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Introduction

System is represented using higher order Differential Algebraic Equation (DAE).[
RN

dN

dt
+ · · ·+R1

d
dt

+R0

]
w = 0

(i.e) R(
d

dt
)w = 0, where R(s) =

[
RNs

N + · · ·+R1s+R0

]

Pole placement:
Plant laws : P ( d

dt
)w = 0 Controller laws: K( d

dt
)w = 0

Control: Choose K(s) such that

[
P (s)
K(s)

]
is square, nonsingular and has determinant

d(s) as prescribed:
Roots of d(s) = desired closed loop system poles.

We seek only generic results.
Hence only structural aspects of the system are relevant.
This is captured in a bipartite graph.
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Minimal controller

Necessary and sufficient condition for pole placement:

Controllability of the plant.

All the entries of K are not required to be nonzero.
Example:

Plant matrix:

P (s) =

[
s+ 1 1 0

0 1 s+ 2

] Controller matrix:
K(s) =

[
a(s) 0 b(s)

]
Closed loop poles: Determinant of

s+ 1 1 0
0 1 s+ 2
a(s) 0 b(s)

 = a(s)(s+ 2) + b(s)(s+ 1).

From Bezout Identity: Arbitrary pole placement possible.

Some entries of K(s) could be zero.

This is motivated by a minimum sensor-actuator network design issue.
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Structured system

Given P (s) ∈ Rn×n[s], associate an edge weighted bipartite graph G = (R, C, E) as
follows.
R and C denote the rows and columns of P (s)
An edge between vertex vi ∈ R and vj ∈ C exists if the (i, j)th entry of P (s) is
non-zero.
Edges are classified as constant and nonconstant depending on corresponding entries
in P (s).

Definition

Consider a system of LTI ODEs P ( d
dt

)w = 0 with P ∈ Rn×m[s].

Classify the nonzero entries in P (s) as constant and nonconstant and then
associate the graph G(R, C;E) to the polynomial matrix P (s).

Such association partitions the set of all polynomial matrices into equivalence
classes and each class is identified by the corresponding graph.

G(R, C;E) captures the structure of the LTI system.

Henceforth a system will be described by a graph.
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Example

System laws:

a11ẇ1 + b11w1 + a12ẇ2 + b12w2 = 0

a21ẇ1 + b21w1 + b22w2 = 0

b31w1 + a32ẇ2 + b32w2 + a33ẇ3 + b33w3

+a34ẇ4 + b34w4 = 0

1 1

2 2

3 3

4

V
ar
ia
b
le
s

E
q
u
at
io
n
s

CR

Columns

Constant edge

Nonconstant edge

Rows Graph Gp

Figure: Graph for P (s)

Associated polynomial matrix:

P (s) =

a11s+ b11 a12s+ b12 0 0
a21s+ b21 b22 0 0

b31 a32s+ b32 a33s+ b33 a34s+ b34


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Motivation

Often, when uncontrollable, small perturbation → controllable.

‘Generically controllable’ ≡ controllable for almost all values for that structure.

For example,

[
a b
c d

]
is generically nonsingular for real numbers a, b, c, d.

(Singular only when ad = bc.)

But,

[
a b
0 0

]
is generically singular.

If coefficients are any real numbers, two nonzero polynomials of any degree are
‘generically’ coprime. (Coefficients have to satisfy an equation for a common
root.)

For ‘generic’ situations, perhaps can conclude without numerical calculation.

Useful in the analysis of large scale systems.

Generic/structural conditions are necessary conditions in specific case.
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Problem Statement

Problem 1: control perspective

Given : Plant structure:= Gp(Rp, C;Ep).
Find a controller structure :=Gk(Rk, C;Ek) which satisfies the following properties.

Arbitrary pole placement is generically achievable with this controller structure.

The total number of edges in Gk(Rk, C;Ek) is minimum.

Problem 2: graph perspective

Given : a graph Gp(Rp, C;Ep).
Find a graph Gk(Rk, C;Ek) such that the following are satisfied.

1 In G(Rp ∪Rk, C;Ep ∪ Ek) there exists a perfect matching.

2 Every edge e ∈ Ep that is admissible in G(Rp ∪Rk, C;Ep ∪ Ek) is in some cycle
involving an edge ek from Ek such that ek is admissible in
G(Rp ∪Rk, C;Ep ∪ Ek).

3 Gk(Rk, C;Ek) has the minimum number of edges amongst all graphs that satisfy
conditions 1 and 2.

An edge e is admissible :≡ e is contained in some perfect matching.
Both the problems are the same.
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Matchings in Bipartite graph

A set of edges in a graph G = (R, C;E) is a matching M if no two edges have a
common end vertex.

