Stationary trajectories, singular Hamiltonian systems and ill-posed Interconnection

S.C. Jugade, Debasattam Pal, Rachel K. Kalaimani and Madhu N. Belur Department of Electrical Engineering Indian Institute of Technology Guwahati, Indian Institute of Technology Bombay

July 18, 2013

- Problem formulation: dual/adjoint system
- Main results: well-posed interconnection and the regular case
- Ill-posed interconnection & the singular case (descriptor system)
- Zeros at infinity, inadmissible initial conditions
- Necessary and sufficient conditions for no zeros at infinity (main result)

- When is the interconnection of a system and its 'adjoint' (dual) a well-posed interconnection?
- If ill-posed, when is the interconnection autonomous?

- When is the interconnection of a system and its 'adjoint' (dual) a well-posed interconnection?
- If ill-posed, when is the interconnection autonomous?
- Interconnection of system and its dual: kind-of stationary trajectories.

- When is the interconnection of a system and its 'adjoint' (dual) a well-posed interconnection?
- If ill-posed, when is the interconnection autonomous?
- Interconnection of system and its dual: kind-of stationary trajectories.
- Can the interconnection cause closed-loop to have

- When is the interconnection of a system and its 'adjoint' (dual) a well-posed interconnection?
- If ill-posed, when is the interconnection autonomous?
- Interconnection of system and its dual: kind-of stationary trajectories.
- Can the interconnection cause closed-loop to have impulsive initial conditions?
- Under what conditions will the closed-loop **not** have inadmissible initial conditions?

- When is the interconnection of a system and its 'adjoint' (dual) a well-posed interconnection?
- If ill-posed, when is the interconnection autonomous?
- Interconnection of system and its dual: kind-of stationary trajectories.
- Can the interconnection cause closed-loop to have impulsive initial conditions?
- Under what conditions will the closed-loop **not** have inadmissible initial conditions?
- Well-posed interconnection of a system and its adjoint gives $\frac{d}{dt}x = Hx$ with H:

- When is the interconnection of a system and its 'adjoint' (dual) a well-posed interconnection?
- If ill-posed, when is the interconnection autonomous?
- Interconnection of system and its dual: kind-of stationary trajectories.
- Can the interconnection cause closed-loop to have impulsive initial conditions?
- Under what conditions will the closed-loop **not** have inadmissible initial conditions?
- Well-posed interconnection of a system and its adjoint gives $\frac{d}{dt}x = Hx$ with H: a Hamiltonian matrix.

- When is the interconnection of a system and its 'adjoint' (dual) a well-posed interconnection?
- If ill-posed, when is the interconnection autonomous?
- Interconnection of system and its dual: kind-of stationary trajectories.
- Can the interconnection cause closed-loop to have impulsive initial conditions?
- Under what conditions will the closed-loop **not** have inadmissible initial conditions?
- Well-posed interconnection of a system and its adjoint gives $\frac{d}{dt}x = Hx$ with H: a Hamiltonian matrix.
- Analogue of Hamiltonian matrix for ill-posed case?

- When is the interconnection of a system and its 'adjoint' (dual) a well-posed interconnection?
- If ill-posed, when is the interconnection autonomous?
- Interconnection of system and its dual: kind-of stationary trajectories.
- Can the interconnection cause closed-loop to have impulsive initial conditions?
- Under what conditions will the closed-loop **not** have inadmissible initial conditions?
- Well-posed interconnection of a system and its adjoint gives $\frac{d}{dt}x = Hx$ with H: a Hamiltonian matrix.
- Analogue of Hamiltonian matrix for ill-posed case?
- Link with other singular Hamiltonian pencils? Skew-Hermitian Hermitian pencil? (Mehl, Mehrmann, Meerbergen, Watkins)

Systems \mathfrak{B}_1 and \mathfrak{B}_2 (with transfer functions $G_1 \& G_2$)

Call the interconnection of \mathfrak{B}_1 and \mathfrak{B}_2 well-posed if for each $d_1, d_2 \in \mathfrak{L}_1^{\mathrm{loc}}$, there exist unique u_1, y_1, u_2 and $y_2 \in \mathfrak{L}_1^{\mathrm{loc}}$ such that

Systems \mathfrak{B}_1 and \mathfrak{B}_2 (with transfer functions $G_1 \& G_2$)

Call the interconnection of \mathfrak{B}_1 and \mathfrak{B}_2 well-posed if for each $d_1, d_2 \in \mathfrak{L}_1^{\mathrm{loc}}$, there exist unique u_1, y_1, u_2 and $y_2 \in \mathfrak{L}_1^{\mathrm{loc}}$ such that the laws $(G_1, G_2 \text{ and } \Sigma$'s) are satisfied.

