Stationary trajectories, singular Hamiltonian systems and ill-posed Interconnection

S.C. Jugade, Debasattam Pal, Rachel K. Kalaimani and Madhu N. Belur Department of Electrical Engineering Indian Institute of Technology Guwahati, Indian Institute of Technology Bombay

$$
\text { July 18, } 2013
$$

Outline

- Problem formulation: dual/adjoint system
- Main results: well-posed interconnection and the regular case
- Ill-posed interconnection \& the singular case (descriptor system)
- Zeros at infinity, inadmissible initial conditions
- Necessary and sufficient conditions for no zeros at infinity (main result)

Main issues concerned in this talk

- When is the interconnection of a system and its 'adjoint' (dual) a well-posed interconnection?
- If ill-posed, when is the interconnection autonomous?

Main issues concerned in this talk

- When is the interconnection of a system and its 'adjoint' (dual) a well-posed interconnection?
- If ill-posed, when is the interconnection autonomous?
- Interconnection of system and its dual: kind-of stationary trajectories.

Main issues concerned in this talk

- When is the interconnection of a system and its 'adjoint' (dual) a well-posed interconnection?
- If ill-posed, when is the interconnection autonomous?
- Interconnection of system and its dual: kind-of stationary trajectories.
- Can the interconnection cause closed-loop to have

Main issues concerned in this talk

- When is the interconnection of a system and its 'adjoint' (dual) a well-posed interconnection?
- If ill-posed, when is the interconnection autonomous?
- Interconnection of system and its dual: kind-of stationary trajectories.
- Can the interconnection cause closed-loop to have impulsive initial conditions?
- Under what conditions will the closed-loop not have inadmissible initial conditions?

Main issues concerned in this talk

- When is the interconnection of a system and its 'adjoint' (dual) a well-posed interconnection?
- If ill-posed, when is the interconnection autonomous?
- Interconnection of system and its dual: kind-of stationary trajectories.
- Can the interconnection cause closed-loop to have impulsive initial conditions?
- Under what conditions will the closed-loop not have inadmissible initial conditions?
- Well-posed interconnection of a system and its adjoint gives $\frac{\mathrm{d}}{\mathrm{d} t} x=H x$ with H :

Main issues concerned in this talk

- When is the interconnection of a system and its 'adjoint' (dual) a well-posed interconnection?
- If ill-posed, when is the interconnection autonomous?
- Interconnection of system and its dual: kind-of stationary trajectories.
- Can the interconnection cause closed-loop to have impulsive initial conditions?
- Under what conditions will the closed-loop not have inadmissible initial conditions?
- Well-posed interconnection of a system and its adjoint gives $\frac{\mathrm{d}}{\mathrm{d} t} x=H x$ with H : a Hamiltonian matrix.

Main issues concerned in this talk

- When is the interconnection of a system and its 'adjoint' (dual) a well-posed interconnection?
- If ill-posed, when is the interconnection autonomous?
- Interconnection of system and its dual: kind-of stationary trajectories.
- Can the interconnection cause closed-loop to have impulsive initial conditions?
- Under what conditions will the closed-loop not have inadmissible initial conditions?
- Well-posed interconnection of a system and its adjoint gives $\frac{\mathrm{d}}{\mathrm{d} t} x=H x$ with H : a Hamiltonian matrix.
- Analogue of Hamiltonian matrix for ill-posed case?

Main issues concerned in this talk

- When is the interconnection of a system and its 'adjoint' (dual) a well-posed interconnection?
- If ill-posed, when is the interconnection autonomous?
- Interconnection of system and its dual: kind-of stationary trajectories.
- Can the interconnection cause closed-loop to have impulsive initial conditions?
- Under what conditions will the closed-loop not have inadmissible initial conditions?
- Well-posed interconnection of a system and its adjoint gives $\frac{\mathrm{d}}{\mathrm{d} t} x=H x$ with H : a Hamiltonian matrix.
- Analogue of Hamiltonian matrix for ill-posed case?
- Link with other singular Hamiltonian pencils? Skew-Hermitian Hermitian pencil? (Mehl, Mehrmann, Meerbergen, Watkins)

Well-posed interconnection

Systems \mathfrak{B}_{1} and \mathfrak{B}_{2} (with transfer functions $G_{1} \& G_{2}$)
Call the interconnection of \mathfrak{B}_{1} and \mathfrak{B}_{2} well-posed if
for each $d_{1}, d_{2} \in \mathfrak{L}_{1}^{\text {loc }}$, there exist unique u_{1}, y_{1}, u_{2} and $y_{2} \in \mathfrak{L}_{1}^{\text {loc }}$ such that

Well-posed interconnection

Systems \mathfrak{B}_{1} and \mathfrak{B}_{2} (with transfer functions $G_{1} \& G_{2}$)
Call the interconnection of \mathfrak{B}_{1} and \mathfrak{B}_{2} well-posed if
for each $d_{1}, d_{2} \in \mathfrak{L}_{1}^{\text {loc }}$, there exist unique u_{1}, y_{1}, u_{2} and $y_{2} \in \mathfrak{L}_{1}^{\text {loc }}$ such that the laws (G_{1}, G_{2} and Σ 's) are satisfied.

