Passivity preserving MOR

Madhu N. Belur

Control \& Computing group, Electrical Engineering Dept, IIT Bombay http://www.ee.iitb.ac.in/~belur/talks/

April 2015

Outline

- Behavioral view
- Dissipativity, passivity
- Model order reduction problem formulation

State space, transfer functions, behavioral approach

- We have had input/output models (transfer function)
- Then, we have state space
- And now, behavioral approach

Are they 'competing'?

Multiple views can only help

Figure : Source unknown, shared by Waghulde

Brief comparisons

- Input/output classification of variables often un-natural. (Resistor, capacitor, spring, mass, damper)
- System \equiv signal processor: input/output ideal
- Causality also helps classify

Dissipativity

- Energy exchange not necessarily linked to input/output classification
- Dissipativity studies: since early 1970s
- Behavioral approach: ~ 1987
- Riccati equations: easier to follow
- Key work by Megretski and Rantzer on Integral Quadratic Constraints

Throughout this lecture:
m : number of inputs,
w: number of 'manifest' variables:
p : number of outputs typically m + p
n : (minimum) number of states (McMillan degree)

$$
G(s) \in \mathbb{R}^{p \times \mathrm{m}}(s), \quad G(s)=P(s)^{-1} Q(s)=V(s) U(s)^{-1}
$$

with $P, Q, U, V \in \mathbb{R}^{\bullet \times \bullet}[s]$. More precisely, $P, Q \in \mathbb{R}^{p \times \bullet}[s]$ and $\boldsymbol{U}, \boldsymbol{V} \in \mathbb{R}^{\bullet \times \mathrm{m}}[s]$.

- A 'system' is nothing but the set of trajectories that the system allows.
- The system 'behavior' is the set of allowed trajectories, i.e. those that the system laws allow. Suppose the system variables are w.

$$
\mathfrak{B}:=\left\{\boldsymbol{w} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \mid \boldsymbol{w} \text { satisfies the system laws }\right\}
$$

- \mathfrak{C}^{∞} : trajectory is infinitely often differentiable: primarily for convenience.
- Some notions do depend on the signal space used. $\mathfrak{L}_{\text {loc }}^{1}$ is another frequently used space: this includes step, ramp and other such signals.
- For dissipativity-preserving model order reduction, \mathfrak{C}^{∞} is fine.

Dissipative systems

For the rest of the talk, assume the system is controllable. $\mathfrak{B} \in \mathfrak{L}_{\text {cont }}^{\mathfrak{w}}$
$\operatorname{Power}(w):=w^{T} \Sigma w$, with $\Sigma=\Sigma^{T} \in \mathbb{R}^{w \times w}$: supply rate
\mathfrak{B} is called dissipative with respect to supply rate $w^{T} \Sigma w$ if

Along any system trajectory (starting from rest and ending at rest), 'net energy' is absorbed.

Integral inequality insisted only on $\mathfrak{B} \cap \mathfrak{D}$: denseness issues related to controllability.

Dissipative systems

For the rest of the talk, assume the system is controllable. $\mathfrak{B} \in \mathfrak{L}_{\text {cont }}^{w}$
$\operatorname{Power}(w):=w^{T} \Sigma w$, with $\Sigma=\Sigma^{T} \in \mathbb{R}^{w \times w}$: supply rate \mathfrak{B} is called dissipative with respect to supply rate $\boldsymbol{w}^{T} \boldsymbol{\Sigma} \boldsymbol{w}$ if

$$
\int_{-\infty}^{\infty} w^{T} \Sigma w d t \geqslant 0 \text { for all } w \in \mathfrak{B} \cap \mathfrak{D}
$$

Along any system trajectory (starting from rest and ending at rest), 'net energy' is absorbed.

Integral inequality insisted only on $\mathfrak{B} \cap \mathfrak{D}$: denseness issues related to controllability.