Systems \mathfrak{B}_1 and \mathfrak{B}_2 (with transfer functions $G_1 \& G_2$)

Call the interconnection of \mathfrak{B}_1 and \mathfrak{B}_2 well-posed if for each $d_1, d_2 \in \mathfrak{L}_1^{\mathrm{loc}}$, there exist unique u_1, y_1, u_2 and $y_2 \in \mathfrak{L}_1^{\mathrm{loc}}$ such that

the laws $(G_1, G_2 \text{ and } \Sigma$'s) are satisfied.

Call the set of allowed trajectories of system 1 as behavior \mathfrak{B}_1

$$\mathfrak{B}_1 := \{ (u_1, y_1) \mid y_1 = G_1 u_1 \}$$

Similarly,

$$\mathfrak{B}_2 := \{ (y_2, u_2) \mid y_2 = G_2 u_2 \}$$

Systems \mathfrak{B}_1 and \mathfrak{B}_2 (with transfer functions $G_1 \& G_2$)

Call the interconnection of \mathfrak{B}_1 and \mathfrak{B}_2 well-posed if for each $d_1, d_2 \in \mathfrak{L}_1^{\mathrm{loc}}$, there exist unique u_1, y_1, u_2 and $y_2 \in \mathfrak{L}_1^{\mathrm{loc}}$ such that the laws $(G_1, G_2 \text{ and } \Sigma$'s) are satisfied.

the laws $(G_1, G_2 \text{ and } \Sigma \text{ s})$ are satisfied

Call the set of allowed trajectories of system 1 as behavior \mathfrak{B}_1

$$\mathfrak{B}_1 := \{ (u_1, y_1) \mid y_1 = G_1 u_1 \}$$

Similarly,

$$\mathfrak{B}_2 := \{ (y_2, u_2) \mid y_2 = G_2 u_2 \}$$

For this talk: System \equiv its behavior

Systems \mathfrak{B}_1 and \mathfrak{B}_2 (with transfer functions $G_1 \& G_2$)

Call the interconnection of \mathfrak{B}_1 and \mathfrak{B}_2 well-posed if for each $d_1, d_2 \in \mathfrak{L}_1^{\text{loc}}$, there exist unique u_1, y_1, u_2 and $y_2 \in \mathfrak{L}_1^{\text{loc}}$ such that the laws (C - C) and Σ'_2) are satisfied

the laws $(G_1, G_2 \text{ and } \Sigma's)$ are satisfied.

Call the set of allowed trajectories of system 1 as behavior \mathfrak{B}_1

$$\mathfrak{B}_1 := \{ (u_1, y_1) \mid y_1 = G_1 u_1 \}$$

Similarly,

$$\mathfrak{B}_2 := \{ (y_2, u_2) \mid y_2 = G_2 u_2 \}$$

For this talk: System \equiv its behavior

Positive or negative feedback? Assume $d_1 = 0$ and $d_2 = 0$.

Interconnection of \mathfrak{B}_1 and \mathfrak{B}_2 :

Interconnection of \mathfrak{B}_1 and \mathfrak{B}_2 :

trajectories need satisfy laws of both \mathfrak{B}_1 and \mathfrak{B}_2 .

Allowed trajectories of the closed loop system: intersection $\mathfrak{B}_1 \cap \mathfrak{B}_2$.

Interconnection of \mathfrak{B}_1 and \mathfrak{B}_2 :

trajectories need satisfy laws of both \mathfrak{B}_1 and \mathfrak{B}_2 . Allowed trajectories of the closed loop system: intersection $\mathfrak{B}_1 \cap \mathfrak{B}_2$. In this talk, \mathfrak{B}_2 is the 'adjoint/dual' system of \mathfrak{B}_1 . What is the adjoint of a system (in behavioral sense)?

Interconnection of \mathfrak{B}_1 and \mathfrak{B}_2 :

trajectories need satisfy laws of both \mathfrak{B}_1 and \mathfrak{B}_2 . Allowed trajectories of the closed loop system: intersection $\mathfrak{B}_1 \cap \mathfrak{B}_2$. In this talk, \mathfrak{B}_2 is the 'adjoint/dual' system of \mathfrak{B}_1 . What is the adjoint of a system (in behavioral sense)?