Well-posed interconnection

Systems \mathfrak{B}_{1} and \mathfrak{B}_{2} (with transfer functions $G_{1} \& G_{2}$)
Call the interconnection of \mathfrak{B}_{1} and \mathfrak{B}_{2}
 well-posed if
for each $d_{1}, d_{2} \in \mathfrak{L}_{1}^{\text {loc }}$,
there exist unique u_{1}, y_{1}, u_{2} and $y_{2} \in \mathfrak{L}_{1}^{\text {loc }}$ such that
the laws (G_{1}, G_{2} and Σ 's) are satisfied.
Call the set of allowed trajectories of system 1 as behavior \mathfrak{B}_{1}

$$
\mathfrak{B}_{1}:=\left\{\left(u_{1}, y_{1}\right) \mid y_{1}=G_{1} u_{1}\right\}
$$

Similarly,

$$
\mathfrak{B}_{2}:=\left\{\left(y_{2}, u_{2}\right) \mid y_{2}=G_{2} u_{2}\right\}
$$

Well-posed interconnection

Systems \mathfrak{B}_{1} and \mathfrak{B}_{2} (with transfer functions $G_{1} \& G_{2}$)
Call the interconnection of \mathfrak{B}_{1} and \mathfrak{B}_{2}
 well-posed if
for each $d_{1}, d_{2} \in \mathfrak{L}_{1}^{\text {loc }}$,
there exist unique u_{1}, y_{1}, u_{2} and $y_{2} \in \mathfrak{L}_{1}^{\text {loc }}$ such that
the laws (G_{1}, G_{2} and Σ 's) are satisfied.
Call the set of allowed trajectories of system 1 as behavior \mathfrak{B}_{1}

$$
\mathfrak{B}_{1}:=\left\{\left(u_{1}, y_{1}\right) \mid y_{1}=G_{1} u_{1}\right\}
$$

Similarly,

$$
\mathfrak{B}_{2}:=\left\{\left(y_{2}, u_{2}\right) \mid y_{2}=G_{2} u_{2}\right\}
$$

For this talk: System \equiv its behavior

Well-posed interconnection

Systems \mathfrak{B}_{1} and \mathfrak{B}_{2} (with transfer functions $G_{1} \& G_{2}$)
Call the interconnection of \mathfrak{B}_{1} and \mathfrak{B}_{2}
 well-posed if
for each $d_{1}, d_{2} \in \mathfrak{L}_{1}^{\text {loc }}$,
there exist unique u_{1}, y_{1}, u_{2} and $y_{2} \in \mathfrak{L}_{1}^{\text {loc }}$ such that
the laws (G_{1}, G_{2} and Σ 's) are satisfied.
Call the set of allowed trajectories of system 1 as behavior \mathfrak{B}_{1}

$$
\mathfrak{B}_{1}:=\left\{\left(u_{1}, y_{1}\right) \mid y_{1}=G_{1} u_{1}\right\}
$$

Similarly,

$$
\mathfrak{B}_{2}:=\left\{\left(y_{2}, u_{2}\right) \mid y_{2}=G_{2} u_{2}\right\}
$$

For this talk: System \equiv its behavior
Positive or negative feedback? Assume $d_{1}=0$ and $d_{2}=0$.

Well-posed interconnection

Interconnection of \mathfrak{B}_{1} and \mathfrak{B}_{2} :

Well-posed interconnection

Interconnection of \mathfrak{B}_{1} and \mathfrak{B}_{2} :
trajectories need satisfy laws of both \mathfrak{B}_{1} and \mathfrak{B}_{2}.
Allowed trajectories of the closed loop system: intersection $\mathfrak{B}_{1} \cap \mathfrak{B}_{2}$.

Well-posed interconnection

Interconnection of \mathfrak{B}_{1} and \mathfrak{B}_{2} : trajectories need satisfy laws of both \mathfrak{B}_{1} and \mathfrak{B}_{2}. Allowed trajectories of the closed loop system: intersection $\mathfrak{B}_{1} \cap \mathfrak{B}_{2}$. In this talk, \mathfrak{B}_{2} is the 'adjoint/dual' system of \mathfrak{B}_{1}. What is the adjoint of a system (in behavioral sense)?

