Application of structured linearization for efficient \mathcal{H}_{∞}-norm computation

Madhu N. Belur

Indian Institute of Technology Bombay

16th January, 2013
NLAA 2013, Guwahati

Outline

(1) \mathcal{H}_{∞}-norm definition
(2) Current method

- New method (using 'loss of dissipativity' property)
- Bezoutian matrix
© Time improvement

H-infinity norm

For a transfer matrix $G(s) \in \mathbb{R}(s)^{p \times m}$ (with p rows and m columns, entries from $\mathbb{R}(s))$:

$$
\|G\|_{\mathcal{H}_{\infty}}:=\sup _{\lambda \in \mathbb{C}, \operatorname{Real}(\lambda) \geqslant 0} \sigma_{\max }(G(\lambda))
$$

where $\sigma_{\max }(P)$ is the maximum singular value of a constant matrix P.

H-infinity norm

For a transfer matrix $G(s) \in \mathbb{R}(s)^{p \times m}$ (with p rows and m columns, entries from $\mathbb{R}(s))$:

$$
\|G\|_{\mathcal{H}_{\infty}}:=\sup _{\lambda \in \mathbb{C}, \operatorname{Real}(\lambda) \geqslant 0} \sigma_{\max }(G(\lambda))
$$

where $\sigma_{\max }(P)$ is the maximum singular value of a constant matrix P.
When the supremum exists: attained on the imaginary axis $i \mathbb{R} \cup\{\infty\}$.

H-infinity norm

For a transfer matrix $G(s) \in \mathbb{R}(s)^{p \times m}$ (with p rows and m columns, entries from $\mathbb{R}(s))$:

$$
\|G\|_{\mathcal{H}_{\infty}}:=\sup _{\lambda \in \mathbb{C}, \operatorname{Real}(\lambda) \geqslant 0} \sigma_{\max }(G(\lambda))
$$

where $\sigma_{\max }(P)$ is the maximum singular value of a constant matrix P.
When the supremum exists: attained on the imaginary axis $i \mathbb{R} \cup\{\infty\}$.
(Assume stability, 'properness', for existence of $\|G\|_{\mathcal{H}_{\infty}}$)

H-infinity norm

For a transfer matrix $G(s) \in \mathbb{R}(s)^{p \times m}$ (with p rows and m columns, entries from $\mathbb{R}(s))$:

$$
\|G\|_{\mathcal{H}_{\infty}}:=\sup _{\lambda \in \mathbb{C}, \operatorname{Real}(\lambda) \geqslant 0} \sigma_{\max }(G(\lambda))
$$

where $\sigma_{\max }(P)$ is the maximum singular value of a constant matrix P.
When the supremum exists: attained on the imaginary axis $i \mathbb{R} \cup\{\infty\}$.
(Assume stability, 'properness', for existence of $\|G\|_{\mathcal{H}_{\infty}}$)
$\|G\|_{\mathcal{H}_{\infty}}$ plays an important role in robust control and disturbance attenuation problems.

H-infinity norm

For a transfer matrix $G(s) \in \mathbb{R}(s)^{p \times m}$ (with p rows and m columns, entries from $\mathbb{R}(s))$:

$$
\|G\|_{\mathcal{H}_{\infty}}:=\sup _{\lambda \in \mathbb{C}, \operatorname{Real}(\lambda) \geqslant 0} \sigma_{\max }(G(\lambda))
$$

where $\sigma_{\max }(P)$ is the maximum singular value of a constant matrix P.
When the supremum exists: attained on the imaginary axis $i \mathbb{R} \cup\{\infty\}$.
(Assume stability, 'properness', for existence of $\|G\|_{\mathcal{H}_{\infty}}$)
$\|G\|_{\mathcal{H}_{\infty}}$ plays an important role in robust control and disturbance attenuation problems.
This talk: about computation of $\|G\|_{\mathcal{H}_{\infty}}$

Conventional method to compute $\|G\|_{\mathcal{H}_{\infty}}$

Obtain a state space realization of $G(s):(A, B, C, D)$
Assuming $\gamma>\sigma_{\max }(D)$

Define: $\quad H(\gamma):=\left[\begin{array}{cc}A-B R^{-1} D^{T} C & -\gamma B R^{-1} B^{T} \\ \gamma C^{T} S^{-1} C & -A^{T}+C^{T} D R^{-1} B^{T}\end{array}\right]$
with $S:=\left(\gamma^{2} I-D D^{T}\right)$ and $R:=\left(\gamma^{2} I-D^{T} D\right)$,