Ignoring stability aspects (for this slide):

- $G(s)$ is positive real $\Leftrightarrow \Sigma=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, and $w^{T} \Sigma w=2 u y$
- $G(s)$ has \mathcal{L}_{∞} norm at most $\gamma \Leftrightarrow w^{T} \Sigma w=\gamma^{2} u^{2}-y^{2}$.
- In LQ control, $w^{T} \Sigma w=x^{T} Q x+u^{T} R u$
- $y=\phi(u)$, and ϕ is a 'sector' nonlinearity, $\phi \in \operatorname{sector}(\alpha, \beta)$:

$$
(y-\alpha u)\left(u-\frac{y}{\beta}\right)=\left[\begin{array}{l}
u \\
y
\end{array}\right]\left[\begin{array}{cc}
-\alpha & \frac{(\alpha+\beta)}{2 \beta} \\
\frac{(\alpha+\beta)}{2 \beta} & \frac{-1}{\beta}
\end{array}\right]\left[\begin{array}{l}
u \\
y
\end{array}\right] \geqslant 0 .
$$

- Popov criteria, involving 'dynamic' notions of power

Interconnection of Σ-dissipative and $-\Sigma$-dissipative systems yields stability: Megretski \& Rantzer: IQC paper

Ignoring stability aspects (for this slide):

- $G(s)$ is positive real $\Leftrightarrow \Sigma=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, and $w^{T} \Sigma w=2 u y$
- $G(s)$ has \mathcal{L}_{∞} norm at most $\gamma \Leftrightarrow \boldsymbol{w}^{T} \Sigma \boldsymbol{w}=\gamma^{2} u^{2}-y^{2}$.
- In LQ control, $w^{T} \Sigma w=x^{T} Q x+u^{T} R u$
- $y=\phi(u)$, and ϕ is a 'sector' nonlinearity, $\phi \in \operatorname{sector}(\alpha, \beta)$:

- Popov criteria, involving 'dynamic' notions of power

Interconnection of Σ-dissipative and $-\Sigma$-dissipative systems yields stability: Megretski \& Rantzer: IQC paper

Ignoring stability aspects (for this slide):

- $G(s)$ is positive real $\Leftrightarrow \Sigma=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, and $w^{T} \Sigma w=2 u y$
- $G(s)$ has \mathcal{L}_{∞} norm at most $\gamma \Leftrightarrow \boldsymbol{w}^{T} \Sigma \boldsymbol{w}=\gamma^{2} u^{2}-y^{2}$.
- In LQ control, $w^{T} \Sigma w=x^{T} Q x+u^{T} R u$
- $y=\phi(u)$, and ϕ is a 'sector' nonlinearity, $\phi \in \operatorname{sector}(\alpha, \beta)$:

- Popov criteria, involving 'dynamic' notions of power

Interconnection of Σ-discinative and $-\Sigma$-discinative system yields stability: Megretski \& Rantzer: IQC paper

Examples

Ignoring stability aspects (for this slide):

- $G(s)$ is positive real $\Leftrightarrow \Sigma=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, and $w^{T} \Sigma w=2 u y$
- $G(s)$ has \mathcal{L}_{∞} norm at most $\gamma \Leftrightarrow w^{T} \Sigma w=\gamma^{2} u^{2}-y^{2}$.
- In LQ control, $w^{T} \Sigma w=x^{T} Q x+u^{T} R u$
- $y=\phi(u)$, and ϕ is a 'sector' nonlinearity, $\phi \in \operatorname{sector}(\alpha, \beta)$:

$$
(y-\alpha u)\left(u-\frac{y}{\beta}\right)=\left[\begin{array}{l}
u \\
y
\end{array}\right]\left[\begin{array}{cc}
-\alpha & \frac{(\alpha+\beta)}{2 \beta} \\
\frac{(\alpha+\beta)}{2 \beta} & \frac{-1}{\beta}
\end{array}\right]\left[\begin{array}{l}
u \\
y
\end{array}\right] \geqslant 0
$$