Well-posed interconnection

Interconnection of \mathfrak{B}_{1} and \mathfrak{B}_{2} :
trajectories need satisfy laws of both \mathfrak{B}_{1} and \mathfrak{B}_{2}.
Allowed trajectories of the closed loop system: intersection $\mathfrak{B}_{1} \cap \mathfrak{B}_{2}$.
In this talk, \mathfrak{B}_{2} is the 'adjoint/dual' system of \mathfrak{B}_{1}.
What is the adjoint of a system (in behavioral sense)?
Consider behaviors \mathfrak{B}_{1} and $\mathfrak{B}_{2} \subseteq \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\boldsymbol{w}}\right)$ and $\Sigma=\left[\begin{array}{cc}I & 0 \\ 0 & -I\end{array}\right]$. \mathfrak{B}_{1} and \mathfrak{B}_{2} are called Σ-orthogonal if

$$
\int_{-\infty}^{\infty} w_{1}^{T} \Sigma w_{2} \mathrm{~d} t=0 \text { for all } w_{1} \in \mathfrak{B}_{1} \text { and } w_{2} \in \mathfrak{B}_{2}
$$

Well-posed interconnection

Interconnection of \mathfrak{B}_{1} and \mathfrak{B}_{2} :
trajectories need satisfy laws of both \mathfrak{B}_{1} and \mathfrak{B}_{2}.
Allowed trajectories of the closed loop system: intersection $\mathfrak{B}_{1} \cap \mathfrak{B}_{2}$.
In this talk, \mathfrak{B}_{2} is the 'adjoint/dual' system of \mathfrak{B}_{1}.
What is the adjoint of a system (in behavioral sense)?
Consider behaviors \mathfrak{B}_{1} and $\mathfrak{B}_{2} \subseteq \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\boldsymbol{w}}\right)$ and $\Sigma=\left[\begin{array}{cc}I & 0 \\ 0 & -I\end{array}\right]$. \mathfrak{B}_{1} and \mathfrak{B}_{2} are called Σ-orthogonal if

$$
\int_{-\infty}^{\infty} w_{1}^{T} \Sigma w_{2} \mathrm{~d} t=0 \text { for all } w_{1} \in \mathfrak{B}_{1} \text { and } w_{2} \in \mathfrak{B}_{2}
$$

Above integrals could be undefined: restrict each of \mathfrak{B}_{1} and \mathfrak{B}_{2} to just the compactly supported trajectories, i.e. \mathfrak{D}.

Well-posed interconnection

Interconnection of \mathfrak{B}_{1} and \mathfrak{B}_{2} :
trajectories need satisfy laws of both \mathfrak{B}_{1} and \mathfrak{B}_{2}.
Allowed trajectories of the closed loop system: intersection $\mathfrak{B}_{1} \cap \mathfrak{B}_{2}$.
In this talk, \mathfrak{B}_{2} is the 'adjoint/dual' system of \mathfrak{B}_{1}.
What is the adjoint of a system (in behavioral sense)?
Consider behaviors \mathfrak{B}_{1} and $\mathfrak{B}_{2} \subseteq \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\boldsymbol{w}}\right)$ and $\Sigma=\left[\begin{array}{cc}I & 0 \\ 0 & -I\end{array}\right]$. \mathfrak{B}_{1} and \mathfrak{B}_{2} are called Σ-orthogonal if

$$
\int_{-\infty}^{\infty} w_{1}^{T} \Sigma w_{2} \mathrm{~d} t=0 \text { for all } w_{1} \in \mathfrak{B}_{1} \text { and } w_{2} \in \mathfrak{B}_{2}
$$

Above integrals could be undefined: restrict each of \mathfrak{B}_{1} and \mathfrak{B}_{2} to just the compactly supported trajectories, i.e. \mathfrak{D}.
(Controllability assumed throughout this talk)

Well-posed interconnection

Interconnection of \mathfrak{B}_{1} and \mathfrak{B}_{2} :
trajectories need satisfy laws of both \mathfrak{B}_{1} and \mathfrak{B}_{2}.
Allowed trajectories of the closed loop system: intersection $\mathfrak{B}_{1} \cap \mathfrak{B}_{2}$.
In this talk, \mathfrak{B}_{2} is the 'adjoint/dual' system of \mathfrak{B}_{1}.
What is the adjoint of a system (in behavioral sense)?
Consider behaviors \mathfrak{B}_{1} and $\mathfrak{B}_{2} \subseteq \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\boldsymbol{w}}\right)$ and $\Sigma=\left[\begin{array}{cc}I & 0 \\ 0 & -I\end{array}\right]$. \mathfrak{B}_{1} and \mathfrak{B}_{2} are called Σ-orthogonal if

$$
\int_{-\infty}^{\infty} w_{1}^{T} \Sigma w_{2} \mathrm{~d} t=0 \text { for all } w_{1} \in \mathfrak{B}_{1} \text { and } w_{2} \in \mathfrak{B}_{2}
$$

Above integrals could be undefined: restrict each of \mathfrak{B}_{1} and \mathfrak{B}_{2} to just the compactly supported trajectories, i.e. \mathfrak{D}.
(Controllability assumed throughout this talk)
For a controllable system $\mathfrak{B}_{1} \subseteq \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathbf{W}}\right)$, define its Σ-orthogonal complement $\mathfrak{B}_{1}^{\perp_{\Sigma}}$ as:

$$
\mathfrak{B}_{1}^{\perp_{\Sigma}}:=\left\{v \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \mid \int_{\mathbb{R}} w^{T} \Sigma v \mathrm{~d} t=0 \text { for all } w \in \mathfrak{B}_{1} \cap \mathfrak{D}\right\}
$$