Conventional method to compute $\|G\|_{\mathcal{H}_{\infty}}$

Obtain a state space realization of $G(s):(A, B, C, D)$
Assuming $\gamma>\sigma_{\max }(D)$

Define: $\quad H(\gamma):=\left[\begin{array}{cc}A-B R^{-1} D^{T} C & -\gamma B R^{-1} B^{T} \\ \gamma C^{T} S^{-1} C & -A^{T}+C^{T} D R^{-1} B^{T}\end{array}\right]$
with $S:=\left(\gamma^{2} I-D D^{T}\right)$ and $R:=\left(\gamma^{2} I-D^{T} D\right)$, and use (Boyd \& Balakrishnan):

Conventional method to compute $\|G\|_{\mathcal{H}_{\infty}}$

Obtain a state space realization of $G(s):(A, B, C, D)$
Assuming $\gamma>\sigma_{\max }(D)$

$$
\text { Define: } \quad H(\gamma):=\left[\begin{array}{cc}
A-B R^{-1} D^{T} C & -\gamma B R^{-1} B^{T} \\
\gamma C^{T} S^{-1} C & -A^{T}+C^{T} D R^{-1} B^{T}
\end{array}\right]
$$

with $S:=\left(\gamma^{2} I-D D^{T}\right)$ and $R:=\left(\gamma^{2} I-D^{T} D\right)$, and use (Boyd \& Balakrishnan):

$$
\gamma \leqslant\|G\|_{\mathcal{H}_{\infty}} \Leftrightarrow H(\gamma) \text { has } i \mathbb{R} \text { eigenvalues }
$$

to iterate over γ to find $\gamma=\|G\|_{\mathcal{H}_{\infty}}$ to required accuracy. For each γ value: solve an eigenvalue problem

New method

Obtain a right coprime factorization of $G(s)=N(s)(D(s))^{-1}$, with $N(s)$ and $D(s)$ polynomial matrices

New method

Obtain a right coprime factorization of $G(s)=N(s)(D(s))^{-1}$, with $N(s)$ and $D(s)$ polynomial matrices Dissipativity theory gives:

$$
P(\gamma, \omega):=D(-j \omega)^{T} D(j \omega)-\gamma^{2} N(-j \omega)^{T} N(j \omega) \geqslant 0 \quad \text { for all } \omega \in \mathbb{R}
$$

New method

Obtain a right coprime factorization of $G(s)=N(s)(D(s))^{-1}$, with $N(s)$ and $D(s)$ polynomial matrices
Dissipativity theory gives:

\[

\]

New method

Obtain a right coprime factorization of $G(s)=N(s)(D(s))^{-1}$, with $N(s)$ and $D(s)$ polynomial matrices
Dissipativity theory gives:

$$
\begin{gathered}
P(\gamma, \omega):=D(-j \omega)^{T} D(j \omega)-\gamma^{2} N(-j \omega)^{T} N(j \omega) \geqslant 0 \quad \text { for all } \omega \in \mathbb{R} \\
\underset{\mathbb{Z}}{ } \\
\gamma \geqslant\|G\|_{\mathcal{H}_{\infty}}
\end{gathered}
$$

Thus
$\|G\|_{\mathcal{H}_{\infty}}=\min \{\gamma \mid \gamma$ satisfies $P(\gamma, \omega) \geqslant 0$ as above $\}$
Define $p_{\gamma}(\omega):=\operatorname{det} P(\gamma, \omega)$
Look for those γ 's that make $p_{\gamma}(\omega)$ and $\frac{\partial p}{\partial \omega}=: q_{\gamma}(\omega)$ noncoprime

New method

Obtain a right coprime factorization of $G(s)=N(s)(D(s))^{-1}$, with $N(s)$ and $D(s)$ polynomial matrices
Dissipativity theory gives:

$$
\begin{gathered}
P(\gamma, \omega):=D(-j \omega)^{T} D(j \omega)-\gamma^{2} N(-j \omega)^{T} N(j \omega) \geqslant 0 \quad \text { for all } \omega \in \mathbb{R} \\
\mathbb{\sharp} \\
\gamma \geqslant\|G\|_{\mathcal{H}_{\infty}}
\end{gathered}
$$

