Application of structured linearization for efficient \mathcal{H}_{∞} -norm computation

Madhu N. Belur

Indian Institute of Technology Bombay

16th January, 2013 NLAA 2013, Guwahati

- \mathcal{H}_{∞} -norm definition
- Ourrent method
- New method (using 'loss of dissipativity' property)
- Bezoutian matrix
- **o** Time improvement

$$||G||_{\mathcal{H}_{\infty}} := \sup_{\lambda \in \mathbb{C}, \operatorname{Real}(\lambda) \ge 0} \sigma_{\max}(G(\lambda))$$

where $\sigma_{\max}(P)$ is the maximum singular value of a constant matrix P.

$$||G||_{\mathcal{H}_{\infty}} := \sup_{\lambda \in \mathbb{C}, \operatorname{Real}(\lambda) \ge 0} \sigma_{\max}(G(\lambda))$$

where $\sigma_{\max}(P)$ is the maximum singular value of a constant matrix P.

When the supremum exists: attained on the imaginary axis $i\mathbb{R} \cup \{\infty\}$.

$$||G||_{\mathcal{H}_{\infty}} := \sup_{\lambda \in \mathbb{C}, \operatorname{Real}(\lambda) \ge 0} \sigma_{\max}(G(\lambda))$$

where $\sigma_{\max}(P)$ is the maximum singular value of a constant matrix P.

When the supremum exists: attained on the imaginary axis $i\mathbb{R} \cup \{\infty\}$.

(Assume stability, 'properness', for existence of $\|G\|_{\mathcal{H}_\infty}$)

$$||G||_{\mathcal{H}_{\infty}} := \sup_{\lambda \in \mathbb{C}, \operatorname{Real}(\lambda) \ge 0} \sigma_{\max}(G(\lambda))$$

where $\sigma_{\max}(P)$ is the maximum singular value of a constant matrix P.

When the supremum exists: attained on the imaginary axis $i\mathbb{R} \cup \{\infty\}$.

(Assume stability, 'properness', for existence of $||G||_{\mathcal{H}_{\infty}}$) $||G||_{\mathcal{H}_{\infty}}$ plays an important role in robust control and disturbance attenuation problems.

$$||G||_{\mathcal{H}_{\infty}} := \sup_{\lambda \in \mathbb{C}, \operatorname{Real}(\lambda) \ge 0} \sigma_{\max}(G(\lambda))$$

where $\sigma_{\max}(P)$ is the maximum singular value of a constant matrix P.

When the supremum exists: attained on the imaginary axis $i\mathbb{R} \cup \{\infty\}$.

(Assume stability, 'properness', for existence of $\|G\|_{\mathcal{H}_{\infty}}$)

 $\|G\|_{\mathcal{H}_{\infty}}$ plays an important role in robust control and disturbance attenuation problems.

This talk: about computation of $||G||_{\mathcal{H}_{\infty}}$

Conventional method to compute $||G||_{\mathcal{H}_{\infty}}$

Obtain a state space realization of G(s): (A, B, C, D)Assuming $\gamma > \sigma_{\max}(D)$

Define:
$$H(\gamma) := \begin{bmatrix} A - BR^{-1}D^TC & -\gamma BR^{-1}B^T \\ \gamma C^T S^{-1}C & -A^T + C^T DR^{-1}B^T \end{bmatrix}$$

with $S := (\gamma^2 I - DD^T)$ and $R := (\gamma^2 I - D^T D)$,

Conventional method to compute $||G||_{\mathcal{H}_{\infty}}$

Obtain a state space realization of G(s): (A, B, C, D)Assuming $\gamma > \sigma_{\max}(D)$

Define:
$$H(\gamma) := \begin{bmatrix} A - BR^{-1}D^TC & -\gamma BR^{-1}B^T \\ \gamma C^T S^{-1}C & -A^T + C^T DR^{-1}B^T \end{bmatrix}$$

with $S := (\gamma^2 I - DD^T)$ and $R := (\gamma^2 I - D^T D)$, and use (Boyd & Balakrishnan):

Conventional method to compute $||G||_{\mathcal{H}_{\infty}}$

Obtain a state space realization of G(s): (A, B, C, D)Assuming $\gamma > \sigma_{\max}(D)$