Hamiltonian matrix

$$
\mathfrak{B}: \begin{aligned}
& \dot{x}=A x+B w_{1} \\
& w_{2}=C x+D w_{1}
\end{aligned} \quad \mathfrak{B}^{\perp_{\Sigma}}: \begin{aligned}
& \dot{z}=-A^{T} z-C^{T} v_{1} \\
& v_{2}=B^{T} z+D^{T} v_{1}
\end{aligned}
$$

w_{1}, v_{1} : inputs, w_{2}, v_{2} : outputs.
Interconnect \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}: w_{2}=v_{1}$ and $w_{1}=v_{2}$

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{z} \\
0
\end{array}\right]=\left[\begin{array}{ccc}
A & B B^{T} & B D^{T} \\
0 & -A^{T} & -C^{T} \\
-C & -D B^{T} & I_{\mathrm{p}}-D D^{T}
\end{array}\right]\left[\begin{array}{c}
x \\
z \\
v_{1}
\end{array}\right]
$$

$\mathfrak{B} \wedge \mathfrak{B}^{\perp_{\Sigma}}$ is well-posed $\Leftrightarrow\left(I_{\mathrm{p}}-D D^{T}\right)$ is nonsingular.

Hamiltonian matrix

$$
\mathfrak{B}: \begin{aligned}
& \dot{x}=A x+B w_{1} \\
& w_{2}=C x+D w_{1}
\end{aligned} \quad \mathfrak{B}^{\perp_{\Sigma}}: \begin{aligned}
& \dot{z}=-A^{T} z-C^{T} v_{1} \\
& v_{2}=B^{T} z+D^{T} v_{1}
\end{aligned}
$$

w_{1}, v_{1} : inputs, w_{2}, v_{2} : outputs.
Interconnect \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}: w_{2}=v_{1}$ and $w_{1}=v_{2}$

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{z} \\
0
\end{array}\right]=\left[\begin{array}{ccc}
A & B B^{T} & B D^{T} \\
0 & -A^{T} & -C^{T} \\
-C & -D B^{T} & I_{\mathrm{p}}-D D^{T}
\end{array}\right]\left[\begin{array}{c}
x \\
z \\
v_{1}
\end{array}\right]
$$

$\mathfrak{B} \wedge \mathfrak{B}^{\perp_{\Sigma}}$ is well-posed $\Leftrightarrow\left(I_{\mathrm{p}}-D D^{T}\right)$ is nonsingular.
Eliminating v_{1}, we get $I_{2 \mathrm{n}}\left[\begin{array}{l}\dot{x} \\ \dot{z}\end{array}\right]=H\left[\begin{array}{l}x \\ z\end{array}\right]$ with $H \in \mathbb{R}^{2 \mathrm{n} \times 2 \mathrm{n}}$ the Hamiltonian matrix:

$$
H=\left[\begin{array}{cl}
A+B D^{T}\left(I_{\mathrm{p}}-D D^{T}\right)^{-1} C & B B^{T}+B D^{T}\left(I_{\mathrm{p}}-D D^{T}\right)^{-1} D B^{T} \\
-C^{T}\left(I_{\mathrm{p}}-D D^{T}\right)^{-1} C & -\left(A^{T}+C^{T}\left(I_{\mathrm{p}}-D D^{T}\right)^{-1} D B^{T}\right)
\end{array}\right]
$$

Hamiltonian matrix

$$
\mathfrak{B}: \begin{aligned}
& \dot{x}=A x+B w_{1} \\
& w_{2}=C x+D w_{1}
\end{aligned} \quad \mathfrak{B}^{\perp_{\Sigma}}: \begin{aligned}
& \dot{z}=-A^{T} z-C^{T} v_{1} \\
& v_{2}=B^{T} z+D^{T} v_{1}
\end{aligned}
$$

w_{1}, v_{1} : inputs, w_{2}, v_{2} : outputs.
Interconnect \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}: w_{2}=v_{1}$ and $w_{1}=v_{2}$

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{z} \\
0
\end{array}\right]=\left[\begin{array}{ccc}
A & B B^{T} & B D^{T} \\
0 & -A^{T} & -C^{T} \\
-C & -D B^{T} & I_{\mathrm{p}}-D D^{T}
\end{array}\right]\left[\begin{array}{c}
x \\
z \\
v_{1}
\end{array}\right]
$$