Thus
$\|G\|_{\mathcal{H}_{\infty}}=\min \{\gamma \mid \gamma$ satisfies $P(\gamma, \omega) \geqslant 0$ as above $\}$
Define $p_{\gamma}(\omega):=\operatorname{det} P(\gamma, \omega)$
Look for those γ 's that make $p_{\gamma}(\omega)$ and $\frac{\partial p}{\partial \omega}=: q_{\gamma}(\omega)$ noncoprime Discriminant / Resultant results applicable now Bezoutian matrix better than Sylvester matrix

Bezoutian of two polynomials

Consider polynomials $p(\omega)$ and $q(\omega)$.
Bezoutian polynomial $b(\zeta, \eta)$ and matrix B are defined as

$$
b(\zeta, \eta):=\frac{p(\zeta) q(\eta)-p(\eta) q(\zeta)}{\zeta-\eta}=\left[\begin{array}{c}
1 \\
\zeta \\
\vdots \\
\zeta^{n-1}
\end{array}\right]^{T} B\left[\begin{array}{c}
1 \\
\eta \\
\vdots \\
\eta^{n-1}
\end{array}\right]
$$

with $n=\max (\operatorname{deg} p, \operatorname{deg} q)$.
B is a symmetric matrix

Bezoutian of two polynomials

Consider polynomials $p(\omega)$ and $q(\omega)$.
Bezoutian polynomial $b(\zeta, \eta)$ and matrix B are defined as

$$
b(\zeta, \eta):=\frac{p(\zeta) q(\eta)-p(\eta) q(\zeta)}{\zeta-\eta}=\left[\begin{array}{c}
1 \\
\zeta \\
\vdots \\
\zeta^{n-1}
\end{array}\right]^{T} B\left[\begin{array}{c}
1 \\
\eta \\
\vdots \\
\eta^{n-1}
\end{array}\right]
$$

with $n=\max (\operatorname{deg} p, \operatorname{deg} q)$.
B is a symmetric matrix
But not the Sylvester resultant matrix S

Construction of $b(\zeta, \eta)$ and B

Let $p(\xi)=p_{0}+p_{1} \xi+p_{2} \xi^{2} \cdots+p_{n} \xi^{n}$ and $q(\xi)=q_{0}+q_{1} \xi+q_{2} \xi^{2} \cdots+q_{m} \xi^{m}$ and S, the Sylvester resultant matrix is $(n+m) \times(n+m)$

Construction of $b(\zeta, \eta)$ and B

Let $p(\xi)=p_{0}+p_{1} \xi+p_{2} \xi^{2} \cdots+p_{n} \xi^{n}$ and
$q(\xi)=q_{0}+q_{1} \xi+q_{2} \xi^{2} \cdots+q_{m} \xi^{m}$ and
S, the Sylvester resultant matrix is $(n+m) \times(n+m)$
S is singular if and only if p and q have a common root

Construction of $b(\zeta, \eta)$ and B

Let $p(\xi)=p_{0}+p_{1} \xi+p_{2} \xi^{2} \cdots+p_{n} \xi^{n}$ and
$q(\xi)=q_{0}+q_{1} \xi+q_{2} \xi^{2} \cdots+q_{m} \xi^{m}$ and
S, the Sylvester resultant matrix is $(n+m) \times(n+m)$ S is singular if and only if p and q have a common root S loses rank d if and only if gcd of p and q has degree d. But

Construction of $b(\zeta, \eta)$ and B

Let $p(\xi)=p_{0}+p_{1} \xi+p_{2} \xi^{2} \cdots+p_{n} \xi^{n}$ and
$q(\xi)=q_{0}+q_{1} \xi+q_{2} \xi^{2} \cdots+q_{m} \xi^{m}$ and
S, the Sylvester resultant matrix is $(n+m) \times(n+m)$ S is singular if and only if p and q have a common root S loses rank d if and only if gcd of p and q has degree d. But S is quite 'abnormal'