Define:
$$H(\gamma) := \begin{bmatrix} A - BR^{-1}D^TC & -\gamma BR^{-1}B^T \\ \gamma C^T S^{-1}C & -A^T + C^T DR^{-1}B^T \end{bmatrix}$$

with $S := (\gamma^2 I - DD^T)$ and $R := (\gamma^2 I - D^T D)$, and use (Boyd & Balakrishnan):

 $\gamma \leq ||G||_{\mathcal{H}_{\infty}} \Leftrightarrow H(\gamma)$ has $i\mathbb{R}$ eigenvalues

to iterate over γ to find $\gamma = ||G||_{\mathcal{H}_{\infty}}$ to required accuracy. For each γ value: solve an eigenvalue problem

Obtain a right coprime factorization of $G(s) = N(s)(D(s))^{-1}$, with N(s) and D(s) polynomial matrices

Obtain a right coprime factorization of $G(s) = N(s)(D(s))^{-1}$, with N(s) and D(s) polynomial matrices Dissipativity theory gives:

$$P(\gamma, \omega) := D(-j\omega)^T D(j\omega) - \gamma^2 N(-j\omega)^T N(j\omega) \ge 0 \quad \text{for all } \omega \in \mathbb{R}$$

Obtain a right coprime factorization of $G(s) = N(s)(D(s))^{-1}$, with N(s) and D(s) polynomial matrices Dissipativity theory gives:

Obtain a right coprime factorization of $G(s) = N(s)(D(s))^{-1}$, with N(s) and D(s) polynomial matrices Dissipativity theory gives:

Thus

 $\|G\|_{\mathcal{H}_{\infty}} = \min\{\gamma \mid \gamma \text{ satisfies } P(\gamma, \omega) \ge 0 \text{ as above}\}$ Define $p_{\gamma}(\omega) := \det P(\gamma, \omega)$ Look for those γ 's that make $p_{\gamma}(\omega)$ and $\frac{\partial p}{\partial \omega} =: q_{\gamma}(\omega)$ noncoprime Obtain a right coprime factorization of $G(s) = N(s)(D(s))^{-1}$, with N(s) and D(s) polynomial matrices Dissipativity theory gives:

Thus

$$\begin{split} \|G\|_{\mathcal{H}_{\infty}} &= \min\{\gamma \mid \gamma \text{ satisfies } P(\gamma, \omega) \geqslant 0 \text{ as above} \} \\ \text{Define } p_{\gamma}(\omega) &:= \det P(\gamma, \omega) \\ \text{Look for those } \gamma \text{'s that make } p_{\gamma}(\omega) \text{ and } \frac{\partial p}{\partial \omega} =: q_{\gamma}(\omega) \text{ noncoprime } \\ \text{Discriminant } / \text{ Resultant results applicable now } \\ \text{Bezoutian matrix better than Sylvester matrix} \end{split}$$

Consider polynomials $p(\omega)$ and $q(\omega)$. Bezoutian polynomial $b(\zeta, \eta)$ and matrix B are defined as

$$b(\zeta,\eta) := \frac{p(\zeta)q(\eta) - p(\eta)q(\zeta)}{\zeta - \eta} = \begin{bmatrix} \frac{1}{\zeta} \\ \vdots \\ \zeta^{n-1} \end{bmatrix}^T B \begin{bmatrix} \frac{1}{\eta} \\ \vdots \\ \eta^{n-1} \end{bmatrix}$$

with $n = \max(\deg p, \deg q)$. B is a symmetric matrix Consider polynomials $p(\omega)$ and $q(\omega)$. Bezoutian polynomial $b(\zeta, \eta)$ and matrix B are defined as

$$b(\zeta,\eta) := \frac{p(\zeta)q(\eta) - p(\eta)q(\zeta)}{\zeta - \eta} = \begin{bmatrix} \frac{1}{\zeta} \\ \vdots \\ \zeta^{n-1} \end{bmatrix}^T B \begin{bmatrix} \frac{1}{\eta} \\ \vdots \\ \eta^{n-1} \end{bmatrix}$$

with $n = \max(\deg p, \deg q)$. *B* is a symmetric matrix But not the Sylvester resultant matrix *S*