$\mathfrak{B} \wedge \mathfrak{B}^{\perp_{\Sigma}}$ is well-posed $\Leftrightarrow\left(I_{\mathrm{p}}-D D^{T}\right)$ is nonsingular.
Eliminating v_{1}, we get $I_{2 \mathrm{n}}\left[\begin{array}{l}\dot{x} \\ \dot{z}\end{array}\right]=H\left[\begin{array}{l}x \\ z\end{array}\right]$ with $H \in \mathbb{R}^{2 \mathrm{n} \times 2 \mathrm{n}}$ the Hamiltonian matrix:

$$
H=\left[\begin{array}{cl}
A+B D^{T}\left(I_{\mathrm{p}}-D D^{T}\right)^{-1} C & B B^{T}+B D^{T}\left(I_{\mathrm{p}}-D D^{T}\right)^{-1} D B^{T} \\
-C^{T}\left(I_{\mathrm{p}}-D D^{T}\right)^{-1} C & -\left(A^{T}+C^{T}\left(I_{\mathrm{p}}-D D^{T}\right)^{-1} D B^{T}\right)
\end{array}\right]
$$

With small variations (due to the Σ-matrix),

Hamiltonian matrix

$$
\mathfrak{B}: \begin{aligned}
& \dot{x}=A x+B w_{1} \\
& w_{2}=C x+D w_{1}
\end{aligned} \quad \mathfrak{B}^{\perp_{\Sigma}}: \begin{aligned}
& \dot{z}=-A^{T} z-C^{T} v_{1} \\
& v_{2}=B^{T} z+D^{T} v_{1}
\end{aligned}
$$

w_{1}, v_{1} : inputs, w_{2}, v_{2} : outputs.
Interconnect \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}: w_{2}=v_{1}$ and $w_{1}=v_{2}$

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{z} \\
0
\end{array}\right]=\left[\begin{array}{ccc}
A & B B^{T} & B D^{T} \\
0 & -A^{T} & -C^{T} \\
-C & -D B^{T} & I_{\mathrm{p}}-D D^{T}
\end{array}\right]\left[\begin{array}{c}
x \\
z \\
v_{1}
\end{array}\right]
$$

$\mathfrak{B} \wedge \mathfrak{B}^{\perp_{\Sigma}}$ is well-posed $\Leftrightarrow\left(I_{\mathrm{p}}-D D^{T}\right)$ is nonsingular.
Eliminating v_{1}, we get $I_{2 \mathrm{n}}\left[\begin{array}{l}\dot{x} \\ \dot{z}\end{array}\right]=H\left[\begin{array}{l}x \\ z\end{array}\right]$ with $H \in \mathbb{R}^{2 \mathrm{n} \times 2 \mathrm{n}}$ the Hamiltonian matrix:

$$
H=\left[\begin{array}{cc}
A+B D^{T}\left(I_{\mathrm{p}}-D D^{T}\right)^{-1} C & B B^{T}+B D^{T}\left(I_{\mathrm{p}}-D D^{T}\right)^{-1} D B^{T} \\
-C^{T}\left(I_{\mathrm{p}}-D D^{T}\right)^{-1} C & -\left(A^{T}+C^{T}\left(I_{\mathrm{p}}-D D^{T}\right)^{-1} D B^{T}\right)
\end{array}\right]
$$

With small variations (due to the Σ-matrix),
H arises in LQ, LQG, \mathcal{H}_{2} and \mathcal{H}_{∞}-control problems. For LQ control, above trajectories are 'stationary': Willems, CDC-92.

Hamiltonian matrix

$$
\mathfrak{B}: \begin{aligned}
& \dot{x}=A x+B w_{1} \\
& w_{2}=C x+D w_{1}
\end{aligned} \quad \mathfrak{B}^{\perp_{\Sigma}}: \begin{aligned}
& \dot{z}=-A^{T} z-C^{T} v_{1} \\
& v_{2}=B^{T} z+D^{T} v_{1}
\end{aligned}
$$

w_{1}, v_{1} : inputs, w_{2}, v_{2} : outputs.
Interconnect \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}: w_{2}=v_{1}$ and $w_{1}=v_{2}$

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{z} \\
0
\end{array}\right]=\left[\begin{array}{ccc}
A & B B^{T} & B D^{T} \\
0 & -A^{T} & -C^{T} \\
-C & -D B^{T} & I_{\mathrm{p}}-D D^{T}
\end{array}\right]\left[\begin{array}{c}
x \\
z \\
v_{1}
\end{array}\right]
$$

$\mathfrak{B} \wedge \mathfrak{B}^{\perp_{\Sigma}}$ is well-posed $\Leftrightarrow\left(I_{\mathrm{p}}-D D^{T}\right)$ is nonsingular.
Eliminating v_{1}, we get $I_{2 \mathrm{n}}\left[\begin{array}{c}\dot{x} \\ \dot{z}\end{array}\right]=H\left[\begin{array}{l}x \\ z\end{array}\right]$ with $H \in \mathbb{R}^{2 \mathrm{n} \times 2 \mathrm{n}}$ the Hamiltonian matrix:

$$
H=\left[\begin{array}{cc}
A+B D^{T}\left(I_{\mathrm{p}}-D D^{T}\right)^{-1} C & B B^{T}+B D^{T}\left(I_{\mathrm{p}}-D D^{T}\right)^{-1} D B^{T} \\
-C^{T}\left(I_{\mathrm{p}}-D D^{T}\right)^{-1} C & -\left(A^{T}+C^{T}\left(I_{\mathrm{p}}-D D^{T}\right)^{-1} D B^{T}\right)
\end{array}\right]
$$

With small variations (due to the Σ-matrix),
H arises in LQ, LQG, \mathcal{H}_{2} and \mathcal{H}_{∞}-control problems.
For LQ control, above trajectories are 'stationary': Willems, CDC-92.
Nonsingularity of $\left(I_{\mathrm{p}}-D D^{T}\right)$ required for Riccati (in)equality.