Construction of $b(\zeta, \eta)$ and B

Let $p(\xi)=p_{0}+p_{1} \xi+p_{2} \xi^{2} \cdots+p_{n} \xi^{n}$ and
$q(\xi)=q_{0}+q_{1} \xi+q_{2} \xi^{2} \cdots+q_{m} \xi^{m}$ and
S, the Sylvester resultant matrix is $(n+m) \times(n+m)$
S is singular if and only if p and q have a common root
S loses rank d if and only if gcd of p and q has degree d.
But S is quite 'abnormal' (A is called normal if $A A^{T}=A^{T} A$)

Construction of $b(\zeta, \eta)$ and B

Let $p(\xi)=p_{0}+p_{1} \xi+p_{2} \xi^{2} \cdots+p_{n} \xi^{n}$ and
$q(\xi)=q_{0}+q_{1} \xi+q_{2} \xi^{2} \cdots+q_{m} \xi^{m}$ and
S, the Sylvester resultant matrix is $(n+m) \times(n+m)$
S is singular if and only if p and q have a common root
S loses rank d if and only if gcd of p and q has degree d.
But S is quite 'abnormal' (A is called normal if $A A^{T}=A^{T} A$) At least the zero eigenvalue of S (when S is singular) is ill-conditioned.
(Left and right eigenvectors are same \equiv that eigenvalue is well-conditioned.)

Construction of $b(\zeta, \eta)$ and B

Let $p(\xi)=p_{0}+p_{1} \xi+p_{2} \xi^{2} \cdots+p_{n} \xi^{n}$ and
$q(\xi)=q_{0}+q_{1} \xi+q_{2} \xi^{2} \cdots+q_{m} \xi^{m}$ and
S, the Sylvester resultant matrix is $(n+m) \times(n+m)$
S is singular if and only if p and q have a common root
S loses rank d if and only if gcd of p and q has degree d.
But S is quite 'abnormal' (A is called normal if $A A^{T}=A^{T} A$)
At least the zero eigenvalue of S (when S is singular) is ill-conditioned.
(Left and right eigenvectors are same \equiv that eigenvalue is well-conditioned.)
But Bezoutian matrix: symmetric

Bezoutian polynomial and matrix

Let degree of $p=n \geqslant$ degree of $q=m$.

Bezoutian polynomial and matrix

Let degree of $p=n \geqslant$ degree of $q=m$.
Degree of $b(\zeta, \eta)$ is $n-1$ in each of ζ and η and

Bezoutian polynomial and matrix

Let degree of $p=n \geqslant$ degree of $q=m$.
Degree of $b(\zeta, \eta)$ is $n-1$ in each of ζ and η and matrix B is $n \times n$.

Bezoutian polynomial and matrix

Let degree of $p=n \geqslant$ degree of $q=m$.
Degree of $b(\zeta, \eta)$ is $n-1$ in each of ζ and η and matrix B is $n \times n$. $b(\zeta, \eta)$ explicit calculation quite easy to program (in Scilab): Let $b(\zeta, \eta)=b_{0}(\zeta)+\eta b_{1}(\zeta)+\eta^{2} b_{2}(\zeta) \cdots \eta^{n-1} b_{n-1}(\zeta)$
Equate terms with equal degree in η in

$$
(\zeta-\eta) b(\zeta, \eta)=p(\zeta) q(\eta)-q(\zeta) p(\eta) \text { to get }
$$

$b_{0}(\zeta):=\left(q_{0} p(\zeta)-p_{0} q(\zeta)\right) / \zeta$

Bezoutian polynomial and matrix

Let degree of $p=n \geqslant$ degree of $q=m$.
Degree of $b(\zeta, \eta)$ is $n-1$ in each of ζ and η and matrix B is $n \times n$. $b(\zeta, \eta)$ explicit calculation quite easy to program (in Scilab): Let $b(\zeta, \eta)=b_{0}(\zeta)+\eta b_{1}(\zeta)+\eta^{2} b_{2}(\zeta) \cdots \eta^{n-1} b_{n-1}(\zeta)$
Equate terms with equal degree in η in

$$
(\zeta-\eta) b(\zeta, \eta)=p(\zeta) q(\eta)-q(\zeta) p(\eta) \text { to get }
$$

$b_{0}(\zeta):=\left(q_{0} p(\zeta)-p_{0} q(\zeta)\right) / \zeta$
$b_{1}(\zeta):=\left(q_{1} p(\zeta)-p_{1} q(\zeta)+b_{0}(\zeta)\right) / \zeta$

