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H-infinity norm

For a transfer matrix G(s) ∈ R(s)p×m (with p rows and m
columns, entries from R(s)):

‖G‖H∞ := sup
λ∈C,Real (λ)>0

σmax(G(λ))

where σmax(P ) is the maximum singular value of a constant
matrix P .

When the supremum exists: attained on the imaginary axis
iR ∪ {∞}.
(Assume stability, ‘properness’, for existence of ‖G‖H∞ )
‖G‖H∞ plays an important role in robust control and disturbance
attenuation problems.
This talk: about computation of ‖G‖H∞
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Conventional method to compute ‖G‖H∞

Obtain a state space realization of G(s): (A,B,C,D)
Assuming γ > σmax(D)

Define: H(γ) :=

[
A−BR−1DTC −γBR−1BT

γCTS−1C −AT + CTDR−1BT

]
with S := (γ2I −DDT ) and R := (γ2I −DTD),

and use (Boyd & Balakrishnan):

γ 6 ‖G‖H∞ ⇔ H(γ) has iR eigenvalues

to iterate over γ to find γ = ‖G‖H∞ to required accuracy.
For each γ value: solve an eigenvalue problem
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New method

Obtain a right coprime factorization of G(s) = N(s)(D(s))−1,
with N(s) and D(s) polynomial matrices

Dissipativity theory gives:

P (γ, ω) := D(−jω)TD(jω)− γ2N(−jω)TN(jω) > 0 for all ω ∈ R
m

γ > ‖G‖H∞

Thus
‖G‖H∞ = min{γ | γ satisfies P (γ, ω) > 0 as above}
Define pγ(ω) := det P (γ, ω)
Look for those γ’s that make pγ(ω) and ∂p

∂ω
=: qγ(ω) noncoprime

Discriminant / Resultant results applicable now
Bezoutian matrix better than Sylvester matrix
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Bezoutian of two polynomials

Consider polynomials p(ω) and q(ω).
Bezoutian polynomial b(ζ, η) and matrix B are defined as

b(ζ, η) :=
p(ζ)q(η)− p(η)q(ζ)

ζ − η
=

 1
ζ

...
ζn−1

T B
 1

η

...
ηn−1


with n = max(deg p, deg q).
B is a symmetric matrix

But not the Sylvester resultant matrix S
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Construction of b(ζ, η) and B

Let p(ξ) = p0 + p1ξ + p2ξ
2 · · ·+ pnξ

n and
q(ξ) = q0 + q1ξ + q2ξ

2 · · ·+ qmξ
m and

S, the Sylvester resultant matrix is (n+m)× (n+m)

S is singular if and only if p and q have a common root
S loses rank d if and only if gcd of p and q has degree d.
But S is quite ‘abnormal’ (A is called normal if AAT = ATA)
At least the zero eigenvalue of S (when S is singular) is
ill-conditioned.
(Left and right eigenvectors are same ≡ that eigenvalue is
well-conditioned.)
But Bezoutian matrix: symmetric
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Bezoutian polynomial and matrix

Let degree of p = n > degree of q = m.

Degree of b(ζ, η) is n− 1 in each of ζ and η and
matrix B is n× n.
b(ζ, η) explicit calculation quite easy to program (in Scilab):
Let b(ζ, η) = b0(ζ) + ηb1(ζ) + η2b2(ζ) · · · ηn−1bn−1(ζ)
Equate terms with equal degree in η in

(ζ − η)b(ζ, η) = p(ζ)q(η)− q(ζ)p(η) to get

b0(ζ) := (q0p(ζ)− p0q(ζ))/ζ
b1(ζ) := (q1p(ζ)− p1q(ζ) + b0(ζ))/ζ
...
bi(ζ) := (qip(ζ)− piq(ζ) + bi−1(ζ))/ζ

(Belur) Structured linearization and efficient H∞-norm 8 / 16



Bezoutian polynomial and matrix

Let degree of p = n > degree of q = m.
Degree of b(ζ, η) is n− 1 in each of ζ and η and

matrix B is n× n.
b(ζ, η) explicit calculation quite easy to program (in Scilab):
Let b(ζ, η) = b0(ζ) + ηb1(ζ) + η2b2(ζ) · · · ηn−1bn−1(ζ)
Equate terms with equal degree in η in

