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Outline

Behavioral view

Dissipativity, passivity

Model order reduction problem formulation
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State space, transfer functions, behavioral approach

We have had input/output models (transfer function)

Then, we have state space

And now, behavioral approach

Are they ‘competing’?
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Multiple views can only help

Figure : Source unknown, shared by Waghulde
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Brief comparisons

Input/output classification of variables often un-natural.
(Resistor, capacitor, spring, mass, damper)

System ≡ signal processor: input/output ideal

Causality also helps classify
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Dissipativity

Energy exchange not necessarily linked to input/output
classification

Dissipativity studies: since early 1970s

Behavioral approach: ∼ 1987

Riccati equations: easier to follow

Key work by Megretski and Rantzer on Integral
Quadratic Constraints
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Throughout this lecture:
m: number of inputs, p: number of outputs
w: number of ‘manifest’ variables: typically m + p

n: (minimum) number of states (McMillan degree)

G(s) ∈ Rp×m(s), G(s) = P (s)−1Q(s) = V (s)U(s)−1

with P,Q,U, V ∈ R•×•[s]. More precisely, P,Q ∈ Rp×•[s] and
U, V ∈ R•×m[s].
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A ‘system’ is nothing but the set of trajectories that the
system allows.

The system ‘behavior’ is the set of allowed trajectories,
i.e. those that the system laws allow. Suppose the
system variables are w.

B := {w ∈ C∞(R,Rw) | w satisfies the system laws }.

C∞: trajectory is infinitely often differentiable:
primarily for convenience.

Some notions do depend on the signal space used. L1
loc is

another frequently used space: this includes step, ramp
and other such signals.

For dissipativity-preserving model order reduction, C∞

is fine.
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Dissipative systems

For the rest of the talk, assume the system is controllable.
B ∈ Lw

cont

Power(w) := wTΣw, with Σ = ΣT ∈ Rw×w: supply rate

B is called dissipative with respect to supply rate wTΣw if∫ ∞
−∞

wTΣwdt > 0 for all w ∈ B ∩D.

Along any system trajectory (starting from rest and ending
at rest), ‘net energy’ is absorbed.

Integral inequality insisted only on B ∩D: denseness issues
related to controllability.
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Examples

Ignoring stability aspects (for this slide):

G(s) is positive real ⇔ Σ =

[
0 1
1 0

]
, and wTΣw = 2uy

G(s) has L∞ norm at most γ ⇔ wTΣw = γ2u2 − y2.

In LQ control, wTΣw = xTQx+ uTRu

y = φ(u), and φ is a ‘sector’ nonlinearity,
φ ∈ sector (α, β):

(y − αu)(u−
y

β
) =

[
u
y

] [ −α (α+β)
2β

(α+β)
2β

−1
β

] [
u
y

]
> 0.

Popov criteria, involving ‘dynamic’ notions of power

Interconnection of Σ-dissipative and −Σ-dissipative systems
yields stability: Megretski & Rantzer: IQC paper
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A function xTKx is called a storage function if

d

dt
xTKx 6 wTΣw

QΨ(w) (if x can be expressed in terms of w and/or its
derivatives)
All storage functions QΨ satisfy

QΨmin(w) 6 QΨ(w) 6 QΨmax(w).

The maximum and minimum storage functions satisfy a neat
interpretation. Consider expressing the stored energy in
terms of the state variable x. Accordingly, QΨ(w) = xTKx,
say. Let Ba denote all trajectories in B such that at t = 0,
the trajectory w has state x = a ∈ Rn. Then,

QΨmax(w)(0) = aTKmaxa = inf
w∈Ba∩D

∫ 0

−∞
wTΣwdt (1)

and

QΨmin(w)(0) = aTKmina = sup
w∈Ba∩D

∫ ∞
0

−wTΣwdt (2)
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ATK +KA+Q−KBR−1BTK = 0