Bezoutian polynomial and matrix

Let degree of $p=n \geqslant$ degree of $q=m$.
Degree of $b(\zeta, \eta)$ is $n-1$ in each of ζ and η and matrix B is $n \times n$.
$b(\zeta, \eta)$ explicit calculation quite easy to program (in Scilab): Let $b(\zeta, \eta)=b_{0}(\zeta)+\eta b_{1}(\zeta)+\eta^{2} b_{2}(\zeta) \cdots \eta^{n-1} b_{n-1}(\zeta)$
Equate terms with equal degree in η in

$$
(\zeta-\eta) b(\zeta, \eta)=p(\zeta) q(\eta)-q(\zeta) p(\eta) \text { to get }
$$

$b_{0}(\zeta):=\left(q_{0} p(\zeta)-p_{0} q(\zeta)\right) / \zeta$
$b_{1}(\zeta):=\left(q_{1} p(\zeta)-p_{1} q(\zeta)+b_{0}(\zeta)\right) / \zeta$
$b_{i}(\zeta):=\left(q_{i} p(\zeta)-p_{i} q(\zeta)+b_{i-1}(\zeta)\right) / \zeta$

Bezoutian matrix

Notice that $b(\zeta, \eta)=b(\eta, \zeta)$

Bezoutian matrix

Notice that $b(\zeta, \eta)=b(\eta, \zeta)$
Once $b(\zeta, \eta)$ is found, define $B_{i j}=$ coefficient of $\zeta^{i} \eta^{j}$

Bezoutian matrix

Notice that $b(\zeta, \eta)=b(\eta, \zeta)$
Once $b(\zeta, \eta)$ is found, define $B_{i j}=$ coefficient of $\zeta^{i} \eta^{j}$
Due to constant term, define $B_{i j}=$ coefficient of $\zeta^{i-1} \eta^{j-1}$

Bezoutian matrix

Notice that $b(\zeta, \eta)=b(\eta, \zeta)$
Once $b(\zeta, \eta)$ is found, define $B_{i j}=$ coefficient of $\zeta^{i} \eta^{j}$
Due to constant term, define $B_{i j}=$ coefficient of $\zeta^{i-1} \eta^{j-1}$

Example

Let $p(s)=2+3 s+s^{2}$ and $q_{a}(s)=a+s$
Sylvester resultant matrix $S=\left[\begin{array}{lll}2 & 3 & 1 \\ a & 1 & 0 \\ 0 & a & 1\end{array}\right]$ $\operatorname{det} S=a^{2}-3 a+2$:

Example

Let $p(s)=2+3 s+s^{2}$ and $q_{a}(s)=a+s$
Sylvester resultant matrix $S=\left[\begin{array}{lll}2 & 3 & 1 \\ a & 1 & 0 \\ 0 & a & 1\end{array}\right]$
det $S=a^{2}-3 a+2: p$ and q are noncoprime $\Leftrightarrow a=1,2$

Example

Let $p(s)=2+3 s+s^{2}$ and $q_{a}(s)=a+s$
Sylvester resultant matrix $S=\left[\begin{array}{lll}2 & 3 & 1 \\ a & 1 & 0 \\ 0 & a & 1\end{array}\right]$
$\operatorname{det} S=a^{2}-3 a+2: p$ and q are noncoprime $\Leftrightarrow a=1,2$ $b(\zeta, \eta)=\zeta \eta+a(\zeta+\eta)+3 a-2$ and hence

Example

Let $p(s)=2+3 s+s^{2}$ and $q_{a}(s)=a+s$
Sylvester resultant matrix $S=\left[\begin{array}{lll}2 & 3 & 1 \\ a & 1 & 0 \\ 0 & a & 1\end{array}\right]$
det $S=a^{2}-3 a+2: p$ and q are noncoprime $\Leftrightarrow a=1,2$ $b(\zeta, \eta)=\zeta \eta+a(\zeta+\eta)+3 a-2$ and hence
$B_{a}=\left[\begin{array}{cc}1 & a \\ a & (3 a-2)\end{array}\right]$ with determinant $-\left(a^{2}-3 a+2\right)$

\mathcal{H}_{∞} norm computation: Bezoutian polynomial

In our case,

\mathcal{H}_{∞} norm computation: Bezoutian polynomial

In our case, coefficients of $p(\omega)$ and $q(\omega)$ are polynomials in γ.

