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Q@ H.-norm definition

© Current method

@ New method (using ‘loss of dissipativity’ property)
@ Bezoutian matrix

@ Time improvement

(Belur) Structured linearization and efficient



H-infinity norm

For a transfer matrix G(s) € R(s)?*™ (with p rows and m
columns, entries from R(s)):

”G”Hoo = sup O_max(G()\))
AEC, Real (A\)=0

where opax(P) is the maximum singular value of a constant
matrix P.
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H-infinity norm

For a transfer matrix G(s) € R(s)?*™ (with p rows and m
columns, entries from R(s)):

HG”HOO = sup UmaX(G()‘))

AEC, Real (A\)=0

where opax(P) is the maximum singular value of a constant
matrix P.

When the supremum exists: attained on the imaginary axis
iR U {oo}.
(Assume stability, ‘properness’, for existence of ||G||#.. )

|G |l3.. plays an important role in robust control and disturbance
attenuation problems.
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H-infinity norm

For a transfer matrix G(s) € R(s)?*™ (with p rows and m
columns, entries from R(s)):

1G4 = sup Omax(G(A))
AEC, Real (A\)=0

where opax(P) is the maximum singular value of a constant
matrix P.
When the supremum exists: attained on the imaginary axis
iR U {oo}.
(Assume stability, ‘properness’, for existence of ||G||#.. )
|G|, plays an important role in robust control and disturbance
attenuation problems.
This talk: about computation of ||G||3.,
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Conventional method to compute ||G||3..

Obtain a state space realization of G(s): (A, B,C, D)
Assuming v > oyax(D)

. 1T . —1pT
Define: () = |4~ BEDTC vBR'B }

~NOTS-'C —AT + CTDR'BT

with S := (v — DDT) and R := (v*I — DT D),
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Conventional method to compute ||G||3..

Obtain a state space realization of G(s): (A, B,C, D)
Assuming v > oyax(D)

A—BR'D'C  —~yBR'BT
Define: - H(y):= " org-1c _AT 4 cTpR-1BT
with S := (v — DDT) and R := (v*I — DT D),

and use (Boyd & Balakrishnan):
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Conventional method to compute ||G||3..

Obtain a state space realization of G(s): (A, B,C, D)
Assuming v > oyax(D)

_ -1 NT o -1 RT
Define: () = |4~ BEDTC vBR'B }

~NOTS-'C —AT + CTDR'BT

with S := (v — DDT) and R := (v*I — DT D),
and use (Boyd & Balakrishnan):

v < ||G|l#. < H(7) has iR eigenvalues

to iterate over v to find v = ||G||3., to required accuracy.
For each v value: solve an eigenvalue problem
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New method

Obtain a right coprime factorization of G(s) = N(s)(D(s))™*,
with N(s) and D(s) polynomial matrices

(Belur) Structured linearization and efficient



New method

Obtain a right coprime factorization of G(s) = N(s)(D(s))™*,
with N(s) and D(s) polynomial matrices
Dissipativity theory gives:

P(y,w) := D(—jw)TD(jw) — ¥*N(—jw)TN(jw) =0 for allw € R

0
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New method

Obtain a right coprime factorization of G(s) = N(s)(D(s))™*,
with N(s) and D(s) polynomial matrices
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New method

Obtain a right coprime factorization of G(s) = N(s)(D(s))™*,
with N(s) and D(s) polynomial matrices
Dissipativity theory gives:

P(y,w) := D(—jw)TD(jw) — 72]\1&(—jw)TN(jw) >0 forallweR

7 2 (|Gl

Thus

I|G||%., = min{~ | 7 satisfies P(y,w) = 0 as above}

Define p,(w) := det P(v,w)

Look for those 7’s that make p,(w) and g—g =: ¢, (w) noncoprime
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New method

Obtain a right coprime factorization of G(s) = N(s)(D(s))™*,
with N(s) and D(s) polynomial matrices
Dissipativity theory gives:

P(y,w) := D(—jw)TD(jw) — 72]\1&(—jw)TN(jw) >0 forallweR

7 2 (|Gl

Thus

I|G||%., = min{~ | 7 satisfies P(y,w) = 0 as above}

Define p,(w) := det P(v,w)

Look for those 7’s that make p, (w) and 2 =: g,(w) noncoprime
Discriminant / Resultant results applicable now

Bezoutian matrix better than Sylvester matrix
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Bezoutian of two polynomials

Consider polynomials p(w) and g(w).
Bezoutian polynomial b(¢,n) and matrix B are defined as

) o POI® —p)a© | €| gl
n) ¢—n 4":*1 o

with n = max(deg p, deg q).
B is a symmetric matrix
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Bezoutian of two polynomials

Consider polynomials p(w) and g(w).
Bezoutian polynomial b(¢,n) and matrix B are defined as