Consider behaviors \mathfrak{B}_1 and $\mathfrak{B}_2 \subseteq \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ and $\Sigma = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$. \mathfrak{B}_1 and \mathfrak{B}_2 are called Σ -orthogonal if

$$\int_{-\infty}^{\infty} w_1^T \Sigma w_2 \, \mathrm{d}t = 0 \text{ for all } w_1 \in \mathfrak{B}_1 \text{ and } w_2 \in \mathfrak{B}_2.$$

Interconnection of \mathfrak{B}_1 and \mathfrak{B}_2 :

trajectories need satisfy laws of both \mathfrak{B}_1 and \mathfrak{B}_2 . Allowed trajectories of the closed loop system: intersection $\mathfrak{B}_1 \cap \mathfrak{B}_2$. In this talk, \mathfrak{B}_2 is the 'adjoint/dual' system of \mathfrak{B}_1 . What is the adjoint of a system (in behavioral sense)?

Consider behaviors \mathfrak{B}_1 and $\mathfrak{B}_2 \subseteq \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ and $\Sigma = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$. \mathfrak{B}_1 and \mathfrak{B}_2 are called Σ -orthogonal if

$$\int_{-\infty}^{\infty} w_1^T \Sigma w_2 \, \mathrm{d}t = 0 \text{ for all } w_1 \in \mathfrak{B}_1 \text{ and } w_2 \in \mathfrak{B}_2$$

Above integrals could be undefined: restrict each of \mathfrak{B}_1 and \mathfrak{B}_2 to just the compactly supported trajectories, i.e. \mathfrak{D} .

Interconnection of \mathfrak{B}_1 and \mathfrak{B}_2 :

trajectories need satisfy laws of both \mathfrak{B}_1 and \mathfrak{B}_2 . Allowed trajectories of the closed loop system: intersection $\mathfrak{B}_1 \cap \mathfrak{B}_2$. In this talk, \mathfrak{B}_2 is the 'adjoint/dual' system of \mathfrak{B}_1 . What is the adjoint of a system (in behavioral sense)?

Consider behaviors \mathfrak{B}_1 and $\mathfrak{B}_2 \subseteq \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ and $\Sigma = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$. \mathfrak{B}_1 and \mathfrak{B}_2 are called Σ -orthogonal if

$$\int_{-\infty}^{\infty} w_1^T \Sigma w_2 \, \mathrm{d}t = 0 \text{ for all } w_1 \in \mathfrak{B}_1 \text{ and } w_2 \in \mathfrak{B}_2$$

Above integrals could be undefined: restrict each of \mathfrak{B}_1 and \mathfrak{B}_2 to just the compactly supported trajectories, i.e. \mathfrak{D} . (Controllability assumed throughout this talk)

Interconnection of \mathfrak{B}_1 and \mathfrak{B}_2 :

trajectories need satisfy laws of both \mathfrak{B}_1 and \mathfrak{B}_2 . Allowed trajectories of the closed loop system: intersection $\mathfrak{B}_1 \cap \mathfrak{B}_2$. In this talk, \mathfrak{B}_2 is the 'adjoint/dual' system of \mathfrak{B}_1 . What is the adjoint of a system (in behavioral sense)?

Consider behaviors \mathfrak{B}_1 and $\mathfrak{B}_2 \subseteq \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ and $\Sigma = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}$. \mathfrak{B}_1 and \mathfrak{B}_2 are called Σ -orthogonal if

$$\int_{-\infty}^{\infty} w_1^T \Sigma w_2 \, \mathrm{d}t = 0 \text{ for all } w_1 \in \mathfrak{B}_1 \text{ and } w_2 \in \mathfrak{B}_2$$

Above integrals could be undefined: restrict each of \mathfrak{B}_1 and \mathfrak{B}_2 to just the compactly supported trajectories, i.e. \mathfrak{D} .