Let $p(\xi) = p_0 + p_1\xi + p_2\xi^2 \cdots + p_n\xi^n$ and $q(\xi) = q_0 + q_1\xi + q_2\xi^2 \cdots + q_m\xi^m$ and S, the Sylvester resultant matrix is $(n+m) \times (n+m)$

Let $p(\xi) = p_0 + p_1\xi + p_2\xi^2 \cdots + p_n\xi^n$ and $q(\xi) = q_0 + q_1\xi + q_2\xi^2 \cdots + q_m\xi^m$ and S, the Sylvester resultant matrix is $(n+m) \times (n+m)$ S is singular if and only if p and q have a common root

Let $p(\xi) = p_0 + p_1\xi + p_2\xi^2 \cdots + p_n\xi^n$ and $q(\xi) = q_0 + q_1\xi + q_2\xi^2 \cdots + q_m\xi^m$ and S, the Sylvester resultant matrix is $(n+m) \times (n+m)$ S is singular if and only if p and q have a common root S loses rank d if and only if gcd of p and q has degree d. But

Let $p(\xi) = p_0 + p_1\xi + p_2\xi^2 \cdots + p_n\xi^n$ and $q(\xi) = q_0 + q_1\xi + q_2\xi^2 \cdots + q_m\xi^m$ and S, the Sylvester resultant matrix is $(n+m) \times (n+m)$ S is singular if and only if p and q have a common root S loses rank d if and only if gcd of p and q has degree d. But S is quite 'abnormal'

Let $p(\xi) = p_0 + p_1\xi + p_2\xi^2 \cdots + p_n\xi^n$ and $q(\xi) = q_0 + q_1\xi + q_2\xi^2 \cdots + q_m\xi^m$ and S, the Sylvester resultant matrix is $(n+m) \times (n+m)$ S is singular if and only if p and q have a common root S loses rank d if and only if gcd of p and q has degree d. But S is quite 'abnormal' (A is called normal if $AA^T = A^TA$)

Let $p(\xi) = p_0 + p_1\xi + p_2\xi^2 \cdots + p_n\xi^n$ and $q(\xi) = q_0 + q_1\xi + q_2\xi^2 \cdots + q_m\xi^m$ and S, the Sylvester resultant matrix is $(n + m) \times (n + m)$ S is singular if and only if p and q have a common root S loses rank d if and only if gcd of p and q has degree d. But S is quite 'abnormal' (A is called normal if $AA^T = A^TA$) At least the zero eigenvalue of S (when S is singular) is ill-conditioned.

(Left and right eigenvectors are same \equiv that eigenvalue is well-conditioned.)

Let $p(\xi) = p_0 + p_1\xi + p_2\xi^2 \cdots + p_n\xi^n$ and $q(\xi) = q_0 + q_1\xi + q_2\xi^2 \cdots + q_m\xi^m$ and S, the Sylvester resultant matrix is $(n + m) \times (n + m)$ S is singular if and only if p and q have a common root S loses rank d if and only if gcd of p and q has degree d. But S is quite 'abnormal' (A is called normal if $AA^T = A^TA$) At least the zero eigenvalue of S (when S is singular) is ill-conditioned.

(Left and right eigenvectors are same \equiv that eigenvalue is well-conditioned.)

But Bezoutian matrix: symmetric

Let degree of $p = n \ge degree$ of q = m.

Let degree of $p = n \ge$ degree of q = m. Degree of $b(\zeta, \eta)$ is n - 1 in each of ζ and η and

Let degree of $p = n \ge degree$ of q = m. Degree of $b(\zeta, \eta)$ is n - 1 in each of ζ and η and matrix B is $n \times n$.

Let degree of $p = n \ge degree$ of q = m. Degree of $b(\zeta, \eta)$ is n - 1 in each of ζ and η and matrix B is $n \times n$. $b(\zeta, \eta)$ explicit calculation quite easy to program (in Scilab): Let $b(\zeta, \eta) = b_0(\zeta) + \eta b_1(\zeta) + \eta^2 b_2(\zeta) \cdots \eta^{n-1} b_{n-1}(\zeta)$ Equate terms with equal degree in η in