Extreme case: $D=I$

We focus on the case when $\left(I_{\mathrm{p}}-D D^{T}\right)$ is singular: the ill-posed case. To understand better the ill-posed case, assume G is square and $D=I$. Also assume B has full column rank

Extreme case: $D=I$

We focus on the case when $\left(I_{\mathrm{p}}-D D^{T}\right)$ is singular: the ill-posed case. To understand better the ill-posed case, assume G is square and $D=I$. Also assume B has full column rank (otherwise, can show, $\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$ is non-autonomous). Under what conditions is $\mathfrak{B} \wedge \mathfrak{B}^{\perp_{\Sigma}}$ autonomous?

Ill-posed interconnection $\mathfrak{B} \wedge \mathfrak{B}^{\perp_{\Sigma}}$

Assume $D=I$ and B is full column rank. Define

$$
\widetilde{A}:=\left[\begin{array}{cc}
A & B B^{T} \tag{1}\\
0 & -A^{T}
\end{array}\right], \widetilde{B}:=\left[\begin{array}{c}
B \\
-C^{T}
\end{array}\right], \widetilde{C}:=\left[\begin{array}{ll}
C & B^{T}
\end{array}\right]
$$

Theorem

Consider the interconnection of the behaviors \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}$. Then the following are equivalent.
(1) The interconnected system is autonomous.
(2) $\widetilde{C} e^{\widetilde{A} t} \widetilde{B}$ is nonsingular for some t.
© $\operatorname{ker}(\widetilde{C} \widetilde{B}) \cap \operatorname{ker}(\widetilde{C} \widetilde{A} \widetilde{B}) \cap \cdots \cap \operatorname{ker}\left(\widetilde{C} \widetilde{A}^{2 \mathrm{n}-1} \widetilde{B}\right)=0$

Inadmissible initial conditions

For a descriptor system $E \frac{\mathrm{~d}}{\mathrm{~d} t} x=A x$, with $\operatorname{det}(s E-A) \neq 0$, some initial conditions $x\left(0^{-}\right)$could result in impulsive solutions $x(t)$.

Call these initial conditions inadmissible.

Inadmissible initial conditions

For a descriptor system $E \frac{\mathrm{~d}}{\mathrm{~d} t} x=A x$, with $\operatorname{det}(s E-A) \neq 0$, some initial conditions $x\left(0^{-}\right)$could result in impulsive solutions $x(t)$.

Call these initial conditions inadmissible.

No inadmissible initial conditions $\Leftrightarrow(s E-A)$ has no 'zeros at infinity'.
(Like a polynomial matrix $P(s)$ can have finite zeros, $P(s)$ can also have zeros at $s=\infty$.)

Zeros at infinity $\not \equiv \equiv$ generalized eigenvalue at ∞.

Inadmissible initial conditions

For a descriptor system $E \frac{\mathrm{~d}}{\mathrm{~d} t} x=A x$, with $\operatorname{det}(s E-A) \neq 0$, some initial conditions $x\left(0^{-}\right)$could result in impulsive solutions $x(t)$.

Call these initial conditions inadmissible.

No inadmissible initial conditions $\Leftrightarrow(s E-A)$ has no 'zeros at infinity'.
(Like a polynomial matrix $P(s)$ can have finite zeros, $P(s)$ can also have zeros at $s=\infty$.)

Zeros at infinity $\not \equiv \equiv$ generalized eigenvalue at ∞.
When does an autonomous singular Hamiltonian system have inadmissible initial conditions?

Main result

$$
\widetilde{A}:=\left[\begin{array}{cc}
A & B B^{T} \tag{2}\\
0 & -A^{T}
\end{array}\right], \widetilde{B}:=\left[\begin{array}{c}
B \\
-C^{T}
\end{array}\right], \widetilde{C}:=\left[\begin{array}{ll}
C & B^{T}
\end{array}\right]
$$

Theorem

Assume the singular Hamiltonian system is autonomous. The following are equivalent:
(1) There are no inadmissible initial conditions.
(2) $\widetilde{C} e^{\widetilde{A} t} \widetilde{B}$ is nonsingular at $t=0$.
(3) $\operatorname{ker}(\widetilde{C} \widetilde{B})=0$.
(1) $\operatorname{rank}\left(C B-B^{T} C^{T}\right)=\mathrm{p}$

