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Outline

Problem formulation: dual/adjoint system

Main results: well-posed interconnection and the regular case

Ill-posed interconnection & the singular case (descriptor system)

Zeros at infinity, inadmissible initial conditions

Necessary and sufficient conditions for no zeros at infinity (main result)

Pal,Kalaimani,Belur (IIT Bombay/Guwahati) ECC 2013 2 / 14



Main issues concerned in this talk

When is the interconnection of a system and its ‘adjoint’ (dual) a
well-posed interconnection?

If ill-posed, when is the interconnection autonomous?

Interconnection of system and its dual: kind-of stationary trajectories.

Can the interconnection cause closed-loop to have
impulsive initial conditions?

Under what conditions will the closed-loop not have inadmissible initial
conditions?

Well-posed interconnection of a system and its adjoint gives d
dtx = Hx

with H: a Hamiltonian matrix.

Analogue of Hamiltonian matrix for ill-posed case?

Link with other singular Hamiltonian pencils?
Skew-Hermitian Hermitian pencil? (Mehl, Mehrmann, Meerbergen,
Watkins)
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Well-posed interconnection

Systems B1 and B2 (with transfer functions G1 & G2)

G2

+
+

+

G1

y2

u1 y1

u2 d2

+

d1

Call the interconnection of B1 and B2

well-posed if
for each d1, d2 ∈ Lloc

1 ,
there exist unique u1, y1, u2 and y2 ∈ Lloc

1

such that

the laws (G1, G2 and Σ’s) are satisfied.

Call the set of allowed trajectories of system 1 as behavior B1

B1 := {(u1, y1) | y1 = G1u1}

Similarly,
B2 := {(y2, u2) | y2 = G2u2}

For this talk: System ≡ its behavior

Positive or negative feedback? Assume d1 = 0 and d2 = 0.
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Well-posed interconnection

Interconnection of B1 and B2:

trajectories need satisfy laws of both B1 and B2.
Allowed trajectories of the closed loop system: intersection B1 ∩B2.
In this talk, B2 is the ‘adjoint/dual’ system of B1.
What is the adjoint of a system (in behavioral sense)?

Consider behaviors B1 and B2 ⊆ C∞(R,Rw) and Σ =

[
I 0
0 −I

]
.

B1 and B2 are called Σ-orthogonal if∫ ∞
−∞

wT
1 Σw2 dt = 0 for all w1 ∈ B1 and w2 ∈ B2.

Above integrals could be undefined: restrict each of B1 and B2 to just
the compactly supported trajectories, i.e. D.
(Controllability assumed throughout this talk)

For a controllable system B1 ⊆ C∞(R,Rw), define its Σ-orthogonal
complement B⊥Σ

1 as:

B⊥Σ
1 := {v ∈ C∞(R,Rw) |

∫
R
wT Σv dt = 0 for all w ∈ B1 ∩D}.
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Hamiltonian matrix

B :
ẋ = Ax+Bw1

w2 = Cx+Dw1 B⊥Σ :
ż = −AT z − CT v1

v2 = BT z +DT v1

w1, v1: inputs, w2, v2: outputs.
Interconnect B and B⊥Σ : w2 = v1 and w1 = v2 ẋ

ż
0

 =

 A BBT BDT

0 −AT −CT

−C −DBT Ip −DDT

 x
z
v1


B ∧B⊥Σ is well-posed ⇔ (Ip −DDT ) is nonsingular.

Eliminating v1, we get I2n

[
ẋ
ż

]
= H

[
x
z

]
with H ∈ R2n×2n the Hamiltonian

matrix:

H =

[
A+BDT (Ip −DDT )−1C BBT +BDT (Ip −DDT )−1DBT

−CT (Ip −DDT )−1C −(AT + CT (Ip −DDT )−1DBT )

]
.

With small variations (due to the Σ-matrix),
H arises in LQ, LQG, H2 and H∞-control problems.
For LQ control, above trajectories are ‘stationary’: Willems, CDC-92.
Nonsingularity of (Ip −DDT ) required for Riccati (in)equality.
This talk: (Ip −DDT ) is singular.
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Extreme case: D = I

We focus on the case when (Ip −DDT ) is singular: the ill-posed case.
To understand better the ill-posed case, assume G is square and D = I.
Also assume B has full column rank

(otherwise, can show, B ∩B⊥Σ is non-autonomous).
Under what conditions is B ∧B⊥Σ autonomous?
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Ill-posed interconnection B ∧B⊥Σ

Assume D = I and B is full column rank. Define

Ã :=

[
A BBT

0 −AT

]
, B̃ :=

[
B
−CT

]
, C̃ :=

[
C BT

]
(1)

Theorem

Consider the interconnection of the behaviors B and B⊥Σ .
Then the following are equivalent.