(Controllability assumed throughout this talk)

For a controllable system $\mathfrak{B}_1 \subseteq \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$, define its Σ -orthogonal complement $\mathfrak{B}_1^{\perp_{\Sigma}}$ as:

$$\mathfrak{B}_1^{\perp_{\Sigma}} := \{ v \in \mathfrak{C}^\infty(\mathbb{R}, \mathbb{R}^{\mathtt{w}}) \mid \int_{\mathbb{R}} w^T \Sigma v \, \mathrm{d}t = 0 \text{ for all } w \in \mathfrak{B}_1 \cap \mathfrak{D} \}.$$

$$\mathfrak{B}: \begin{array}{l} \dot{x} = Ax + Bw_1 \\ w_2 = Cx + Dw_1 \end{array} \qquad \mathfrak{B}^{\perp_{\Sigma}}: \begin{array}{l} \dot{z} = -A^T z - C^T v_1 \\ v_2 = B^T z + D^T v_1 \end{array}$$

 w_1, v_1 : inputs, w_2, v_2 : outputs. Interconnect \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}$: $w_2 = v_1$ and $w_1 = v_2$

$$\begin{bmatrix} \dot{x} \\ \dot{z} \\ 0 \end{bmatrix} = \begin{bmatrix} A & BB^T & BD^T \\ 0 & -A^T & -C^T \\ -C & -DB^T & I_{\mathbf{p}} - DD^T \end{bmatrix} \begin{bmatrix} x \\ z \\ v_1 \end{bmatrix}$$

 $\mathfrak{B}\wedge\mathfrak{B}^{\perp_{\Sigma}} \text{ is well-posed} \Leftrightarrow (I_{\mathtt{p}}-DD^{T}) \text{ is nonsingular}.$

$$\mathfrak{B}: \begin{array}{l} \dot{x} = Ax + Bw_1 \\ w_2 = Cx + Dw_1 \end{array} \qquad \mathfrak{B}^{\perp_{\Sigma}}: \begin{array}{l} \dot{z} = -A^T z - C^T v_1 \\ v_2 = B^T z + D^T v_1 \end{array}$$

 w_1, v_1 : inputs, w_2, v_2 : outputs. Interconnect \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}$: $w_2 = v_1$ and $w_1 = v_2$

$$\begin{bmatrix} \dot{x} \\ \dot{z} \\ 0 \end{bmatrix} = \begin{bmatrix} A & BB^T & BD^T \\ 0 & -A^T & -C^T \\ -C & -DB^T & I_p - DD^T \end{bmatrix} \begin{bmatrix} x \\ z \\ v_1 \end{bmatrix}$$

$$\mathfrak{B} \wedge \mathfrak{B}^{\perp_{\Sigma}} \text{ is well-posed} \Leftrightarrow (I_p - DD^T) \text{ is nonsingular.}$$

Eliminating v_1 , we get $I_{2n} \begin{bmatrix} \dot{x} \\ \dot{z} \end{bmatrix} = H \begin{bmatrix} x \\ z \end{bmatrix}$ with $H \in \mathbb{R}^{2n \times 2n}$ the Hamiltonian matrix:

$$H = \begin{bmatrix} A + BD^{T}(I_{p} - DD^{T})^{-1}C & BB^{T} + BD^{T}(I_{p} - DD^{T})^{-1}DB^{T} \\ -C^{T}(I_{p} - DD^{T})^{-1}C & -(A^{T} + C^{T}(I_{p} - DD^{T})^{-1}DB^{T}) \end{bmatrix}.$$

$$\mathfrak{B}: \begin{array}{l} \dot{x} = Ax + Bw_1 \\ w_2 = Cx + Dw_1 \end{array} \qquad \mathfrak{B}^{\perp_{\Sigma}}: \begin{array}{l} \dot{z} = -A^T z - C^T v_1 \\ v_2 = B^T z + D^T v_1 \end{array}$$

 w_1, v_1 : inputs, w_2, v_2 : outputs. Interconnect \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}$: $w_2 = v_1$ and $w_1 = v_2$

$$\begin{bmatrix} \dot{x} \\ \dot{z} \\ 0 \end{bmatrix} = \begin{bmatrix} A & BB^T & BD^T \\ 0 & -A^T & -C^T \\ -C & -DB^T & I_{\mathbf{p}} - DD^T \end{bmatrix} \begin{bmatrix} x \\ z \\ v_1 \end{bmatrix}$$

is well-posed $\Leftrightarrow (I_{\mathbf{p}} - DD^T)$ is nonsingular.