$$(\zeta - \eta)b(\zeta, \eta) = p(\zeta)q(\eta) - q(\zeta)p(\eta)$$
 to get

 $b_0(\zeta) := (q_0 p(\zeta) - p_0 q(\zeta))/\zeta$

Let degree of $p = n \ge degree$ of q = m. Degree of $b(\zeta, \eta)$ is n - 1 in each of ζ and η and matrix B is $n \times n$. $b(\zeta, \eta)$ explicit calculation quite easy to program (in Scilab): Let $b(\zeta, \eta) = b_0(\zeta) + \eta b_1(\zeta) + \eta^2 b_2(\zeta) \cdots \eta^{n-1} b_{n-1}(\zeta)$ Equate terms with equal degree in η in

$$(\zeta - \eta)b(\zeta, \eta) = p(\zeta)q(\eta) - q(\zeta)p(\eta)$$
 to get

 $b_0(\zeta) := (q_0 p(\zeta) - p_0 q(\zeta)) / \zeta$ $b_1(\zeta) := (q_1 p(\zeta) - p_1 q(\zeta) + b_0(\zeta)) / \zeta$

Let degree of $p = n \ge degree$ of q = m. Degree of $b(\zeta, \eta)$ is n - 1 in each of ζ and η and matrix B is $n \times n$. $b(\zeta, \eta)$ explicit calculation quite easy to program (in Scilab): Let $b(\zeta, \eta) = b_0(\zeta) + \eta b_1(\zeta) + \eta^2 b_2(\zeta) \cdots \eta^{n-1} b_{n-1}(\zeta)$ Equate terms with equal degree in η in

$$(\zeta - \eta)b(\zeta, \eta) = p(\zeta)q(\eta) - q(\zeta)p(\eta)$$
 to get

$$b_{0}(\zeta) := (q_{0}p(\zeta) - p_{0}q(\zeta))/\zeta$$

$$b_{1}(\zeta) := (q_{1}p(\zeta) - p_{1}q(\zeta) + b_{0}(\zeta))/\zeta$$

:

$$b_{i}(\zeta) := (q_{i}p(\zeta) - p_{i}q(\zeta) + b_{i-1}(\zeta))/\zeta$$

Notice that $b(\zeta, \eta) = b(\eta, \zeta)$

Notice that $b(\zeta, \eta) = b(\eta, \zeta)$ Once $b(\zeta, \eta)$ is found, define B_{ij} = coefficient of $\zeta^i \eta^j$ Notice that $b(\zeta, \eta) = b(\eta, \zeta)$ Once $b(\zeta, \eta)$ is found, define B_{ij} = coefficient of $\zeta^i \eta^j$ Due to constant term, define B_{ij} = coefficient of $\zeta^{i-1} \eta^{j-1}$ Notice that $b(\zeta, \eta) = b(\eta, \zeta)$ Once $b(\zeta, \eta)$ is found, define B_{ij} = coefficient of $\zeta^i \eta^j$ Due to constant term, define B_{ij} = coefficient of $\zeta^{i-1} \eta^{j-1}$

Let
$$p(s) = 2 + 3s + s^2$$
 and $q_a(s) = a + s$
Sylvester resultant matrix $S = \begin{bmatrix} 2 & 3 & 1 \\ a & 1 & 0 \\ 0 & a & 1 \end{bmatrix}$
det $S = a^2 - 3a + 2$:

Let
$$p(s) = 2 + 3s + s^2$$
 and $q_a(s) = a + s$
Sylvester resultant matrix $S = \begin{bmatrix} 2 & 3 & 1 \\ a & 1 & 0 \\ 0 & a & 1 \end{bmatrix}$
det $S = a^2 - 3a + 2$: p and q are noncoprime $\Leftrightarrow a = 1, 2$

Let
$$p(s) = 2 + 3s + s^2$$
 and $q_a(s) = a + s$
Sylvester resultant matrix $S = \begin{bmatrix} 2 & 3 & 1 \\ a & 1 & 0 \\ 0 & a & 1 \end{bmatrix}$
det $S = a^2 - 3a + 2$: p and q are noncoprime $\Leftrightarrow a = 1, 2$
 $b(\zeta, \eta) = \zeta \eta + a(\zeta + \eta) + 3a - 2$ and hence

Let
$$p(s) = 2 + 3s + s^2$$
 and $q_a(s) = a + s$
Sylvester resultant matrix $S = \begin{bmatrix} 2 & 3 & 1 \\ a & 1 & 0 \\ 0 & a & 1 \end{bmatrix}$
det $S = a^2 - 3a + 2$: p and q are noncoprime $\Leftrightarrow a = 1, 2$
 $b(\zeta, \eta) = \zeta \eta + a(\zeta + \eta) + 3a - 2$ and hence
 $B_a = \begin{bmatrix} 1 & a \\ a & (3a - 2) \end{bmatrix}$ with determinant $-(a^2 - 3a + 2)$

In our case,

In our case, coefficients of $p(\omega)$ and $q(\omega)$ are polynomials in γ .