(ζ − η)b(ζ, η) = p(ζ)q(η)− q(ζ)p(η) to get

b0(ζ) := (q0p(ζ)− p0q(ζ))/ζ
b1(ζ) := (q1p(ζ)− p1q(ζ) + b0(ζ))/ζ
...
bi(ζ) := (qip(ζ)− piq(ζ) + bi−1(ζ))/ζ

(Belur) Structured linearization and efficient H∞-norm 8 / 16



Bezoutian polynomial and matrix

Let degree of p = n > degree of q = m.
Degree of b(ζ, η) is n− 1 in each of ζ and η and
matrix B is n× n.

b(ζ, η) explicit calculation quite easy to program (in Scilab):
Let b(ζ, η) = b0(ζ) + ηb1(ζ) + η2b2(ζ) · · · ηn−1bn−1(ζ)
Equate terms with equal degree in η in

(ζ − η)b(ζ, η) = p(ζ)q(η)− q(ζ)p(η) to get

b0(ζ) := (q0p(ζ)− p0q(ζ))/ζ
b1(ζ) := (q1p(ζ)− p1q(ζ) + b0(ζ))/ζ
...
bi(ζ) := (qip(ζ)− piq(ζ) + bi−1(ζ))/ζ

(Belur) Structured linearization and efficient H∞-norm 8 / 16



Bezoutian polynomial and matrix

Let degree of p = n > degree of q = m.
Degree of b(ζ, η) is n− 1 in each of ζ and η and
matrix B is n× n.
b(ζ, η) explicit calculation quite easy to program (in Scilab):
Let b(ζ, η) = b0(ζ) + ηb1(ζ) + η2b2(ζ) · · · ηn−1bn−1(ζ)
Equate terms with equal degree in η in

(ζ − η)b(ζ, η) = p(ζ)q(η)− q(ζ)p(η) to get

b0(ζ) := (q0p(ζ)− p0q(ζ))/ζ

b1(ζ) := (q1p(ζ)− p1q(ζ) + b0(ζ))/ζ
...
bi(ζ) := (qip(ζ)− piq(ζ) + bi−1(ζ))/ζ

(Belur) Structured linearization and efficient H∞-norm 8 / 16



Bezoutian polynomial and matrix

Let degree of p = n > degree of q = m.
Degree of b(ζ, η) is n− 1 in each of ζ and η and
matrix B is n× n.
b(ζ, η) explicit calculation quite easy to program (in Scilab):
Let b(ζ, η) = b0(ζ) + ηb1(ζ) + η2b2(ζ) · · · ηn−1bn−1(ζ)
Equate terms with equal degree in η in

(ζ − η)b(ζ, η) = p(ζ)q(η)− q(ζ)p(η) to get

b0(ζ) := (q0p(ζ)− p0q(ζ))/ζ
b1(ζ) := (q1p(ζ)− p1q(ζ) + b0(ζ))/ζ

...
bi(ζ) := (qip(ζ)− piq(ζ) + bi−1(ζ))/ζ

(Belur) Structured linearization and efficient H∞-norm 8 / 16



Bezoutian polynomial and matrix

Let degree of p = n > degree of q = m.
Degree of b(ζ, η) is n− 1 in each of ζ and η and
matrix B is n× n.
b(ζ, η) explicit calculation quite easy to program (in Scilab):
Let b(ζ, η) = b0(ζ) + ηb1(ζ) + η2b2(ζ) · · · ηn−1bn−1(ζ)
Equate terms with equal degree in η in

(ζ − η)b(ζ, η) = p(ζ)q(η)− q(ζ)p(η) to get

b0(ζ) := (q0p(ζ)− p0q(ζ))/ζ
b1(ζ) := (q1p(ζ)− p1q(ζ) + b0(ζ))/ζ
...
bi(ζ) := (qip(ζ)− piq(ζ) + bi−1(ζ))/ζ

(Belur) Structured linearization and efficient H∞-norm 8 / 16



Bezoutian matrix

Notice that b(ζ, η) = b(η, ζ)