) o POI® —p)a© | €| gl
n) ¢—n 4":*1 o

with n = max(deg p, deg q).
B is a symmetric matrix
But not the Sylvester resultant matrix S
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Construction of b((,n) and B

Let p(§) = po + pi& + p2&? -+ + pa€™ and

(&) = qo + @& + @28% - + ¢m&™ and
S, the Sylvester resultant matrix is (n +m) X (n 4+ m)
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Construction of b((,n) and B

Let p(§) = po + p1§ +p2€® -+ + pul” and

9(€) = qo + @€ + @26% - + ¢&™ and

S, the Sylvester resultant matrix is (n +m) X (n 4+ m)
S is singular if and only if p and ¢ have a common root
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Construction of b((,n) and B

Let p(§) = po + 1€ + p2&® - - + pu€™ and

q(&) = o + @€ + &% - + gm€™ and

S, the Sylvester resultant matrix is (n +m) X (n 4+ m)

S is singular if and only if p and ¢ have a common root

S loses rank d if and only if ged of p and ¢ has degree d.

But S is quite ‘abnormal’ (A is called normal if AAT = AT A)
At least the zero eigenvalue of S (when S is singular) is
ill-conditioned.

(Left and right eigenvectors are same = that eigenvalue is
well-conditioned.)
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Construction of b((,n) and B

Let p(§) = po + pi& + p2&? -+ + pa€™ and

(&) = qo + @& + @28% - + ¢m&™ and
S, the Sylvester resultant matrix is (n +m) X (n 4+ m)

S is singular if and only if p and ¢ have a common root

S loses rank d if and only if ged of p and ¢ has degree d.

But S is quite ‘abnormal’ (A is called normal if AAT = AT A)
At least the zero eigenvalue of S (when S is singular) is
ill-conditioned.

(Left and right eigenvectors are same = that eigenvalue is
well-conditioned.)

But Bezoutian matrix: symmetric
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Bezoutian polynomial and matrix

Let degree of p = n > degree of ¢ = m.
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Bezoutian polynomial and matrix

Let degree of p = n > degree of ¢ = m.
Degree of b(¢,n) is n — 1 in each of ¢ and 7 and
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Bezoutian polynomial and matrix

Let degree of p = n > degree of ¢ = m.
Degree of b(¢,n) is n — 1 in each of ¢ and 7 and
matrix B is n X n.
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Bezoutian polynomial and matrix

Let degree of p = n > degree of ¢ = m.

Degree of b(¢,n) is n — 1 in each of ¢ and 7 and

matrix B is n X n.

b(¢,n) explicit calculation quite easy to program (in Scilab):

Let b(C,n) = bo(¢) + nb1(C) +n*02(C) -+ 0" bn1(C)
Equate terms with equal degree in 7 in

(¢ —m)b(¢,n) = p(C)a(n) — q(Q)p(n) to get
bo(€) == (qop(¢) — poa(€))/¢
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Bezoutian polynomial and matrix

Let degree of p = n > degree of ¢ = m.

Degree of b(¢,n) is n — 1 in each of ¢ and 7 and

matrix B is n X n.
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Bezoutian polynomial and matrix

Let degree of p = n > degree of ¢ = m.

Degree of b(¢,n) is n — 1 in each of ¢ and 7 and

matrix B is n X n.

b(¢,n) explicit calculation quite easy to program (in Scilab):

Let b(C,n) = bo(¢) + nb1(C) +n*02(C) -+ 0" bn1(C)
Equate terms with equal degree in 7 in

(¢ —m)b(¢,n) = p(C)a(n) — q(Q)p(n) to get

bo(¢) := (qop(¢) — poq(¢))/C
b1(¢) == (@1p(¢) — P1g(C) + bo(C))/C

bi(¢) = (ap(C) — 2:a(C) + bima(O))/C
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Bezoutian matrix

Notice that b(¢,n) = b(n, ()
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Bezoutian matrix

Notice that b(¢,n) = b(n, ()

Once b(¢,n) is found, define B;; = coefficient of (')’
Due to constant term,

define B;; = coefficient of ¢*~'n/~!
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Let p(s) = 2+ 3s + s% and ¢,(s)

S
L — W

+
_ O = W

2
Sylvester resultant matrix S = |a
0

det S=a®>—3a+2:
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Let p(s) =2+ 3s+ s* and q,(s) =a+ s
2 31
Sylvester resultant matrix S= |a 1 0
0 a1l

det S =a%?—3a+2: p and ¢ are noncoprime < a = 1,2
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Let p(s) =2+ 3s+ s* and q,(s) =a+ s
2 31
Sylvester resultant matrix S= |a 1 0
0 a1l

det S =a%?—3a+2: p and ¢ are noncoprime < a = 1,2
b(¢,n) = (n+ a(¢ +n) + 3a — 2 and hence
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Let p(s) =2+ 3s+ s* and q,(s) =a+ s
2 31
Sylvester resultant matrix S= |a 1 0
0 a1l

det S =a%?—3a+2: p and ¢ are noncoprime < a = 1,2
b(¢,n) = (n+ a(¢ +n) + 3a — 2 and hence