In our case, coefficients of $p(\omega)$ and $q(\omega)$ are polynomials in γ . The polynomial matrix $B(\gamma)$ has each coefficient: a symmetric constant matrix:

$$B(\gamma) = B_0 + \gamma B_1 + \dots + \gamma^m B_m$$
, say.

In our case, coefficients of $p(\omega)$ and $q(\omega)$ are polynomials in γ . The polynomial matrix $B(\gamma)$ has each coefficient: a symmetric constant matrix:

$$B(\gamma) = B_0 + \gamma B_1 + \dots + \gamma^m B_m$$
, say.

Roots of det $B(\gamma)$ cause p_{γ} and q_{γ} to have a common root: ω_0

In our case, coefficients of $p(\omega)$ and $q(\omega)$ are polynomials in γ . The polynomial matrix $B(\gamma)$ has each coefficient: a symmetric constant matrix:

$$B(\gamma) = B_0 + \gamma B_1 + \dots + \gamma^m B_m$$
, say.

Roots of det $B(\gamma)$ cause p_{γ} and q_{γ} to have a common root: ω_0 ω_0 is that eigenvalue of the Hamiltonian matrix at the maximum γ that satisfies

In our case, coefficients of $p(\omega)$ and $q(\omega)$ are polynomials in γ . The polynomial matrix $B(\gamma)$ has each coefficient: a symmetric constant matrix:

$$B(\gamma) = B_0 + \gamma B_1 + \dots + \gamma^m B_m$$
, say.

Roots of det $B(\gamma)$ cause p_{γ} and q_{γ} to have a common root: ω_0 ω_0 is that eigenvalue of the Hamiltonian matrix at the maximum γ that satisfies

Hamiltonian matrix $H(\gamma)$ has imaginary axis eigenvalues.

In our case, coefficients of $p(\omega)$ and $q(\omega)$ are polynomials in γ . The polynomial matrix $B(\gamma)$ has each coefficient: a symmetric constant matrix:

$$B(\gamma) = B_0 + \gamma B_1 + \dots + \gamma^m B_m$$
, say.

Roots of det $B(\gamma)$ cause p_{γ} and q_{γ} to have a common root: ω_0 ω_0 is that eigenvalue of the Hamiltonian matrix at the maximum γ that satisfies Hamiltonian matrix $H(\gamma)$ has imaginary axis eigenvalues.

Recall that

$$\gamma \leqslant \|G\|_{\mathcal{H}_\infty} \Leftrightarrow H(\gamma)$$
 has $i\mathbb{R}$ eigenvalues

Define symmetric matrices E and A as

$$E := \begin{bmatrix} B_m & & & \\ & -B_{m-2} & \cdots & -B_1 & -B_0 \\ & \vdots & \ddots & \ddots & 0 \\ & -B_1 & \ddots & & \\ & -B_0 & 0 & & \end{bmatrix} \qquad A := \begin{bmatrix} -B_{m-1} & \cdots & -B_1 & -B_0 \\ \vdots & \ddots & \ddots & 0 \\ & -B_1 & \ddots & & \\ & -B_0 & 0 & & \end{bmatrix}$$

Define symmetric matrices E and A as

$$E := \begin{bmatrix} B_m & & & \\ & -B_{m-2} & \cdots & -B_1 & -B_0 \\ & \vdots & \ddots & \ddots & 0 \\ & -B_1 & \ddots & & \\ & -B_0 & 0 & & \end{bmatrix} \qquad A := \begin{bmatrix} -B_{m-1} & \cdots & -B_1 & -B_0 \\ \vdots & \ddots & \ddots & 0 \\ & -B_1 & \ddots & & \\ & -B_0 & 0 & & \end{bmatrix}$$

Find generalized eigenvalues of the pair (E, A): the sought $||G||_{\mathcal{H}_{\infty}}$ is one of these eigenvalues.