 $\mathfrak{B} \wedge \mathfrak{B}^{\perp_{\Sigma}}$ is well-posed $\Leftrightarrow (I_{p} - DD^{T})$ is nonsingular. Eliminating v_{1} , we get $I_{2n}\begin{bmatrix}\dot{x}\\\dot{z}\end{bmatrix} = H\begin{bmatrix}x\\z\end{bmatrix}$ with $H \in \mathbb{R}^{2n \times 2n}$ the Hamiltonian matrix:

$$H = \begin{bmatrix} A + BD^T (I_{\rm p} - DD^T)^{-1}C & BB^T + BD^T (I_{\rm p} - DD^T)^{-1}DB^T \\ -C^T (I_{\rm p} - DD^T)^{-1}C & -(A^T + C^T (I_{\rm p} - DD^T)^{-1}DB^T) \end{bmatrix}.$$

With small variations (due to the Σ -matrix),

$$\mathfrak{B}: \begin{array}{l} \dot{x} = Ax + Bw_1 \\ w_2 = Cx + Dw_1 \end{array} \qquad \mathfrak{B}^{\perp_{\Sigma}}: \begin{array}{l} \dot{z} = -A^T z - C^T v_1 \\ v_2 = B^T z + D^T v_1 \end{array}$$

 w_1, v_1 : inputs, w_2, v_2 : outputs. Interconnect \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}$: $w_2 = v_1$ and $w_1 = v_2$

$$\begin{bmatrix} \dot{x} \\ \dot{z} \\ 0 \end{bmatrix} = \begin{bmatrix} A & BB^T & BD^T \\ 0 & -A^T & -C^T \\ -C & -DB^T & I_{\mathbf{p}} - DD^T \end{bmatrix} \begin{bmatrix} x \\ z \\ v_1 \end{bmatrix}$$

 $\mathfrak{B} \wedge \mathfrak{B}^{\perp_{\Sigma}}$ is well-posed $\Leftrightarrow (I_{\mathbf{p}} - DD^T)$ is nonsingular. Eliminating v_1 , we get $I_{2\mathbf{n}} \begin{bmatrix} \dot{x} \\ \dot{z} \end{bmatrix} = H \begin{bmatrix} x \\ z \end{bmatrix}$ with $H \in \mathbb{R}^{2\mathbf{n} \times 2\mathbf{n}}$ the Hamiltonian matrix:

$$H = \begin{bmatrix} A + BD^T (I_{\rm p} - DD^T)^{-1}C & BB^T + BD^T (I_{\rm p} - DD^T)^{-1}DB^T \\ -C^T (I_{\rm p} - DD^T)^{-1}C & -(A^T + C^T (I_{\rm p} - DD^T)^{-1}DB^T) \end{bmatrix}.$$

With small variations (due to the Σ -matrix), H arises in LQ, LQG, \mathcal{H}_2 and \mathcal{H}_∞ -control problems. For LQ control, above trajectories are 'stationary': Willems, CDC-92.

$$\mathfrak{B}: \begin{array}{l} \dot{x} = Ax + Bw_1 \\ w_2 = Cx + Dw_1 \end{array} \qquad \mathfrak{B}^{\perp_{\Sigma}}: \begin{array}{l} \dot{z} = -A^T z - C^T v_1 \\ v_2 = B^T z + D^T v_1 \end{array}$$

 w_1, v_1 : inputs, w_2, v_2 : outputs. Interconnect \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}$: $w_2 = v_1$ and $w_1 = v_2$

$$\begin{bmatrix} \dot{x} \\ \dot{z} \\ 0 \end{bmatrix} = \begin{bmatrix} A & BB^T & BD^T \\ 0 & -A^T & -C^T \\ -C & -DB^T & I_{\mathbf{p}} - DD^T \end{bmatrix} \begin{bmatrix} x \\ z \\ v_1 \end{bmatrix}$$

 $\mathfrak{B} \wedge \mathfrak{B}^{\perp_{\Sigma}}$ is well-posed $\Leftrightarrow (I_{\mathbf{p}} - DD^T)$ is nonsingular. Eliminating v_1 , we get $I_{2\mathbf{n}} \begin{bmatrix} \dot{x} \\ \dot{z} \end{bmatrix} = H \begin{bmatrix} x \\ z \end{bmatrix}$ with $H \in \mathbb{R}^{2\mathbf{n} \times 2\mathbf{n}}$ the Hamiltonian matrix:

$$H = \begin{bmatrix} A + BD^T (I_{\mathbf{p}} - DD^T)^{-1}C & BB^T + BD^T (I_{\mathbf{p}} - DD^T)^{-1}DB^T \\ -C^T (I_{\mathbf{p}} - DD^T)^{-1}C & -(A^T + C^T (I_{\mathbf{p}} - DD^T)^{-1}DB^T) \end{bmatrix}.$$