\mathcal{H}_{∞} norm computation: Bezoutian polynomial

In our case, coefficients of $p(\omega)$ and $q(\omega)$ are polynomials in γ. The polynomial matrix $B(\gamma)$ has each coefficient: a symmetric constant matrix:

$$
B(\gamma)=B_{0}+\gamma B_{1}+\cdots+\gamma^{m} B_{m}, \text { say. }
$$

\mathcal{H}_{∞} norm computation: Bezoutian polynomial

In our case, coefficients of $p(\omega)$ and $q(\omega)$ are polynomials in γ. The polynomial matrix $B(\gamma)$ has each coefficient: a symmetric constant matrix:

$$
B(\gamma)=B_{0}+\gamma B_{1}+\cdots+\gamma^{m} B_{m}, \text { say. }
$$

Roots of det $B(\gamma)$ cause p_{γ} and q_{γ} to have a common root: ω_{0}

\mathcal{H}_{∞} norm computation: Bezoutian polynomial

In our case, coefficients of $p(\omega)$ and $q(\omega)$ are polynomials in γ. The polynomial matrix $B(\gamma)$ has each coefficient: a symmetric constant matrix:

$$
B(\gamma)=B_{0}+\gamma B_{1}+\cdots+\gamma^{m} B_{m}, \text { say. }
$$

Roots of det $B(\gamma)$ cause p_{γ} and q_{γ} to have a common root: ω_{0} ω_{0} is that eigenvalue of the Hamiltonian matrix at the maximum γ that satisfies

\mathcal{H}_{∞} norm computation: Bezoutian polynomial

In our case, coefficients of $p(\omega)$ and $q(\omega)$ are polynomials in γ. The polynomial matrix $B(\gamma)$ has each coefficient: a symmetric constant matrix:

$$
B(\gamma)=B_{0}+\gamma B_{1}+\cdots+\gamma^{m} B_{m}, \text { say. }
$$

Roots of det $B(\gamma)$ cause p_{γ} and q_{γ} to have a common root: ω_{0} ω_{0} is that eigenvalue of the Hamiltonian matrix at the maximum γ that satisfies
Hamiltonian matrix $H(\gamma)$ has imaginary axis eigenvalues.

\mathcal{H}_{∞} norm computation: Bezoutian polynomial

In our case, coefficients of $p(\omega)$ and $q(\omega)$ are polynomials in γ. The polynomial matrix $B(\gamma)$ has each coefficient: a symmetric constant matrix:

$$
B(\gamma)=B_{0}+\gamma B_{1}+\cdots+\gamma^{m} B_{m}, \text { say. }
$$

Roots of det $B(\gamma)$ cause p_{γ} and q_{γ} to have a common root: ω_{0} ω_{0} is that eigenvalue of the Hamiltonian matrix at the maximum γ that satisfies
Hamiltonian matrix $H(\gamma)$ has imaginary axis eigenvalues. Recall that

$$
\gamma \leqslant\|G\|_{\mathcal{H}_{\infty}} \Leftrightarrow H(\gamma) \text { has } i \mathbb{R} \text { eigenvalues }
$$

Structured linearization

Define symmetric matrices E and A as

$$
E:=\left[\begin{array}{cccc}
B_{m} & -B_{m-2} & \cdots & -B_{1} \\
\hline & -B_{0} \\
\vdots & . & . & 0 \\
-B_{1} & \because & & 0 \\
-B_{0} & 0 & &
\end{array}\right] \quad A:=\left[\begin{array}{cccc}
-B_{m-1} & \cdots & -B_{1} & -B_{0} \\
\vdots & \ddots & . & 0 \\
-B_{1} & \ddot{ } & \\
-B_{0} & 0 &
\end{array}\right] .
$$

Structured linearization

Define symmetric matrices E and A as

$$
E:=\left[\begin{array}{cccc}
B_{m} & -B_{m-2} & \cdots & -B_{1} \\
\hline & -B_{0} \\
\vdots & . & . & . \\
-B_{1} & . & 0 \\
-B_{0} & 0 & &
\end{array}\right] \quad A:=\left[\begin{array}{cccc}
-B_{m-1} & \cdots & -B_{1} & -B_{0} \\
\vdots & . & . & . \\
-B_{1} & . & & \\
-B_{0} & 0 & &
\end{array}\right] .
$$

Find generalized eigenvalues of the pair (E, A) : the sought $\|G\|_{\mathcal{H}_{\infty}}$ is one of these eigenvalues.