- Popov criteria, involving 'dynamic' notions of power

Interconnection of Σ-dissipative and $\boldsymbol{\Sigma} \boldsymbol{\Sigma}$-dissipative systems yields stability: Megretski \& Rantzer: IQC paper

Examples

Ignoring stability aspects (for this slide):

- $G(s)$ is positive real $\Leftrightarrow \Sigma=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, and $w^{T} \Sigma w=2 u y$
- $G(s)$ has \mathcal{L}_{∞} norm at most $\gamma \Leftrightarrow w^{T} \Sigma w=\gamma^{2} u^{2}-y^{2}$.
- In LQ control, $w^{T} \Sigma w=x^{T} Q x+u^{T} R u$
- $y=\phi(u)$, and ϕ is a 'sector' nonlinearity, $\phi \in \operatorname{sector}(\alpha, \beta)$:

$$
(y-\alpha u)\left(u-\frac{y}{\beta}\right)=\left[\begin{array}{l}
u \\
y
\end{array}\right]\left[\begin{array}{cc}
-\alpha & \frac{(\alpha+\beta)}{2 \beta} \\
\frac{(\alpha+\beta)}{2 \beta} & \frac{-1}{\beta}
\end{array}\right]\left[\begin{array}{l}
u \\
y
\end{array}\right] \geqslant 0
$$

- Popov criteria, involving 'dynamic' notions of power yields stability: Megretski \& Rantzer: IQC paper

Examples

Ignoring stability aspects (for this slide):

- $G(s)$ is positive real $\Leftrightarrow \Sigma=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, and $w^{T} \Sigma \boldsymbol{w}=2 u y$
- $G(s)$ has \mathcal{L}_{∞} norm at most $\gamma \Leftrightarrow \boldsymbol{w}^{T} \Sigma \boldsymbol{w}=\gamma^{2} u^{2}-y^{2}$.
- In LQ control, $w^{T} \Sigma w=x^{T} Q x+u^{T} R u$
- $y=\phi(u)$, and ϕ is a 'sector' nonlinearity, $\phi \in \operatorname{sector}(\alpha, \beta)$:

$$
(y-\alpha u)\left(u-\frac{y}{\beta}\right)=\left[\begin{array}{l}
u \\
y
\end{array}\right]\left[\begin{array}{cc}
-\alpha & \frac{(\alpha+\beta)}{2 \beta} \\
\frac{(\alpha+\beta)}{2 \beta} & \frac{-1}{\beta}
\end{array}\right]\left[\begin{array}{l}
u \\
y
\end{array}\right] \geqslant 0
$$

- Popov criteria, involving 'dynamic' notions of power Interconnection of Σ-dissipative and $-\Sigma$-dissipative systems yields stability: Megretski \& Rantzer: IQC paper

A function $x^{T} K x$ is called a storage function if

$$
\frac{d}{d t} x^{T} K x \leqslant w^{T} \Sigma w
$$

$Q_{\Psi}(w)$ (if x can be expressed in terms of w and/or its derivatives)
All storage functions Q_{Ψ} satisfy

$$
Q_{\Psi_{\min }}(w) \leqslant Q_{\Psi}(w) \leqslant Q_{\Psi_{\max }}(w)
$$

The maximum and minimum storage functions satisfy a neat interpretation. Consider expressing the stored energy in terms of the state variable x. Accordingly, $Q_{\Psi}(w)=x^{T} K x$, say. Let \mathfrak{B}_{a} denote all trajectories in \mathfrak{B} such that at $t=0$, the trajectory \boldsymbol{w} has state $x=a \in \mathbb{R}^{n}$. Then,