∫ ∞
−∞

wTΣwdt = 0 for all w ∈ B ∩D.
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Several passivity preserving model order reduction methods.
Primary contribution: PRIMA: Odabasioglu, Celik, Pileggi
(in 1988: IEEE Tran. CAD of Integrated Circuits and
Systems)
SCL: Antoulas-05 and Sorensen-05: interpolation
interpretation
‘retain’ (a lower dimensional subspace of) the set of
trajectories of ‘minimal dissipation’ (Trentelman, Minh and
Rapisarda)
Consider a nonsingular Σ = ΣT ∈ Rw×w and suppose
B ∈ Lw

cont is Σ-dissipative.
For a w ∈ B, consider the change Jw(δ) in dissipation 1

If w is changed to w + δ, for δ ∈ B ∩D:

Jw(δ) :=

∫ ∞
−∞

(Q∆(w + δ)−Q∆(w))dt.

A trajectory w ∈ B is said to be a trajectory of minimal
dissipation if Jw(δ) > 0 for all δ ∈ B ∩D.
Any small change in w causes increase of net dissipated
energy: in that sense, these are local minima.
The link between the set of trajectories (in a Σ-dissipative
behavior B) of minimal dissipation (denoted by B∗) and
B⊥Σ , which states B∗ = B ∩B⊥Σ .

1A dissipation function Q∆(w) (a function of time, that depends on the
trajectory w) is defined as the amount of supplied power that didn’t go into
storing energy, i.e. Q∆(w) := wT Σw − d

dt
QΨ(w).
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Supply
rate

LMI
P (the dissipation
at ∞ frequency)

H[
Q 0
0 R

] [
ATK+KA−Q KB

BTK −R

]
R

[
A Q

BTR−1B −AT
]

[
0 I
I 0

] [
ATK+KA KB−CT

BTK−C −(D+DT )

]
(D +DT )

[
A−BP−1C BP−1BT

−CTP−1C −(A−BP−1C)T

]
[
γ2I 0
0 −I

] [
ATK+KA+CTC KB+CTD

DTC+BTK DTD−γ2I

]
(γ2I −DTD)

[
A+BP−1DTC BP−1BT

−CTP−1C −(A+BP−1DTC)T

]
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For behaviors B ⊂ C∞(R,Rw)

The orthogonal complement of B (in C∞(R,Rw)): B⊥

Adjoint system, dual system, co-state dynamics
(Dual Riccati: for the dual system)
Suppose Σ ∈ Rw×w is symmetric and nonsingular. B⊥Σ just
‘normalization’ w.r.t. Σ.

Number of inputs of B (i.e. m(B)): column rank of
M(ξ) (Image representation w = M( d

dt
)`)

B is Σ-dissipative ⇒ m(B) 6 σ+(Σ)

B + B⊥ = C∞(R,Rw), though not direct sum

B ∩B⊥ 6= {0}, the intersection is ‘thin’

Intersection is autonomous, i.e. finite dimensional

B ∩B⊥∩D= {0}
Intersection has dynamics d

dt
x = Hx, for a Hamiltonian

matrix H.

(H is called Hamiltonian if HT ∼ −H)

Intersection: central role in model-order reduction
(dissipativity preserving)
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B ∩B⊥Σ =: B∗

More generally, B ∩B⊥Σ =: B∗

B∗: trajectories in B of ‘minimal dissipation’
( Trentelman, Minh & Rapisarda: MCSS 2009)

Retain a lower dimension of B∗ into the reduced order
model

Restriction on B (to B∗) can also be achieved by forcing
` to satisfy equations (instead of free/generic):

w = M(
d

dt
)` and ∂Φ′(

d

dt
)` = 0.

(In general, view additional laws as a controller:
feedback? controller)

Is intersection autonomous? Is det ∂Φ′(ξ) ≡ 0?
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Passivity preserving Model order reduction

Many papers in the literature: Feldman, Freund (1995,
1999 IEEE-TAC), Ober (1998, SIAM Con & Opt),
PRIMA

Based on positive real balancing

‘Simultaneous diagonalization’: similarity transformation
or congruence transformation?
A→ S−1AS or P → STPS

Note that for storage xTKx, state space coordinate
transformation due to S means storage zT (STKS)z.