B, = 1 with determinant —(a? — 3a + 2)

(Belur) Structured linearization and efficient 10 / 16



Hoo norm computation: Bezoutian polynomial

In our case,
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In our case, coefficients of p(w) and ¢(w) are polynomials in -.
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Hoo norm computation: Bezoutian polynomial
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The polynomial matrix B(v) has each coefficient: a symmetric
constant matrix:

B(y) = By+vBi + -+ + 7" By, say.
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The polynomial matrix B(v) has each coefficient: a symmetric
constant matrix:

B(y) = Bo+7Bi+ -+ 7" By, say.

Roots of det B(7) cause p, and ¢, to have a common root: wy
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The polynomial matrix B(7) has each coefficient: a symmetric
constant matrix:
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wp is that eigenvalue of the Hamiltonian matrix at the maximum
~ that satisfies
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The polynomial matrix B(7) has each coefficient: a symmetric
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Hoo norm computation: Bezoutian polynomial

In our case, coefficients of p(w) and ¢(w) are polynomials in -.
The polynomial matrix B(7) has each coefficient: a symmetric
constant matrix:

B(y) = By+vBi + -+ + 7" By, say.

Roots of det B(7) cause p, and ¢, to have a common root: wy
wp is that eigenvalue of the Hamiltonian matrix at the maximum
~ that satisfies

Hamiltonian matrix H () has imaginary axis eigenvalues.

Recall that

v < ||Gll3.. < H(7) has iR eigenvalues
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Structured linearization

Define symmetric matrices £ and A as

B,
—Bm—2 -+ —B1 —Bp

E:= Lo A=| P o
- B -By .-
—Bo 0

—Bm-1 - —B1 —Bo
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Structured linearization

Define symmetric matrices £ and A as
Bm

—Bpm_a -+ —B1 —Bg —Bm-1 - —B1 —Bop
/) 5= S o A= o 2 2 O
. 731
7Bl o’
By 0 —=p 0

Find generalized eigenvalues of the pair (F, A): the sought
|G l3.. is one of these eigenvalues.
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Structured linearization

Define symmetric matrices £ and A as
Bm

—Bpm_a -+ —B1 —Bg —Bm-1 - —B1 —Bop
/) 5= S o A= o 2 2 O
. 731
7Bl o’
By 0 —=p 0

Find generalized eigenvalues of the pair (F, A): the sought
|G l3.. is one of these eigenvalues.
Note:

e due to Bezoutian matrix reasons:

e B, is nonsingular

@ Pencil is a regular pencil
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Structured linearization

Define symmetric matrices £ and A as

B
m —Bpm_a -+ —B1 —Bg —Bm-1 + —B1 —Bog
E= S A=| o
. 731
7Bl o’
—Bo 0 —Bo 0

Find generalized eigenvalues of the pair (F, A): the sought
|G|, is one of these eigenvalues.
Note:
e due to Bezoutian matrix reasons:
e B, is nonsingular
@ Pencil is a regular pencil
@ But need to check that common root is on ¢R, maximum
such -, etc.
Program implemented in Scilab (and code on github)

(Belur) Structured linearization and efficient 12 / 16



Comparison of two methods (large order)

Time taken in seconds

Plot of time taken by the two methods (strictly proper case)
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Figure: Plot from Belur & Praagman, IEEE-TAC, 2011
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Comparison of two methods (small order)

Plot of time taken by the two methods (strictly proper case)
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Figure: Plot from Belur & Praagman, IEEE-TAC, 2011
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Conclusion

e H., norm computation is important in Systems & Control

o Hamiltonian matrix arguments have proven quadratic
convergence rates (Bruinsma & Steinbuch)
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Conclusion

e H., norm computation is important in Systems & Control

o Hamiltonian matrix arguments have proven quadratic
convergence rates (Bruinsma & Steinbuch)

e But requires an eigenvalue iteration within v iteration

e Sylvester matrix resultant (and block companion
linearization): marginally better

e Proposed method is much faster due to symmetric
linearization:
20 to 40 times faster.

(Belur) Structured linearization and efficient



Conclusion

("]

Ho norm computation is important in Systems & Control
Hamiltonian matrix arguments have proven quadratic
convergence rates (Bruinsma & Steinbuch)

But requires an eigenvalue iteration within v iteration
Sylvester matrix resultant (and block companion
linearization): marginally better

Proposed method is much faster due to symmetric
linearization:

20 to 40 times faster. Improvement further better for higher
orders
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