Structured linearization

Define symmetric matrices E and A as

$$
E:=\left[\begin{array}{cccc}
B_{m} & -B_{m-2} & \cdots & -B_{1} \\
\vdots & -B_{0} \\
-B_{1} & . & . & \\
-B_{0} & 0 & & 0
\end{array}\right] \quad A:=\left[\begin{array}{cccc}
-B_{m-1} & \cdots & -B_{1} & -B_{0} \\
\vdots & . & . & . \\
-B_{1} & . & & \\
-B_{0} & 0 & &
\end{array}\right] .
$$

Find generalized eigenvalues of the pair (E, A) : the sought $\|G\|_{\mathcal{H}_{\infty}}$ is one of these eigenvalues.
Note:

- due to Bezoutian matrix reasons:
- B_{m} is nonsingular
- Pencil is a regular pencil

Structured linearization

Define symmetric matrices E and A as

$$
E:=\left[\begin{array}{cccc}
B_{m} & -B_{m-2} & \cdots & -B_{1} \\
\hline & -B_{0} \\
\vdots & . & . & . \\
-B_{1} & . & 0 \\
-B_{0} & 0 & &
\end{array}\right] \quad A:=\left[\begin{array}{cccc}
-B_{m-1} & \cdots & -B_{1} & -B_{0} \\
\vdots & . & . & 0 \\
-B_{1} & . & & \\
-B_{0} & 0 & &
\end{array}\right] .
$$

Find generalized eigenvalues of the pair (E, A) : the sought $\|G\|_{\mathcal{H}_{\infty}}$ is one of these eigenvalues.
Note:

- due to Bezoutian matrix reasons:
- B_{m} is nonsingular
- Pencil is a regular pencil
- But need to check that common root is on $i \mathbb{R}$, maximum such γ, etc.
Program implemented in Scilab (and code on github)

Comparison of two methods (large order)

Plot of time taken by the two methods (strictly proper case)

Figure: Plot from Belur \& Praagman, IEEE-TAC, 2011

Comparison of two methods (small order)

Figure: Plot from Belur \& Praagman, IEEE-TAC, 2011

Conclusion

- \mathcal{H}_{∞} norm computation is important in Systems \& Control
- Hamiltonian matrix arguments have proven quadratic convergence rates (Bruinsma \& Steinbuch)

Conclusion

- \mathcal{H}_{∞} norm computation is important in Systems \& Control
- Hamiltonian matrix arguments have proven quadratic convergence rates (Bruinsma \& Steinbuch)
- But requires an eigenvalue iteration within γ iteration

Conclusion

- \mathcal{H}_{∞} norm computation is important in Systems \& Control
- Hamiltonian matrix arguments have proven quadratic convergence rates (Bruinsma \& Steinbuch)
- But requires an eigenvalue iteration within γ iteration
- Sylvester matrix resultant (and block companion linearization): marginally better

Conclusion

- \mathcal{H}_{∞} norm computation is important in Systems \& Control
- Hamiltonian matrix arguments have proven quadratic convergence rates (Bruinsma \& Steinbuch)
- But requires an eigenvalue iteration within γ iteration
- Sylvester matrix resultant (and block companion linearization): marginally better
- Proposed method is much faster due to symmetric linearization:

Conclusion

- \mathcal{H}_{∞} norm computation is important in Systems \& Control
- Hamiltonian matrix arguments have proven quadratic convergence rates (Bruinsma \& Steinbuch)
- But requires an eigenvalue iteration within γ iteration
- Sylvester matrix resultant (and block companion linearization): marginally better
- Proposed method is much faster due to symmetric linearization: 20 to 40 times faster.

Conclusion

- \mathcal{H}_{∞} norm computation is important in Systems \& Control
- Hamiltonian matrix arguments have proven quadratic convergence rates (Bruinsma \& Steinbuch)
- But requires an eigenvalue iteration within γ iteration
- Sylvester matrix resultant (and block companion linearization): marginally better
- Proposed method is much faster due to symmetric linearization:
20 to 40 times faster. Improvement further better for higher orders

Acknowledgements

Dr. Bibhas Adhikari

Dr. Swanand Khare
Dr. Cornelis Praagman