1 The interconnected system is autonomous.

2 C̃eÃtB̃ is nonsingular for some t.

3 ker (C̃B̃) ∩ ker (C̃ÃB̃) ∩ · · · ∩ ker (C̃Ã2n−1B̃) = 0
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Inadmissible initial conditions

For a descriptor system E d
dtx = Ax, with det (sE −A) 6= 0,

some initial conditions x(0−) could result in impulsive solutions x(t).

Call these initial conditions inadmissible.

No inadmissible initial conditions ⇔ (sE −A) has no ‘zeros at infinity’.

(Like a polynomial matrix P (s) can have finite zeros, P (s) can also have zeros
at s =∞.)

Zeros at infinity 6≡ generalized eigenvalue at ∞.

When does an autonomous singular Hamiltonian system have inadmissible
initial conditions?
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Main result

Ã :=

[
A BBT

0 −AT

]
, B̃ :=

[
B
−CT

]
, C̃ :=

[
C BT

]
(2)

Theorem

Assume the singular Hamiltonian system is autonomous. The following are
equivalent:

1 There are no inadmissible initial conditions.

2 C̃eÃtB̃ is nonsingular at t = 0.

3 ker (C̃B̃) = 0.

4 rank (CB −BTCT ) = p

Recall our theorem for the interconnection of B and B⊥Σ .
The following are equivalent.

1 The interconnected system is autonomous.

2 C̃eÃtB̃ is nonsingular for some t.

3 ker (C̃B̃) ∩ ker (C̃ÃB̃) ∩ · · · ∩ ker (C̃Ã2n−1B̃) = 0
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Ã :=

[
A BBT

0 −AT

]
, B̃ :=

[
B
−CT

]
, C̃ :=

[
C BT

]
(2)

Theorem

Assume the singular Hamiltonian system is autonomous. The following are
equivalent:

1 There are no inadmissible initial conditions.
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Relation with all pass MIMO transfer matrix

det (CB − (CB)T ) 6= 0 is ‘opposite’ to requirement for being all-pass.

G(s) is all-pass ⇔ I −G(−jω)TG(jω) = 0 for each ω ∈ R.

Assumption D = I and G is all-pass ⇒

CB −BTCT = 0, CAB + (CAB)T −BTCTCB = 0, · · ·

Notice that CB is the first moment of G(s) about s =∞.
Thus a necessary condition on the first moment for G to be all-pass is:

the skew-symmetric part of CB is zero.

In fact,
the interconnection of B and B⊥Σ is autonomous ⇔ no all-pass
subsystem.

On the other hand,
a singular Hamiltonian system (assumed autonomous) has no
inadmissible initial conditions if and only if CB −BTCT is nonsingular.

Odd number of inputs (and autonomous, ill-posed) ⇒ there exist
inadmissible initial conditions.

Pal,Kalaimani,Belur (IIT Bombay/Guwahati) ECC 2013 11 / 14



Relation with all pass MIMO transfer matrix

det (CB − (CB)T ) 6= 0 is ‘opposite’ to requirement for being all-pass.

G(s) is all-pass ⇔ I −G(−jω)TG(jω) = 0 for each ω ∈ R.

Assumption D = I and G is all-pass ⇒

CB −BTCT = 0, CAB + (CAB)T −BTCTCB = 0, · · ·

Notice that CB is the first moment of G(s) about s =∞.
Thus a necessary condition on the first moment for G to be all-pass is:
the skew-symmetric part of CB is zero.

In fact,
the interconnection of B and B⊥Σ is autonomous ⇔ no all-pass
subsystem.

On the other hand,
a singular Hamiltonian system (assumed autonomous) has no
inadmissible initial conditions if and only if CB −BTCT is nonsingular.

Odd number of inputs (and autonomous, ill-posed) ⇒ there exist
inadmissible initial conditions.

Pal,Kalaimani,Belur (IIT Bombay/Guwahati) ECC 2013 11 / 14



Relation with all pass MIMO transfer matrix

det (CB − (CB)T ) 6= 0 is ‘opposite’ to requirement for being all-pass.

G(s) is all-pass ⇔ I −G(−jω)TG(jω) = 0 for each ω ∈ R.

Assumption D = I and G is all-pass ⇒

CB −BTCT = 0, CAB + (CAB)T −BTCTCB = 0, · · ·

Notice that CB is the first moment of G(s) about s =∞.
Thus a necessary condition on the first moment for G to be all-pass is:
the skew-symmetric part of CB is zero.

In fact,
the interconnection of B and B⊥Σ is autonomous ⇔ no all-pass
subsystem.

On the other hand,
a singular Hamiltonian system (assumed autonomous) has no
inadmissible initial conditions if and only if CB −BTCT is nonsingular.

Odd number of inputs (and autonomous, ill-posed) ⇒ there exist
inadmissible initial conditions.

Pal,Kalaimani,Belur (IIT Bombay/Guwahati) ECC 2013 11 / 14



Relation with all pass MIMO transfer matrix

det (CB − (CB)T ) 6= 0 is ‘opposite’ to requirement for being all-pass.