M is a perfect matching =⇒ |M | = |R| = |C|.
Let G be the bipartite graph associated to a square polynomial matrix P (s).

A perfect matching M =⇒ a non-zero term in the determinant expansion
of P .

The determinant expansion of P is the sum over all perfect matchings in G
(with suitable signs).

P is generically nonsingular ⇔ G has at least one perfect matching.

Some edges are ‘inadmissible’: don’t appear in any
perfect matching

that entry does not appear in any term of
determinant expansion.

A1 =

4 5 −43
0 7 ∗
0 0 9


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Pole placement for structured system

Gp(Rp, C;Ep) := Plant and Gk(Rk, C;Ek) := Controller.
Lp and Lk → Equivalence classes of polynomial matrices with graphs Gp and Gk.
R := RP ∪RK and E := Ep ∪ Ek .

Construct Gaut(R, C;E) := Controlled system.
Remove the inadmissible edges from Gaut to get Gaut

a .

A(s) :=

[
P (s)
K(s)

]
, for P ∈ Lp and K ∈ Lk and χPK(s) := determinant of A(s).

Then the following are equivalent.

1 Arbitrary pole placement is possible generically using controllers having
structure Gk.

2 Every nonconstant plant edge in Gaut
a is in some cycle containing controller

edges in Gaut
a .

In our problem there is no controller structure to begin with.
Rather we propose a controller structure which is minimal and satisfies the above
conditions.
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Structural controllability

A path in a graph is assumed to be maximal, i.e. it is not properly contained in
another path.

Vertices with degree of incidence equal to one are referred as degree-one vertices.

Since paths are maximal, the terminals of a path are degree-one vertices.

Lemma

Assume a plant, Gp(Rp, C;Ep). Remove all inadmissible edges. Suppose there are no
cycles. Then plant is structurally controllable if and only if every path whose
terminal is in Rp has length one and is a constant edge.

Plant is controllable ⇒ in Gp all paths containing at least one non-constant
plant edge has both its terminals in C.
The next step to propose a controller is to complete all these paths to cycles
using controller edges.
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Graph with no cycles and only non-constant plant edges: main result-I

Assume (WLOG) that the graph of the plant after removing inadmissible edges is
connected.

Gp(Rp, C;Ep) := Controllable plant after removing the inadmissible edges.
Assume Gp(Rp, C;Ep) is connected and has no cycles and only non-constant
edges.

Np := Minimum number of paths required to cover the Rp vertices.
Cp ⊆ C := vertices that are covered by the Np paths and
emimo := |Cp| − |Rp|.
nt := set of degree one vertices in Cp.
Define ep by
(i) ep := |nt| − emimo, if emimo < Np and
(ii) ep := emimo, if emimo > Np.

Then a minimal controller Gk(Rk, C;Ek), with |Rk| = |C| − |Rp|, that generically
achieves arbitrary pole placement has ep + |Rk| edges.
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Graph with cycles

Given: Ga with all edges admissible. The merged-cycles graph Gnc is obtained as
follows. Initialize Gnc := Ga.

While there exists a cycle in Gnc, repeat:

Let edges, ei ⊂ E between vertices
ri ⊂ R and ci ⊂ C form a cycle.

Merge all vertices in ri into one single
vertex rmi and vertices in ci to vertex
cmi .

The edge emi between rmi and cmi is
representative of all the edges in ei.

If at least one of the edges in ei is a
non-constant plant edge, then the
edge emi is also a non-constant plant
edge.

r1

r2

r3

r4

c2

c3

c4

r3

r4

c3

c4

rm1
cm1

Gnc

c1

G

Figure: Graph with no cycle
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Graph with cycles

For arbitrary pole placement, all non-constant plant edges in Gp
a should form a

cycle with controller edges or be inadmissible in Gaut.

It is enough to perform this check on the simplified graph Gnc, due to the
following result.

Proposition

Consider cycles C1, C2 in a bipartite graph G(R, C;E). Let e(C ) denote the set of
edges in C . Then the set e(C1) ∪ e(C2)− e(C1) ∩ e(C2) is also a cycle.

So even if one edge from a cycle of plant edges is in a new cycle with controller edges
then the rest of plant edges also will also be in another new cycle with controller
edges.