With small variations (due to the Σ -matrix), *H* arises in LQ, LQG, \mathcal{H}_2 and \mathcal{H}_∞ -control problems. For LQ control, above trajectories are 'stationary': Willems, CDC-92. Nonsingularity of $(I_{p} - DD^{T})$ required for Riccati (in)equality. Pal.Kalaimani.Belur (IIT Bombay/Guwa

We focus on the case when $(I_p - DD^T)$ is singular: the ill-posed case. To understand better the ill-posed case, assume G is square and D = I. Also assume B has full column rank We focus on the case when $(I_p - DD^T)$ is singular: the ill-posed case. To understand better the ill-posed case, assume G is square and D = I. Also assume B has full column rank (otherwise, can show, $\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$ is non-autonomous). Under what conditions is $\mathfrak{B} \wedge \mathfrak{B}^{\perp_{\Sigma}}$ autonomous? Assume D = I and B is full column rank. Define

$$\widetilde{A} := \begin{bmatrix} A & BB^T \\ 0 & -A^T \end{bmatrix}, \widetilde{B} := \begin{bmatrix} B \\ -C^T \end{bmatrix}, \widetilde{C} := \begin{bmatrix} C & B^T \end{bmatrix}$$
(1)

Theorem

Consider the interconnection of the behaviors \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}$. Then the following are equivalent.

- The interconnected system is autonomous.
- $\ \, @ \ \, \widetilde{C}e^{\widetilde{A}t}\widetilde{B} \text{ is nonsingular for some } t.$

Inadmissible initial conditions

For a descriptor system $E \frac{d}{dt}x = Ax$, with det $(sE - A) \neq 0$, some initial conditions $x(0^-)$ could result in impulsive solutions x(t).

Call these initial conditions inadmissible.

For a descriptor system $E \frac{d}{dt}x = Ax$, with det $(sE - A) \neq 0$, some initial conditions $x(0^-)$ could result in impulsive solutions x(t).

Call these initial conditions inadmissible.

No inadmissible initial conditions $\Leftrightarrow (sE - A)$ has no 'zeros at infinity'.

(Like a polynomial matrix P(s) can have finite zeros, P(s) can also have zeros at $s = \infty$.)

Zeros at infinity $\not\equiv$ generalized eigenvalue at ∞ .

For a descriptor system $E \frac{d}{dt}x = Ax$, with det $(sE - A) \neq 0$, some initial conditions $x(0^-)$ could result in impulsive solutions x(t).

Call these initial conditions inadmissible.

No inadmissible initial conditions $\Leftrightarrow (sE - A)$ has no 'zeros at infinity'.

(Like a polynomial matrix P(s) can have finite zeros, P(s) can also have zeros at $s = \infty$.)

Zeros at infinity $\not\equiv$ generalized eigenvalue at ∞ .

When does an autonomous singular Hamiltonian system have inadmissible initial conditions?

Main result

$$\widetilde{A} := \begin{bmatrix} A & BB^T \\ 0 & -A^T \end{bmatrix}, \widetilde{B} := \begin{bmatrix} B \\ -C^T \end{bmatrix}, \widetilde{C} := \begin{bmatrix} C & B^T \end{bmatrix}$$
(2)

Theorem

Assume the singular Hamiltonian system is autonomous. The following are equivalent:

• There are no inadmissible initial conditions.

(2)
$$\widetilde{C}e^{\widetilde{A}t}\widetilde{B}$$
 is nonsingular at $t=0$.

$$line ker (\widetilde{C}\widetilde{B}) = 0$$

• rank
$$(CB - B^T C^T) = \mathbf{p}$$

Main result

$$\widetilde{A} := \begin{bmatrix} A & BB^T \\ 0 & -A^T \end{bmatrix}, \widetilde{B} := \begin{bmatrix} B \\ -C^T \end{bmatrix}, \widetilde{C} := \begin{bmatrix} C & B^T \end{bmatrix}$$
(2)

Theorem

Assume the singular Hamiltonian system is autonomous. The following are equivalent:

- There are no inadmissible initial conditions.
- (2) $\widetilde{C}e^{\widetilde{A}t}\widetilde{B}$ is nonsingular at t=0.

$$line ker (\widetilde{C}\widetilde{B}) = 0$$

• rank
$$(CB - B^T C^T) = \mathbf{p}$$

Recall our theorem for the interconnection of \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}$. The following are equivalent.

