR)
- Balanced truncation:
discard those states that are 'very' uncontrollable and 'very' unobservable
- Retain states only if:
* very controllable (low $x^{T} P^{-1} x$) and
* very observable (high $x^{T} Q x$)

Controllability Grammian P \& Observability Grammian Q Procedure: simultaneous diagonalization of P and Q

[^1]
Why positive real balancing: MOR

- Balancing useful in Model Order Reduction (MOR)
- Balanced truncation:
discard those states that are 'very' uncontrollable and 'very' unobservable
- Retain states only if:
\star very controllable (low $x^{T} P^{-1} x$) and
\star very observable (high $x^{T} Q x$)
Controllability Grammian P \& Observability Grammian Q
Procedure: simultaneous diagonalization of P and Q
- In general, positive real balancing: simultaneous diagonalization (of K and L) Involves Riccati equation solution: then Cholesky factorization
- We showed ${ }^{1}$:

for RC circuits

capacitor voltage normalizing results in balancing.

- Also true for: RL, and 'symmetric' realizations $A=A^{T}$ (of the state space) (Recall Laplacian $L=L^{T}$ in RC example: though no ports there)

[^2]
Passivity preserving Model Order Reduction

Passive reduced-order LTI models: important for

- circuit simulation and analysis,
- controller design

Other RC like systems

- RL systems
- Multi-agents:
- Network of many agents to achieve a task collectively
- Surveillance pursuit-evasion games
- Controlled through port \equiv one or more agents are 'leaders'
- Laplacian matrix arises for single-integrator dynamics
- Network of Voltage-Source-Inverters (VSI) forming a microgrid (after neglecting sufficiently quick dynamics): with Iyer, Chandorkar: IEEE-Trans-PEL 2010 \& IEEE-Trans-Energy Conv 2011
- Mass-damper systems
- Other so-called ZIP (Zero-Interlacing-Pole) systems
- Controller locations that achieve controllability/pole-placement
- Optimal charging/discharging matrix relations with RLC locations
- Positive real balancing and state variable normalization
- Controller locations that achieve controllability/pole-placement
- Optimal charging/discharging matrix relations with RLC locations
- Positive real balancing and state variable normalization

Thank you for your attention

- Controller locations that achieve controllability/pole-placement
- Optimal charging/discharging matrix relations with RLC locations
- Positive real balancing and state variable normalization

Thank you for your attention
Also thanks to:

- R.U. Chavan, R.K. Kalaimani, Dr. Krishnan (Math), Ameer K. Mulla.
- Vinamzi Samuel and Kaushik Mallick (MTP with me): OpenModelica/Python/Scilab based package

[^0]: ${ }^{1}$ We do not get diagonal solutions: so-called 'principal-axis' balanced

[^1]: ${ }^{1}$ We do not get diagonal solutions: so-called 'principal-axis' balanced

[^2]: ${ }^{1}$ We do not get diagonal solutions: so-called 'principal-axis' balanced