Definition

In a graph G, the distance between two vertices v1 and v2 denoted as dist(v1, v2) is
defined as the minimum number of edges between v1 and v2.
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Graph with cycles but only non-constant plant edges: main result-II

Gnc(Rp, C, Ep) := Plant and assume cycles are merged in Gnc. Assume Gnc is
connected and has no constant plant edges.

Np := Minimum number of paths required to cover the Rp vertices.
Cp ⊆ C := vertices that are covered by the Np paths and emimo := |Cp| − |Rp|.
nt := set of degree-one vertices in Cp.
Define ep by

(i) ep := |nt| − emimo if emimo < Np.

(ii) ep := emimo if emimo > Np.

Define γ through the sets Cm and A as follows:

Cm := {v ∈ C\Cp | v is a merged vertex in Gnc}.
A := {v ∈ nt | v is not a merged vertex and

dist(v, v1) = 2 for some v1 ∈ Cm}.
γ := |Cm| − |A|.


Done to ensure a
merged edge is not
made inadmissible.

Then the minimal controller that generically achieves arbitrary pole placement,
Gk(Rk, C;Ek), with |Rk| = |C| − |Rp|, has |Ek| = ep + γ + |Rk|.
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Graph with cycles and constant plant edges

A maximal constant vertex set, Rc
p ⊂ Rp:

Gp(Rp, C;Ep) := Plant.

There is at least one non-constant edge
incident on each of the vertices in Rc

p.

The vertex in C corresponding to each of
the above non-constant edges,
denoted as Cc, are distinct.

The set Rc
p is not a proper subset of any

other set satisfying the above two
properties.

Constant Plant Edge

Non Constant Plant Edge

Controller Edge

Figure: Gp with constant edge

A minimal non-constant vertex set Rc
p := R\Rc

p.
It is no longer required to cover vertices in Rc

p by paths thus resulting in a possible
reduction of controller edges.
In the above figure if all Rp vertices are to be covered, then Np = 2 and hence
kmin = 3.
Since there is a constant plant edge we cover only Rc

p vertices and hence Np = 1 and
consequently kmin = 2.

Rachel/Belur (IIT Bombay) Minimal Controller ECC 2013 16 / 24



Graph with cycles and constant plant edges

A maximal constant vertex set, Rc
p ⊂ Rp:

Gp(Rp, C;Ep) := Plant.

There is at least one non-constant edge
incident on each of the vertices in Rc

p.

The vertex in C corresponding to each of
the above non-constant edges,
denoted as Cc, are distinct.

The set Rc
p is not a proper subset of any

other set satisfying the above two
properties.

Constant Plant Edge

Non Constant Plant Edge

Controller Edge

Figure: Gp with constant edge

A minimal non-constant vertex set Rc
p := R\Rc

p.
It is no longer required to cover vertices in Rc

p by paths thus resulting in a possible
reduction of controller edges.
In the above figure if all Rp vertices are to be covered, then Np = 2 and hence
kmin = 3.
Since there is a constant plant edge we cover only Rc

p vertices and hence Np = 1 and
consequently kmin = 2.

Rachel/Belur (IIT Bombay) Minimal Controller ECC 2013 16 / 24



Graph with cycles and constant plant edges

A maximal constant vertex set, Rc
p ⊂ Rp:

Gp(Rp, C;Ep) := Plant.

There is at least one non-constant edge
incident on each of the vertices in Rc

p.

The vertex in C corresponding to each of
the above non-constant edges,
denoted as Cc, are distinct.

The set Rc
p is not a proper subset of any

other set satisfying the above two
properties.

Constant Plant Edge

Non Constant Plant Edge

Controller Edge

Figure: Gp with constant edge

A minimal non-constant vertex set Rc
p := R\Rc

p.
It is no longer required to cover vertices in Rc

p by paths thus resulting in a possible
reduction of controller edges.
In the above figure if all Rp vertices are to be covered, then Np = 2 and hence
kmin = 3.
Since there is a constant plant edge we cover only Rc

p vertices and hence Np = 1 and
consequently kmin = 2.

Rachel/Belur (IIT Bombay) Minimal Controller ECC 2013 16 / 24



Graph with cycles and constant plant edges

A maximal constant vertex set, Rc
p ⊂ Rp:

Gp(Rp, C;Ep) := Plant.

There is at least one non-constant edge
incident on each of the vertices in Rc

p.

The vertex in C corresponding to each of
the above non-constant edges,
denoted as Cc, are distinct.

The set Rc
p is not a proper subset of any

other set satisfying the above two
properties.

Constant Plant Edge

Non Constant Plant Edge

Controller Edge

Figure: Gp with constant edge

A minimal non-constant vertex set Rc
p := R\Rc

p.