G(s) is all-pass ⇔ I −G(−jω)TG(jω) = 0 for each ω ∈ R.

Assumption D = I and G is all-pass ⇒

CB −BTCT = 0, CAB + (CAB)T −BTCTCB = 0, · · ·

Notice that CB is the first moment of G(s) about s =∞.
Thus a necessary condition on the first moment for G to be all-pass is:
the skew-symmetric part of CB is zero.

In fact,
the interconnection of B and B⊥Σ is autonomous ⇔ no all-pass
subsystem.

On the other hand,
a singular Hamiltonian system (assumed autonomous) has no
inadmissible initial conditions if and only if CB −BTCT is nonsingular.

Odd number of inputs (and autonomous, ill-posed) ⇒ there exist
inadmissible initial conditions.

Pal,Kalaimani,Belur (IIT Bombay/Guwahati) ECC 2013 11 / 14



Relation with all pass MIMO transfer matrix

det (CB − (CB)T ) 6= 0 is ‘opposite’ to requirement for being all-pass.

G(s) is all-pass ⇔ I −G(−jω)TG(jω) = 0 for each ω ∈ R.

Assumption D = I and G is all-pass ⇒

CB −BTCT = 0, CAB + (CAB)T −BTCTCB = 0, · · ·

Notice that CB is the first moment of G(s) about s =∞.
Thus a necessary condition on the first moment for G to be all-pass is:
the skew-symmetric part of CB is zero.

In fact,
the interconnection of B and B⊥Σ is autonomous ⇔ no all-pass
subsystem.

On the other hand,
a singular Hamiltonian system (assumed autonomous) has no
inadmissible initial conditions if and only if CB −BTCT is nonsingular.

Odd number of inputs (and autonomous, ill-posed) ⇒ there exist
inadmissible initial conditions.

Pal,Kalaimani,Belur (IIT Bombay/Guwahati) ECC 2013 11 / 14



Example

G(s) := s+1
s+2 with input u and

output y.
State space realization :
(A,B,C,D) = (−2, 1,−1, 1).

Dual system := s−1
s−2 .

State space realization :
(A,B,C,D) = (2, 1, 1, 1).

The interconnection of G and its dual:

d

dt

1 0 0
0 1 0
0 0 0

xz
y

 =

 1 1 1
0 1 1
−1 1 0

xz
y


Above Es−A has a zero at infinity.

The differential equation in just x and z has initial conditions that have
impulsive solutions.

From our result too: CB −BTCT = 0.
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Conclusion

For the Σ we considered: B ∩B⊥Σ is an ‘all-pass’ subsystem (possibly
autonomous)

In the context of Σ-dissipativity, this is set of ‘stationary’ trajectories
with respect to wT Σw.

The stationary trajectories are interconnection of B and B⊥Σ .

Singular descriptor system if and only if ill-posed interconnection.

Assuming D = I (the zeroth moment of G),
no inadmissible initial conditions ⇔ G’s first moment has its
skew-symmetric part nonsingular.

Note: square MIMO all-pass G has first moment symmetric.

No obvious way to have E as skew-Hamitonian and H as Hamiltonian
(as considered by Mehl, Mehrmann, et al.)

But: for our pencil (E,H) also, generalized eigenvalues occur in
quadruplets (λ, λ̄,−λ,−λ̄): like Mehl, Mehrmann and others.
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Questions, thank you!

belur@iitb.ac.in
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Inadmissible initial condition

Consider an autonomous system P ( d
dt )w(t) = 0, with P (ξ) ∈ Rw×w[ξ]

nonsingular.

A vector w(0) ∈ Rzw is said to be an inadmissible initial condition vector
if the corresponding solution w(t) contains the Dirac impulse δ(t) and/or
its distributional derivatives.

There exist no inadmissible initial conditions for P ( d
dt )w = 0⇔ P has no

zeros at infinity.
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Stationary trajectories

Consider a behavior B ∈ Lw
cont and a symmetric nonsingular matrix

Σ ∈ Rw×w.
A trajectory w ∈ B is Σ-stationary if∫ ∞

−∞
wT Σv dt = 0 for all v ∈ B ∩D.

Assume (wlog) that Σ :=
[
Im 0
0 −Ip

]
Definition
a Given a controllable behavior B ∈ Lw

cont and Σ ∈ Rw×w, the Σ-orthogonal
complement of B, denoted by B⊥Σ is the set of all the trajectories
v ∈ Lloc

1 (R,Rw) such that
∫∞
−∞ vT Σw dt = 0 for all w ∈ B ∩D.

aJ.C. Willems and H.L. Trentelman, “On quadratic differential forms, SIAM
Journal on Control and Optimization”, 1998.

The set of Σ-stationary trajectories is equal to B ∩B⊥Σ .
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