Main result

$$
\widetilde{A}:=\left[\begin{array}{cc}
A & B B^{T} \tag{2}\\
0 & -A^{T}
\end{array}\right], \widetilde{B}:=\left[\begin{array}{c}
B \\
-C^{T}
\end{array}\right], \widetilde{C}:=\left[\begin{array}{ll}
C & B^{T}
\end{array}\right]
$$

Theorem

Assume the singular Hamiltonian system is autonomous. The following are equivalent:
(1) There are no inadmissible initial conditions.
(2) $\widetilde{C} e^{\widetilde{A} t} \widetilde{B}$ is nonsingular at $t=0$.
(3) $\operatorname{ker}(\widetilde{C} \widetilde{B})=0$.
(1) rank $\left(C B-B^{T} C^{T}\right)=\mathrm{p}$

Recall our theorem for the interconnection of \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}$.
The following are equivalent.
(1) The interconnected system is autonomous.
(2) $\widetilde{C} e^{\widetilde{A} t} \widetilde{B}$ is nonsingular for some t.
(3) $\operatorname{ker}(\widetilde{C} \widetilde{B}) \cap \operatorname{ker}(\widetilde{C} \widetilde{A} \widetilde{B}) \cap \cdots \cap \operatorname{ker}\left(\widetilde{C} \widetilde{A}^{2 \mathrm{n}-1} \widetilde{B}\right)=0$

Relation with all pass MIMO transfer matrix

- $\operatorname{det}\left(C B-(C B)^{T}\right) \neq 0$ is 'opposite' to requirement for being all-pass.
- $G(s)$ is all-pass $\Leftrightarrow I-G(-j \omega)^{T} G(j \omega)=0$ for each $\omega \in \mathbb{R}$.
- Assumption $D=I$ and G is all-pass \Rightarrow

$$
C B-B^{T} C^{T}=0, C A B+(C A B)^{T}-B^{T} C^{T} C B=0, \cdots
$$

- Notice that $C B$ is the first moment of $G(s)$ about $s=\infty$. Thus a necessary condition on the first moment for G to be all-pass is:

Relation with all pass MIMO transfer matrix

- $\operatorname{det}\left(C B-(C B)^{T}\right) \neq 0$ is 'opposite' to requirement for being all-pass.
- $G(s)$ is all-pass $\Leftrightarrow I-G(-j \omega)^{T} G(j \omega)=0$ for each $\omega \in \mathbb{R}$.
- Assumption $D=I$ and G is all-pass \Rightarrow

$$
C B-B^{T} C^{T}=0, C A B+(C A B)^{T}-B^{T} C^{T} C B=0, \cdots
$$

- Notice that $C B$ is the first moment of $G(s)$ about $s=\infty$.

Thus a necessary condition on the first moment for G to be all-pass is: the skew-symmetric part of $C B$ is zero.

Relation with all pass MIMO transfer matrix

- $\operatorname{det}\left(C B-(C B)^{T}\right) \neq 0$ is 'opposite' to requirement for being all-pass.
- $G(s)$ is all-pass $\Leftrightarrow I-G(-j \omega)^{T} G(j \omega)=0$ for each $\omega \in \mathbb{R}$.
- Assumption $D=I$ and G is all-pass \Rightarrow

$$
C B-B^{T} C^{T}=0, C A B+(C A B)^{T}-B^{T} C^{T} C B=0, \cdots
$$

- Notice that $C B$ is the first moment of $G(s)$ about $s=\infty$.

Thus a necessary condition on the first moment for G to be all-pass is: the skew-symmetric part of $C B$ is zero.

- In fact, the interconnection of \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}$ is autonomous \Leftrightarrow no all-pass subsystem.

Relation with all pass MIMO transfer matrix

- $\operatorname{det}\left(C B-(C B)^{T}\right) \neq 0$ is 'opposite' to requirement for being all-pass.
- $G(s)$ is all-pass $\Leftrightarrow I-G(-j \omega)^{T} G(j \omega)=0$ for each $\omega \in \mathbb{R}$.
- Assumption $D=I$ and G is all-pass \Rightarrow

$$
C B-B^{T} C^{T}=0, C A B+(C A B)^{T}-B^{T} C^{T} C B=0, \cdots
$$

- Notice that $C B$ is the first moment of $G(s)$ about $s=\infty$.

Thus a necessary condition on the first moment for G to be all-pass is: the skew-symmetric part of $C B$ is zero.

- In fact,
the interconnection of \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}$ is autonomous \Leftrightarrow no all-pass subsystem.
- On the other hand,
a singular Hamiltonian system (assumed autonomous) has no inadmissible initial conditions if and only if $C B-B^{T} C^{T}$ is nonsingular.

Relation with all pass MIMO transfer matrix

- $\operatorname{det}\left(C B-(C B)^{T}\right) \neq 0$ is 'opposite' to requirement for being all-pass.
- $G(s)$ is all-pass $\Leftrightarrow I-G(-j \omega)^{T} G(j \omega)=0$ for each $\omega \in \mathbb{R}$.
- Assumption $D=I$ and G is all-pass \Rightarrow

$$
C B-B^{T} C^{T}=0, C A B+(C A B)^{T}-B^{T} C^{T} C B=0, \cdots
$$

- Notice that $C B$ is the first moment of $G(s)$ about $s=\infty$.