It is no longer required to cover vertices in Rc
p by paths thus resulting in a possible

reduction of controller edges.
In the above figure if all Rp vertices are to be covered, then Np = 2 and hence
kmin = 3.
Since there is a constant plant edge we cover only Rc

p vertices and hence Np = 1 and
consequently kmin = 2.

Rachel/Belur (IIT Bombay) Minimal Controller ECC 2013 16 / 24



Graph with cycles and constant plant edges

A maximal constant vertex set, Rc
p ⊂ Rp:

Gp(Rp, C;Ep) := Plant.

There is at least one non-constant edge
incident on each of the vertices in Rc

p.

The vertex in C corresponding to each of
the above non-constant edges,
denoted as Cc, are distinct.

The set Rc
p is not a proper subset of any

other set satisfying the above two
properties.

Constant Plant Edge

Non Constant Plant Edge

Controller Edge

Figure: Gp with constant edge

A minimal non-constant vertex set Rc
p := R\Rc

p.
It is no longer required to cover vertices in Rc

p by paths

thus resulting in a possible
reduction of controller edges.
In the above figure if all Rp vertices are to be covered, then Np = 2 and hence
kmin = 3.
Since there is a constant plant edge we cover only Rc

p vertices and hence Np = 1 and
consequently kmin = 2.

Rachel/Belur (IIT Bombay) Minimal Controller ECC 2013 16 / 24



Graph with cycles and constant plant edges

A maximal constant vertex set, Rc
p ⊂ Rp:

Gp(Rp, C;Ep) := Plant.

There is at least one non-constant edge
incident on each of the vertices in Rc

p.

The vertex in C corresponding to each of
the above non-constant edges,
denoted as Cc, are distinct.

The set Rc
p is not a proper subset of any

other set satisfying the above two
properties.

Constant Plant Edge

Non Constant Plant Edge

Controller Edge

Figure: Gp with constant edge

A minimal non-constant vertex set Rc
p := R\Rc

p.
It is no longer required to cover vertices in Rc

p by paths thus resulting in a possible
reduction of controller edges.

In the above figure if all Rp vertices are to be covered, then Np = 2 and hence
kmin = 3.
Since there is a constant plant edge we cover only Rc

p vertices and hence Np = 1 and
consequently kmin = 2.

Rachel/Belur (IIT Bombay) Minimal Controller ECC 2013 16 / 24



Graph with cycles and constant plant edges

A maximal constant vertex set, Rc
p ⊂ Rp:

Gp(Rp, C;Ep) := Plant.

There is at least one non-constant edge
incident on each of the vertices in Rc

p.

The vertex in C corresponding to each of
the above non-constant edges,
denoted as Cc, are distinct.

The set Rc
p is not a proper subset of any

other set satisfying the above two
properties.

Constant Plant Edge

Non Constant Plant Edge

Controller Edge

Figure: Gp with constant edge

A minimal non-constant vertex set Rc
p := R\Rc

p.
It is no longer required to cover vertices in Rc

p by paths thus resulting in a possible
reduction of controller edges.
In the above figure if all Rp vertices are to be covered, then Np = 2 and hence
kmin = 3.

Since there is a constant plant edge we cover only Rc
p vertices and hence Np = 1 and

consequently kmin = 2.

Rachel/Belur (IIT Bombay) Minimal Controller ECC 2013 16 / 24



Graph with cycles and constant plant edges

A maximal constant vertex set, Rc
p ⊂ Rp:

Gp(Rp, C;Ep) := Plant.

There is at least one non-constant edge
incident on each of the vertices in Rc

p.

The vertex in C corresponding to each of
the above non-constant edges,
denoted as Cc, are distinct.

The set Rc
p is not a proper subset of any

other set satisfying the above two
properties.

Constant Plant Edge

Non Constant Plant Edge

Controller Edge

Figure: Gp with constant edge

A minimal non-constant vertex set Rc
p := R\Rc

p.
It is no longer required to cover vertices in Rc

p by paths thus resulting in a possible
reduction of controller edges.
In the above figure if all Rp vertices are to be covered, then Np = 2 and hence
kmin = 3.
Since there is a constant plant edge we cover only Rc

p vertices and hence Np = 1 and
consequently kmin = 2.

Rachel/Belur (IIT Bombay) Minimal Controller ECC 2013 16 / 24



Graph with cycles and constant plant edges: Main Result-III

Gp(Rp, C;Ep) :=Plant. Merge cycles to get Gnc(Rp, C, Ep) and assume it is
connected.