Find coordinate transformation such that max/min of
ARE/Dual-ARE solutions are ‘balanced’
(Simultaneously diagonalized: Antoulas, SIAM 2004
book)

In this course, passivity preserving model reduction by

‘interpolation at spectral zeros’ (Antoulas/Sorensen:
SCL 2005)
preserving trajectories of minimal dissipation (Minh,
Trentelman, Rapisarda: MCSS 2009)
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Problem formulation

Given B ∈ Lw
cont and symmetric nonsingular Σ ∈ Rw×w

Suppose B is strictly Σ-dissipative and suppose n is the
McMillan degree of B
(McMillan degree: model order: minimum number of states)
Choose k < n. Find B̂ ∈ Lw

cont such that

1 B̂ has McMillan degree at most k

2 m(B̂) = m(B)

3 B̂ is also strictly Σ-dissipative

4 B̂ satisfies B̂∗ ⊂ B∗

(Fourth point: trajectories in B of minimal dissipation are
retained into B̂)
(Problem formulation correct except for stability aspect)

Belur Passivity preserving MOR 18/26



Half-line dissipativity: Σ = ΣT ∈ Rw×w

Recall a behavior B ∈ Lw
cont was called Σ-dissipative if∫

R
wTΣwdt > 0 for all w ∈ B ∩D.

Call B dissipative on R− if for all w∈B∩D and for all T∫ T

−∞
wTΣwdt > 0.

(‘bounded from below’)
(like physical storage)

and on R+ if
∫∞
T
wTΣwdt > 0.

dissipative ⇔ ∃ storage function QΨ(w)

dissipative on R− ⇔ ∃ storage function QΨ(w) > 0

dissipative on R+ ⇔ ∃ storage function QΨ(w) 6 0
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Stability and half-line dissipativity

When supply rate Σ equals γ2uTu− yTy and
for system with input u and output y
(Case of maximal input cardinality: m(B) = σ+(Σ))

dissipativity on R− ⇔
transfer matrix is stable
(no poles in CRHP)

B is Σ-dissipative on R− ⇔ B⊥Σ is −Σ-dissipative on R+

Dissipativity on R− ⇔ maximum storage function
QΨmax(w) > 0 (i.e. Kmax > 0)
(QΨmax(w): ‘required supply’)

Dissipativity on R+ ⇔ minimum storage function
QΨmin(w) 6 0 (i.e. Kmin 6 0)
(QΨmin(w): ‘available storage’)
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McMillan degree

Again assume controllable B

Corresponding to w = (y, u), also partition

M(ξ) =

[
Y (ξ)
U(ξ)

]
, G(s) = −P (s)−1Q(s) = Y (s)U(s)−1

(left/right (polynomial) coprime factorization of G(s))

Amongst all maximal nonsingular minors P in
R(ξ) = [P (ξ) Q(ξ)], find one with maximum
determinantal degree: n(B): McMillan degree

Ensures G(s) is proper: detU(s) has same degree, and is
also maximum

n(B): least number of ‘states’ (defined using a
‘concatenability’ axiom)

Belur Passivity preserving MOR 21/26



Model order reduction

Given B ∈ Lw
cont and symmetric nonsingular Σ ∈ Rw×w

Suppose B is strictly Σ-dissipative on R− and suppose n is
the McMillan degree of B
Choose k < n. Find B̂ ∈ Lw

cont such that

1 B̂ has McMillan degree at most k

2 m(B̂) = m(B)

3 B̂ is also strictly Σ-dissipative on R−
4 B̂ satisfies (B̂∗)anti−stab ⊂ B∗

(Fourth point: trajectories in B of minimal dissipation are
retained into B̂)
B∗ = M( d

dt
) ker ∂Φ′( d

dt
) and

strict dissipativity ⇔ no jR roots of det ∂Φ′(ξ)
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Algorithm