Define symmetric matrices E and A as

$$E := \begin{bmatrix} B_m & & & \\ & -B_{m-2} & \cdots & -B_1 & -B_0 \\ & \vdots & \ddots & \ddots & 0 \\ & -B_1 & \ddots & & \\ & -B_0 & 0 & & \end{bmatrix} \qquad A := \begin{bmatrix} -B_{m-1} & \cdots & -B_1 & -B_0 \\ \vdots & \ddots & \ddots & 0 \\ & -B_1 & \ddots & & \\ & -B_0 & 0 & & \end{bmatrix}$$

Find generalized eigenvalues of the pair (E, A): the sought $||G||_{\mathcal{H}_{\infty}}$ is one of these eigenvalues. Note:

- due to **Bezoutian** matrix reasons:
- B_m is nonsingular
- Pencil is a regular pencil

Define symmetric matrices E and A as

$$E := \begin{bmatrix} B_m & & & \\ & -B_{m-2} & \cdots & -B_1 & -B_0 \\ & \vdots & \ddots & \ddots & 0 \\ & -B_1 & \ddots & & \\ & -B_0 & 0 & & \end{bmatrix} \qquad A := \begin{bmatrix} -B_{m-1} & \cdots & -B_1 & -B_0 \\ \vdots & \ddots & \ddots & 0 \\ & -B_1 & \ddots & & \\ & -B_0 & 0 & & \end{bmatrix}$$

Find generalized eigenvalues of the pair (E, A): the sought $||G||_{\mathcal{H}_{\infty}}$ is one of these eigenvalues. Note:

- due to **Bezoutian** matrix reasons:
- B_m is nonsingular
- Pencil is a regular pencil
- But need to check that common root is on $i\mathbb{R}$, maximum such γ , etc.

Program implemented in Scilab (and code on github)

(Belur)

Comparison of two methods (large order)

Figure: Plot from Belur & Praagman, IEEE-TAC, 2011

(Belur)

Structured linearization and efficient

Comparison of two methods (small order)

Figure: Plot from Belur & Praagman, IEEE-TAC, 2011

(Belur)

- \mathcal{H}_{∞} norm computation is important in Systems & Control
- Hamiltonian matrix arguments have proven quadratic convergence rates (Bruinsma & Steinbuch)

- \mathcal{H}_{∞} norm computation is important in Systems & Control
- Hamiltonian matrix arguments have proven quadratic convergence rates (Bruinsma & Steinbuch)
- But requires an eigenvalue iteration within γ iteration

- \mathcal{H}_{∞} norm computation is important in Systems & Control
- Hamiltonian matrix arguments have proven quadratic convergence rates (Bruinsma & Steinbuch)
- But requires an eigenvalue iteration within γ iteration
- Sylvester matrix resultant (and block companion linearization): marginally better

- \mathcal{H}_{∞} norm computation is important in Systems & Control
- Hamiltonian matrix arguments have proven quadratic convergence rates (Bruinsma & Steinbuch)
- But requires an eigenvalue iteration within γ iteration
- Sylvester matrix resultant (and block companion linearization): marginally better
- Proposed method is much faster due to symmetric linearization:

- \mathcal{H}_{∞} norm computation is important in Systems & Control
- Hamiltonian matrix arguments have proven quadratic convergence rates (Bruinsma & Steinbuch)
- But requires an eigenvalue iteration within γ iteration
- Sylvester matrix resultant (and block companion linearization): marginally better
- Proposed method is much faster due to symmetric linearization:
 20 to 40 times faster.

- \mathcal{H}_{∞} norm computation is important in Systems & Control
- Hamiltonian matrix arguments have proven quadratic convergence rates (Bruinsma & Steinbuch)
- But requires an eigenvalue iteration within γ iteration
- Sylvester matrix resultant (and block companion linearization): marginally better
- Proposed method is much faster due to symmetric linearization:
 20 to 40 times faster. Improvement further better for higher orders

- Dr. Bibhas Adhikari
- Dr. Swanand Khare
- Dr. Cornelis Praagman