Np := Minimum number of paths required to cover the Rc
p vertices in Gnc.

Cp ⊆ C and R(p) ⊆ Rp := set of vertices covered by the Np paths and
emimo := |Cp| − |R(p)|.
nt := set of degree-one vertices in Cp. Define ep by

(i) ep := |nt| − emimo, if emimo < Np and

(ii) ep := emimo, if emimo > Np

Define γ through the sets Cm and A as follows:

Cm := {v ∈ C\Cp | v is a merged vertex in Gnc}.
A := {v ∈ nt | v is not a merged vertex and

dist(v, v1) = 2 for some v1 ∈ Cm}.
γ := |Cm| − |A|.

Then a minimal controller that generically achieves arbitrary pole placement,
Gk(Rk, C;Ek), with |Rk| = |C| − |Rp|, has |Ek| = ep + |γ|+ |Rk|.
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Significance of emimo and Np

Minimal controller design depended on number of paths that are to be
completed to cycles, Np and the index emimo.

The result was solely graph theoretical and provided less insight about the
system.

Gnc constructed for plant has only paths and no cycles.
d(v) := degree of incidence of a vertex v.

More than one path in Gnc ⇒ paths have common vertices and edges
i.e. d(v) > 2 for some vertices in Gnc.

We analyse the following three cases.

1 d(v) 6 2 for all v ∈ Rp ∪ C
(only one path).

2 d(v) 6 2 for all v ∈ C.
3 d(v) 6 2 for all v ∈ Rp.

=⇒

1 SISO
(Series cascade)

2 MISO

3 SIMO
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Conventional IO structures

Consider three subsystems of the plant that are connected in each of the above
cases.

Assume each subsystem Si has transfer function ni(s)
di(s)

. The differential equation

for each Si is d( d
dt

)yi = n( d
dt

)ui.

Let P ( d
dt

)w = 0 be the plant.

Series cascade: SISO

S1 S2 S3y1

u2 u3
y2 y3

u1

1 1

2 2

3 3

4

Rp C

(b)(a)
emimo = 1 kmin = 2Np = 1

P =

∗ ∗
∗ ∗
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Effect of emimo and Np on kmin

Following lemma provides an upper and lower bounds for the index emimo.

Lemma

Gp(Rp, C;Ep) := controllable plant. Assume Gp is connected, has no cycles and has
no constant plant edges. d := |C| − |Rp|.
Np := Minimum number paths of required to cover the Rp vertices in Gp.
Cp ⊆ C := vertices are covered by the Np paths and emimo := |Cp| − |Rp|.
Then 1 6 emimo 6 min (d, 2p− 1).

In the SISO and SIMO case, the lower bound of emimo is achieved.

In the MISO case, the upper bound of emimo is achieved.

In a plant which is an interconnection of several subsystems:
↑ emimo ⇒ Prominence of MISO input-output structure.
↓ emimo ⇒ Prominence of SISO input-output structure.

No of controller edges for SIMO is more than SISO as Np is more.
Note emimo is same for both cases.
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Main Result-IV

Assume a controllable plant with n subsystems.
Suppose they are interconnected with the input-output structure as series cascade:
SISO, MISO and SIMO.

Table I: SISO, MISO, SIMO: key parameters

Type emimo Np kmin

SISO 1 1 2

MISO n n even: n/2 n odd: (n+ 1)/2 2n

SIMO 1 n even: n/2 n odd: (n+ 1)/2 n

Np ↑ ⇒ kmin ↑. Due to need to ‘feed back’ more number of plant outputs or
assign larger number of plant inputs.

emimo is higher if the plant is more under-determined, i.e. more number of
controller equations are required in order to make the closed loop system
autonomous.

In this sense, emimo is the extent of Multi-Input-Multi-Output structure within a
system.
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Conclusion

We considered the generic pole placement problem. The structural aspects of
the plant were captured in a bipartite graph.

We proposed a minimum controller structure for a given plant such that
arbitrary pole placement is achieved.
An explicit expression was given for the minimum number of controller edges in
the graph of the controller in terms of the number of paths and the index emimo

of the plant graph.

We related emimo and Np with the input-output structure within the plant.

Arbitrary pole placement is same as ensuring the polynomial matrix
corresponding to the closed loop is square, nonsingular, and, in fact, unimodular.
Thus we addressed the question of unimodular completion using the least
number of nonzero entries in the completion.
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Thank you!

Please write to us for further queries:
belur@ee.iitb.ac.in
rachel@ee.iitb.ac.in
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