$$
\begin{equation*}
Q_{\Psi_{\max }}(w)(0)=a^{T} K_{\max } a=\inf _{w \in \mathfrak{B}_{a} \cap \mathcal{D}} \int_{-\infty}^{0} w^{T} \Sigma w d t \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{\Psi_{\min }}(w)(0)=a^{T} K_{\min } a=\sup _{w \in \mathfrak{B}_{a} \cap \mathfrak{D}} \int_{0}^{\infty}-w^{T} \Sigma w d t \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& A^{T} K+K A+Q-K B R^{-1} B^{T} K=0 \\
& \int_{-\infty}^{\infty} w^{T} \Sigma w d t=0 \text { for all } w \in \mathfrak{B} \cap \mathfrak{D} .
\end{aligned}
$$

Several passivity preserving model order reduction methods. Primary contribution: PRIMA: Odabasioglu, Celik, Pileggi (in 1988: IEEE Tran. CAD of Integrated Circuits and Systems)
SCL: Antoulas-05 and Sorensen-05: interpolation interpretation 'retain' (a lower dimensional subspace of) the set of trajectories of 'minimal dissipation' (Trentelman, Minh and Rapisarda)
Consider a nonsingular $\Sigma=\Sigma^{T} \in \mathbb{R}^{w \times w}$ and suppose $\mathfrak{B} \in \mathfrak{L}_{\text {cont }}^{W}$ is Σ-dissipative.
For a $w \in \mathfrak{B}$, consider the change $J_{w}(\delta)$ in dissipation ${ }^{1}$ If w is changed to $w+\delta$, for $\delta \in \mathfrak{B} \cap \mathfrak{D}$:

$$
J_{w}(\delta):=\int_{-\infty}^{\infty}\left(Q_{\Delta}(w+\delta)-Q_{\Delta}(w)\right) d t
$$

A trajectory $\boldsymbol{w} \in \mathfrak{B}$ is said to be a trajectory of minimal dissipation if $J_{w}(\delta) \geqslant 0$ for all $\delta \in \mathfrak{B} \cap \mathfrak{D}$.
Any small change in w causes increase of net dissipated energy: in that sense, these are local minima.
The link between the set of trajectories (in a Σ-dissipative behavior \mathfrak{B}) of minimal dissipation (denoted by \mathfrak{B}^{*}) and

$$
\left.\begin{array}{ccc}
\begin{array}{c}
\text { Supply } \\
\text { rate }
\end{array} & \text { LMI } & \begin{array}{c}
P \text { (the dissipatic } \\
\text { at } \infty \text { frequency }
\end{array} \\
{\left[\begin{array}{cc}
Q & 0 \\
0 & R
\end{array}\right]} & {\left[\begin{array}{cc}
A^{T} K+K A-Q & K B \\
B^{T} K & -R
\end{array}\right]} & R
\end{array}\right] \begin{array}{cc}
\\
{\left[\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right]} & {\left[\begin{array}{cc}
A^{T} K+K A & K B-C^{T} \\
B^{T} K-C & -\left(D+D^{T}\right)
\end{array}\right]}
\end{array} \begin{array}{cc}
\\
{\left[\begin{array}{cc}
\gamma^{2} I & 0 \\
0 & -I
\end{array}\right]} & {\left[\begin{array}{cc}
A^{T} K+K A+C^{T} C & K B+C^{T} D \\
D^{T} C+B^{T} K & D^{T} D-\gamma^{2} I
\end{array}\right]}
\end{array}\left(\begin{array}{c}
\left(\gamma^{2} I-D^{T} D\right)
\end{array}\right.
$$

For behaviors $\mathfrak{B} \subset \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\omega}\right)$

The orthogonal complement of \mathfrak{B} (in $\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$): \mathfrak{B}^{\perp} Adjoint system, dual system, co-state dynamics
(Dual Riccati: for the dual system)
Suppose $\Sigma \in \mathbb{R}^{w \times w}$ is symmetric and nonsingular. $\mathfrak{B}^{\perp_{\Sigma}}$ just 'normalization' w.r.t. Σ.