Proposed by Sorensen, SCL 2005, and as interpreted in
Minh, Trentelman & Rapisarda (MCSS, 2009)

wTΣw = uTy, w = (u, y)
d
dt
x = Ax+Bu, and y = Cx+Du for B, and hence

B⊥Σ represented by d
dt
z = −AT z + CTu, y = BT z −DTu

(Try d
dt
xT z

?
= uTy)

Interconnecting (& assuming strict passivity ⇒D +DT >0)[
ẋ
ż

]
= H

[
x
z

]
and

[
u
y

]
= L

[
x
y

]
with H and L respectively as

[
A−B(D+DT )−1C B(D+DT )−1BT

−CT (D+DT )−1C −AT +CT (D+DT )−1BT

]
,
[
−(D+DT )−1C (D+DT )−1BT

C−D(D+DT )−1C D(D+DT )−1BT

]
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(Try d
dt
xT z

?
= uTy)

Interconnecting (& assuming strict passivity ⇒D +DT >0)[
ẋ
ż

]
= H

[
x
z

]
and

[
u
y

]
= L

[
x
y

]
with H and L respectively as

[
A−B(D+DT )−1C B(D+DT )−1BT

−CT (D+DT )−1C −AT +CT (D+DT )−1BT

]
,
[
−(D+DT )−1C (D+DT )−1BT

C−D(D+DT )−1C D(D+DT )−1BT

]
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Algorithm: continued

Choose anti-Hurwitz R ∈ Rk×k (from ORHP spectral zeros)
and corresponding real X and Y such that

H

[
X
Y

]
=

[
X
Y

]
R.

Strict dissipativities ⇒ X and Y are both full column rank.
They are ‘part’ of maximal ARE solution (known to be
symmetric), same argument helps XTY ∈ Rk×k being
symmetric and positive definite.

Obtain XTY = QS2QT with QT = Q−1, and S diagonal.

Define V := XQS−1 and W := Y QS−1,

Â := W TAV , B̂ := W TB, Ĉ := CV and D̂ := D

Define reduced order system (Â, B̂, Ĉ, D̂).
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Some verifications

W TV is identity matrix and
WV T satisfies (WV T )2 = WV T

?? XTY is the largest ARE solution of the reduced system??
Recall: we sought B̂:

1 B̂ has McMillan degree at most k

2 m(B̂) = m(B)

3 B̂ is strictly Σ-dissipative on R−
4 B̂ satisfies (B̂∗)anti−stab ⊂ B∗

With X̂ := Ŷ := SQT (Sorensen, SCL-’05), Minh, et al gets

Ĥ

[
X̂

Ŷ

]
=

[
X̂

Ŷ

]
R

Further, L̂X̂ = LX and L̂Ŷ = LY give (B̂∗)anti−stab ⊂ B∗
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Pick and Löwner matrices: Antoulas, SCL, 2005

Lagrange interpolating polynomials

Rational interpolant with degree constraint → ‘Löwner’
matrices

Link with Nevanlinna Pick interpolation problem

Given N pairs (xi, yi) ∈ C2, find p.r. interpolant G(s)

Pick matrix Π with Πij defined as

yi + y∗j

xi + x∗j
and

1− wiw∗j
xi + x∗j

and
1− wiw∗j
1− ziz∗j

depending on P.R., B.R. (OLHP), B.R. (|z| = 1), with

wi :=
1− yi
1 + yi

and zi :=
1− xi
1 + xi

“Model reduction by interpolating at (some) spectral zeros”
“Pick matrix ≡ minimum energy required across trajectories
in kerA( d

dt
)” (QDF, Willems & Trentelman, SIAM 1998)

Thank you
http://www.ee.iitb.ac.in/∼belur/talks/
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