Once b(ζ, η) is found, define Bij = coefficient of ζ iηj

Due to constant term,
define Bij = coefficient of ζ i−1ηj−1
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Example

Let p(s) = 2 + 3s+ s2 and qa(s) = a+ s

Sylvester resultant matrix S =

2 3 1
a 1 0
0 a 1


det S = a2 − 3a+ 2 :

p and q are noncoprime ⇔ a = 1, 2
b(ζ, η) = ζη + a(ζ + η) + 3a− 2 and hence

Ba =

[
1 a
a (3a− 2)

]
with determinant −(a2 − 3a+ 2)

(Belur) Structured linearization and efficient H∞-norm 10 / 16



Example

Let p(s) = 2 + 3s+ s2 and qa(s) = a+ s

Sylvester resultant matrix S =

2 3 1
a 1 0
0 a 1


det S = a2 − 3a+ 2 : p and q are noncoprime ⇔ a = 1, 2

b(ζ, η) = ζη + a(ζ + η) + 3a− 2 and hence

Ba =

[
1 a
a (3a− 2)

]
with determinant −(a2 − 3a+ 2)

(Belur) Structured linearization and efficient H∞-norm 10 / 16



Example

Let p(s) = 2 + 3s+ s2 and qa(s) = a+ s

Sylvester resultant matrix S =

2 3 1
a 1 0
0 a 1


det S = a2 − 3a+ 2 : p and q are noncoprime ⇔ a = 1, 2
b(ζ, η) = ζη + a(ζ + η) + 3a− 2 and hence

Ba =

[
1 a
a (3a− 2)

]
with determinant −(a2 − 3a+ 2)

(Belur) Structured linearization and efficient H∞-norm 10 / 16



Example

Let p(s) = 2 + 3s+ s2 and qa(s) = a+ s

Sylvester resultant matrix S =

2 3 1
a 1 0
0 a 1


det S = a2 − 3a+ 2 : p and q are noncoprime ⇔ a = 1, 2
b(ζ, η) = ζη + a(ζ + η) + 3a− 2 and hence

Ba =

[
1 a
a (3a− 2)

]
with determinant −(a2 − 3a+ 2)

(Belur) Structured linearization and efficient H∞-norm 10 / 16



H∞ norm computation: Bezoutian polynomial

In our case,

coefficients of p(ω) and q(ω) are polynomials in γ.
The polynomial matrix B(γ) has each coefficient: a symmetric
constant matrix:

B(γ) = B0 + γB1 + · · ·+ γmBm, say.

Roots of det B(γ) cause pγ and qγ to have a common root: ω0

ω0 is that eigenvalue of the Hamiltonian matrix at the maximum
γ that satisfies
Hamiltonian matrix H(γ) has imaginary axis eigenvalues.
Recall that

γ 6 ‖G‖H∞ ⇔ H(γ) has iR eigenvalues
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Structured linearization

Define symmetric matrices E and A as

E :=


Bm
−Bm−2 ··· −B1 −B0

... ... ... 0

−B1 ...
−B0 0

 A :=


−Bm−1 ··· −B1 −B0

... ... ... 0

−B1 ...
−B0 0

 .

Find generalized eigenvalues of the pair (E,A): the sought
‖G‖H∞ is one of these eigenvalues.
Note:

due to Bezoutian matrix reasons:
Bm is nonsingular
Pencil is a regular pencil
But need to check that common root is on iR, maximum
such γ, etc.

Program implemented in Scilab (and code on github)
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Comparison of two methods (large order)

Figure: Plot from Belur & Praagman, IEEE-TAC, 2011
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Comparison of two methods (small order)

Figure: Plot from Belur & Praagman, IEEE-TAC, 2011
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Conclusion

H∞ norm computation is important in Systems & Control

Hamiltonian matrix arguments have proven quadratic
convergence rates (Bruinsma & Steinbuch)

But requires an eigenvalue iteration within γ iteration

Sylvester matrix resultant (and block companion
linearization): marginally better

Proposed method is much faster due to symmetric
linearization:
20 to 40 times faster. Improvement further better for higher
orders
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