- Number of inputs of \mathfrak{B} (i.e. $m(\mathfrak{B})$): column rank of $M(\xi)$ (Image representation $\left.w=M\left(\frac{d}{d t}\right) \ell\right)$
- \mathfrak{B} is $\boldsymbol{\Sigma}$-dissipative $\Rightarrow \mathrm{m}(\mathfrak{B}) \leqslant \sigma_{+}(\boldsymbol{\Sigma})$
- $\mathfrak{B}+\mathfrak{B}^{\perp}=\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$, though not direct sum
- $\mathfrak{B} \cap \mathfrak{B}^{\perp} \neq\{0\}$, the intersection is 'thin'
- Intersection is autonomous, i.e. finite dimensional
- $\mathfrak{B} \cap \mathfrak{B}^{\perp} \cap \mathfrak{D}=\{0\}$
- Intersection has dynamics $\frac{d}{d t} x=H x$, for a Hamiltonian matrix H.
- (H is called Hamiltonian if $\left.H^{T} \sim-H\right)$

Intersection: central role in model-order reduction (dissipativity preserving)

$\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}=: \mathfrak{B}^{*}$

More generally, $\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}=$: \mathfrak{B}^{*}

- \mathfrak{B}^{*} : trajectories in \mathfrak{B} of 'minimal dissipation' (Trentelman, Minh \& Rapisarda: MCSS 2009)
- Retain a lower dimension of \mathfrak{B}^{*} into the reduced order model
- Restriction on \mathfrak{B} (to \mathfrak{B}^{*}) can also be achieved by forcing ℓ to satisfy equations (instead of free/generic):

$$
w=M\left(\frac{d}{d t}\right) \ell \quad \text { and } \quad \partial \Phi^{\prime}\left(\frac{d}{d t}\right) \ell=0
$$

- (In general, view additional laws as a controller: feedback? controller)
- Is intersection autonomous?

$\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}=: \mathfrak{B}^{*}$

More generally, $\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}=$: \mathfrak{B}^{*}

- \mathfrak{B}^{*} : trajectories in \mathfrak{B} of 'minimal dissipation' (Trentelman, Minh \& Rapisarda: MCSS 2009)
- Retain a lower dimension of \mathfrak{B}^{*} into the reduced order model
- Restriction on \mathfrak{B} (to \mathfrak{B}^{*}) can also be achieved by forcing ℓ to satisfy equations (instead of free/generic):

$$
w=M\left(\frac{d}{d t}\right) \ell \quad \text { and } \quad \partial \Phi^{\prime}\left(\frac{d}{d t}\right) \ell=0
$$

- (In general, view additional laws as a controller: feedback? controller)
- Is intersection autonomous? Is $\operatorname{det} \partial \Phi^{\prime}(\xi) \equiv 0$?
- Many papers in the literature: Feldman, Freund (1995, 1999 IEEE-TAC), Ober (1998, SIAM Con \& Opt), PRIMA
- Based on positive real balancing
- 'Simultaneous diagonalization': similarity transformation or congruence transformation?
$A \rightarrow S^{-1} A S$ or $P \rightarrow S^{T} P S$
- Note that for storage $x^{T} K x$, state space coordinate transformation due to S means storage $z^{T}\left(S^{T} K S\right) z$.
- Find coordinate transformation such that max/min of ARE/Dual-ARE solutions are 'balanced' (Simultaneously diagonalized: Antoulas, SIAM 2004 book)
- In this course, passivity preserving model reduction by
- 'interpolation at spectral zeros' (Antoulas/Sorensen: SCL 2005)
- preserving trajectories of minimal dissipation (Minh, Trentelman, Rapisarda: MCSS 2009)