Thus a necessary condition on the first moment for G to be all-pass is: the skew-symmetric part of $C B$ is zero.

- In fact,
the interconnection of \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}$ is autonomous \Leftrightarrow no all-pass subsystem.
- On the other hand, a singular Hamiltonian system (assumed autonomous) has no inadmissible initial conditions if and only if $C B-B^{T} C^{T}$ is nonsingular.
- Odd number of inputs (and autonomous, ill-posed) \Rightarrow there exist inadmissible initial conditions.

Example

$G(s):=\frac{s+1}{s+2}$ with input u and output y.
State space realization :
$(A, B, C, D)=(-2,1,-1,1)$.

Dual system : $=\frac{s-1}{s-2}$.
State space realization :
$(A, B, C, D)=(2,1,1,1)$.

The interconnection of G and its dual:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
z \\
y
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 1 \\
-1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
z \\
y
\end{array}\right]
$$

- Above $E s-A$ has a zero at infinity.
- The differential equation in just x and z has initial conditions that have impulsive solutions.
- From our result too: $C B-B^{T} C^{T}=0$.

Conclusion

- For the Σ we considered: $\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$ is an 'all-pass' subsystem (possibly autonomous)
- In the context of Σ-dissipativity, this is set of 'stationary' trajectories with respect to $w^{T} \Sigma w$.
- The stationary trajectories are interconnection of \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}$.
- Singular descriptor system if and only if ill-posed interconnection.
- Assuming $D=I$ (the zeroth moment of G), no inadmissible initial conditions $\Leftrightarrow G$'s first moment has its skew-symmetric part nonsingular.

Conclusion

- For the Σ we considered: $\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$ is an 'all-pass' subsystem (possibly autonomous)
- In the context of Σ-dissipativity, this is set of 'stationary' trajectories with respect to $w^{T} \Sigma w$.
- The stationary trajectories are interconnection of \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}$.
- Singular descriptor system if and only if ill-posed interconnection.
- Assuming $D=I$ (the zeroth moment of G), no inadmissible initial conditions $\Leftrightarrow G$'s first moment has its skew-symmetric part nonsingular.
- Note: square MIMO all-pass G has first moment symmetric.
- No obvious way to have E as skew-Hamitonian and H as Hamiltonian (as considered by Mehl, Mehrmann, et al.)
- But: for our pencil (E, H) also, generalized eigenvalues occur in quadruplets $(\lambda, \bar{\lambda},-\lambda,-\bar{\lambda})$: like Mehl, Mehrmann and others.

Questions, thank you!

belur@iitb.ac.in

Inadmissible initial condition

- Consider an autonomous system $P\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) w(t)=0$, with $P(\xi) \in \mathbb{R}^{\mathrm{w} \times \mathrm{w}}[\xi]$ nonsingular.
- A vector $\bar{w}(0) \in \mathbb{R}^{z w}$ is said to be an inadmissible initial condition vector if the corresponding solution $w(t)$ contains the Dirac impulse $\delta(t)$ and/or its distributional derivatives.
- There exist no inadmissible initial conditions for $P\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) w=0 \Leftrightarrow P$ has no zeros at infinity.

Stationary trajectories

- Consider a behavior $\mathfrak{B} \in \mathfrak{L}_{\text {cont }}^{\mathbb{W}}$ and a symmetric nonsingular matrix $\Sigma \in \mathbb{R}^{\mathrm{w} \times \mathrm{w}}$.
A trajectory $w \in \mathfrak{B}$ is Σ-stationary if

$$
\int_{-\infty}^{\infty} w^{T} \Sigma v \mathrm{~d} t=0 \text { for all } v \in \mathfrak{B} \cap \mathfrak{D}
$$

- Assume (wlog) that $\Sigma:=\left[\begin{array}{cc}I_{\mathrm{m}} & 0 \\ 0 & -I_{\mathrm{p}}\end{array}\right]$

Definition

${ }^{a}$ Given a controllable behavior $\mathfrak{B} \in \mathfrak{L}_{\text {cont }}^{\mathbf{w}}$ and $\Sigma \in \mathbb{R}^{\mathbf{w} \times \mathbf{w}}$, the Σ-orthogonal complement of \mathfrak{B}, denoted by $\mathfrak{B}^{\perp_{\Sigma}}$ is the set of all the trajectories $v \in \mathfrak{L}_{1}^{\text {loc }}\left(\mathbb{R}, \mathbb{R}^{w}\right)$ such that $\int_{-\infty}^{\infty} v^{T} \Sigma w \mathrm{~d} t=0$ for all $w \in \mathfrak{B} \cap \mathfrak{D}$.
${ }^{a}$ J.C. Willems and H.L. Trentelman, "On quadratic differential forms, SIAM Journal on Control and Optimization", 1998.

- The set of Σ-stationary trajectories is equal to $\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$.