- The interconnected system is autonomous.
- $\ \ \, @ \ \ \, \widetilde{C}e^{\widetilde{A}t}\widetilde{B} \text{ is nonsingular for some } t.$
- $e ker (\widetilde{C}\widetilde{B}) \cap ker (\widetilde{C}\widetilde{A}\widetilde{B}) \cap \dots \cap ker (\widetilde{C}\widetilde{A}^{2n-1}\widetilde{B}) = 0$

- det $(CB (CB)^T) \neq 0$ is 'opposite' to requirement for being all-pass.
- G(s) is all-pass $\Leftrightarrow I G(-j\omega)^T G(j\omega) = 0$ for each $\omega \in \mathbb{R}$.
- Assumption D = I and G is all-pass \Rightarrow

$$CB - B^T C^T = 0, \ CAB + (CAB)^T - B^T C^T CB = 0, \ \cdots$$

• Notice that CB is the first moment of G(s) about $s = \infty$. Thus a necessary condition on the first moment for G to be all-pass is:

- det $(CB (CB)^T) \neq 0$ is 'opposite' to requirement for being all-pass.
- G(s) is all-pass $\Leftrightarrow I G(-j\omega)^T G(j\omega) = 0$ for each $\omega \in \mathbb{R}$.
- Assumption D = I and G is all-pass \Rightarrow

$$CB - B^T C^T = 0, \ CAB + (CAB)^T - B^T C^T CB = 0, \ \cdots$$

• Notice that CB is the first moment of G(s) about $s = \infty$. Thus a necessary condition on the first moment for G to be all-pass is: the skew-symmetric part of CB is zero.

- det $(CB (CB)^T) \neq 0$ is 'opposite' to requirement for being all-pass.
- G(s) is all-pass $\Leftrightarrow I G(-j\omega)^T G(j\omega) = 0$ for each $\omega \in \mathbb{R}$.
- Assumption D = I and G is all-pass \Rightarrow

$$CB - B^T C^T = 0, \ CAB + (CAB)^T - B^T C^T CB = 0, \ \cdots$$

- Notice that CB is the first moment of G(s) about $s = \infty$. Thus a necessary condition on the first moment for G to be all-pass is: the skew-symmetric part of CB is zero.
- In fact,

the interconnection of \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}$ is autonomous \Leftrightarrow no all-pass subsystem.

- det $(CB (CB)^T) \neq 0$ is 'opposite' to requirement for being all-pass.
- G(s) is all-pass $\Leftrightarrow I G(-j\omega)^T G(j\omega) = 0$ for each $\omega \in \mathbb{R}$.
- Assumption D = I and G is all-pass \Rightarrow

$$CB - B^T C^T = 0, \ CAB + (CAB)^T - B^T C^T CB = 0, \ \cdots$$

- Notice that CB is the first moment of G(s) about $s = \infty$. Thus a necessary condition on the first moment for G to be all-pass is: the skew-symmetric part of CB is zero.
- In fact,

the interconnection of \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}$ is autonomous \Leftrightarrow no all-pass subsystem.

 On the other hand, a singular Hamiltonian system (assumed autonomous) has no inadmissible initial conditions if and only if CB – B^TC^T is nonsingular.

- det $(CB (CB)^T) \neq 0$ is 'opposite' to requirement for being all-pass.
- G(s) is all-pass $\Leftrightarrow I G(-j\omega)^T G(j\omega) = 0$ for each $\omega \in \mathbb{R}$.
- Assumption D = I and G is all-pass \Rightarrow

$$CB - B^T C^T = 0, \ CAB + (CAB)^T - B^T C^T CB = 0, \ \cdots$$

- Notice that CB is the first moment of G(s) about $s = \infty$. Thus a necessary condition on the first moment for G to be all-pass is: the skew-symmetric part of CB is zero.
- In fact,

the interconnection of \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}$ is autonomous \Leftrightarrow no all-pass subsystem.

- On the other hand, a singular Hamiltonian system (assumed autonomous) has no inadmissible initial conditions if and only if $CB - B^T C^T$ is nonsingular.
- Odd number of inputs (and autonomous, ill-posed) ⇒ there exist inadmissible initial conditions.

Example

 $G(s) := \frac{s+1}{s+2}$ with input u and output y.

State space realization :

(A,B,C,D) = (-2,1,-1,1).

Dual system := $\frac{s-1}{s-2}$. State space realization : (A, B, C, D) = (2, 1, 1, 1).

The interconnection of G and its dual:

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x\\ z\\ y \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1\\ 0 & 1 & 1\\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x\\ z\\ y \end{bmatrix}$$

- Above Es A has a zero at infinity.
- The differential equation in just x and z has initial conditions that have impulsive solutions.
- From our result too: $CB B^T C^T = 0$.

Conclusion

- For the Σ we considered: $\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$ is an 'all-pass' subsystem (possibly autonomous)
- In the context of Σ -dissipativity, this is set of 'stationary' trajectories with respect to $w^T \Sigma w$.
- The stationary trajectories are interconnection of \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}$.
- Singular descriptor system if and only if ill-posed interconnection.
- Assuming D = I (the zeroth moment of G), no inadmissible initial conditions ⇔ G's first moment has its skew-symmetric part nonsingular.

Conclusion

- For the Σ we considered: $\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$ is an 'all-pass' subsystem (possibly autonomous)
- In the context of Σ -dissipativity, this is set of 'stationary' trajectories with respect to $w^T \Sigma w$.
- The stationary trajectories are interconnection of \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}$.
- Singular descriptor system if and only if ill-posed interconnection.
- Assuming D = I (the zeroth moment of G), no inadmissible initial conditions $\Leftrightarrow G$'s first moment has its skew-symmetric part nonsingular.
- Note: square MIMO all-pass G has first moment symmetric.
- No obvious way to have E as skew-Hamitonian and H as Hamiltonian (as considered by Mehl, Mehrmann, et al.)
- But: for our pencil (E, H) also, generalized eigenvalues occur in quadruplets $(\lambda, \overline{\lambda}, -\lambda, -\overline{\lambda})$: like Mehl, Mehrmann and others.

Questions, thank you! belur@iitb.ac.in

Inadmissible initial condition

- Consider an autonomous system $P(\frac{d}{dt})w(t) = 0$, with $P(\xi) \in \mathbb{R}^{w \times w}[\xi]$ nonsingular.
- A vector $\overline{w}(0) \in \mathbb{R}^{zw}$ is said to be an *inadmissible* initial condition vector if the corresponding solution w(t) contains the Dirac impulse $\delta(t)$ and/or its distributional derivatives.
- There exist no inadmissible initial conditions for $P(\frac{d}{dt})w = 0 \Leftrightarrow P$ has no zeros at infinity.

Stationary trajectories

- Consider a behavior $\mathfrak{B} \in \mathfrak{L}_{cont}^{w}$ and a symmetric nonsingular matrix $\Sigma \in \mathbb{R}^{w \times w}$.
 - A trajectory $w \in \mathfrak{B}$ is Σ -stationary if

$$\int_{-\infty}^{\infty} w^T \Sigma v \, \mathrm{d}t = 0 \text{ for all } v \in \mathfrak{B} \cap \mathfrak{D}.$$

• Assume (wlog) that
$$\Sigma := \begin{bmatrix} I_m & 0 \\ 0 & -I_p \end{bmatrix}$$

Definition

^a Given a controllable behavior $\mathfrak{B} \in \mathfrak{L}^{\mathsf{w}}_{\text{cont}}$ and $\Sigma \in \mathbb{R}^{\mathsf{w} \times \mathsf{w}}$, the Σ -orthogonal complement of \mathfrak{B} , denoted by $\mathfrak{B}^{\perp_{\Sigma}}$ is the set of all the trajectories $v \in \mathfrak{L}^{\text{loc}}_{1^{\circ}}(\mathbb{R}, \mathbb{R}^{\mathsf{w}})$ such that $\int_{-\infty}^{\infty} v^T \Sigma w \, dt = 0$ for all $w \in \mathfrak{B} \cap \mathfrak{D}$.

^aJ.C. Willems and H.L. Trentelman, "On quadratic differential forms, SIAM Journal on Control and Optimization", 1998.

• The set of Σ -stationary trajectories is equal to $\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$.