Problem formulation

Given $\mathfrak{B} \in \mathfrak{L}_{\text {cont }}^{w}$ and symmetric nonsingular $\Sigma \in \mathbb{R}^{\boldsymbol{w} \times w}$ Suppose \mathfrak{B} is strictly $\boldsymbol{\Sigma}$-dissipative and suppose n is the McMillan degree of \mathfrak{B}
(McMillan degree: model order: minimum number of states)
Choose $k<\mathrm{n}$. Find $\hat{\mathfrak{B}} \in \mathfrak{L}_{\text {cont }}^{\mathrm{w}}$ such that
(1) $\hat{\mathfrak{B}}$ has McMillan degree at most k
(2) $\mathrm{m}(\hat{\mathfrak{B}})=\mathrm{m}(\mathfrak{B})$
(- $\hat{\mathfrak{B}}$ is also strictly Σ-dissipative
(1) $\hat{\mathfrak{B}}$ satisfies $\hat{\mathfrak{B}}^{*} \subset \mathfrak{B}^{*}$
(Fourth point: trajectories in \mathfrak{B} of minimal dissipation are retained into $\hat{\mathfrak{B}}$)
(Problem formulation correct except for stability aspect)

Half-line dissipativity: $\boldsymbol{\Sigma}=\boldsymbol{\Sigma}^{T} \in \mathbb{R}^{w \times w}$

- Recall a behavior $\mathfrak{B} \in \mathfrak{L}_{\text {cont }}^{w}$ was called $\boldsymbol{\Sigma}$-dissipative if

$$
\int_{\mathbb{R}} w^{T} \Sigma w d t \geqslant 0 \text { for all } w \in \mathfrak{B} \cap \mathfrak{D}
$$

- Call \mathfrak{B} dissipative on $\mathbb{R}_{\text {_ }}$ if for all $w \in \mathfrak{B} \cap \mathfrak{D}$ and for all T

$$
\int_{-\infty}^{\boldsymbol{T}} \boldsymbol{w}^{\boldsymbol{T}} \boldsymbol{\Sigma} \boldsymbol{w} \boldsymbol{d} \boldsymbol{t} \geqslant \mathbf{0} . \quad \text { ('bounded from below') }
$$

- dissipative $\Leftrightarrow \exists$ storage function $Q_{\Psi}(w)$
- discinative on $\mathbb{R} \quad \Leftrightarrow \exists$ storage function $Q . w(w)$
- dissipative on $\mathbb{R}_{+} \Leftrightarrow \exists$ storage function $Q_{\Psi}(w) \leqslant 0$

Half-line dissipativity: $\boldsymbol{\Sigma}=\boldsymbol{\Sigma}^{T} \in \mathbb{R}^{w \times w}$

- Recall a behavior $\mathfrak{B} \in \mathfrak{L}_{\text {cont }}^{\mathfrak{w}}$ was called $\boldsymbol{\Sigma}$-dissipative if

$$
\int_{\mathbb{R}} w^{T} \Sigma w d t \geqslant 0 \text { for all } w \in \mathfrak{B} \cap \mathfrak{D}
$$

- Call \mathfrak{B} dissipative on \mathbb{R}_{-}if for all $\boldsymbol{w} \in \mathfrak{B} \cap \mathfrak{D}$ and for all T

$$
\int_{-\infty}^{T} w^{T} \Sigma w d t \geqslant 0 . \quad \begin{aligned}
& \text { ('bounded from below') } \\
& \text { (like physical storage) }
\end{aligned}
$$

- dissipative $\quad \Leftrightarrow \exists$ storage function $Q_{\Psi}(w)$
- dissipative on $\mathbb{R}_{-} \Leftrightarrow \exists$ storage function $Q_{\Psi}(w)$
- dissipative on $\mathbb{R}_{+} \Leftrightarrow \exists$ storage function $Q_{\Psi}(w)$

Half-line dissipativity: $\boldsymbol{\Sigma}=\boldsymbol{\Sigma}^{T} \in \mathbb{R}^{w \times w}$

- Recall a behavior $\mathfrak{B} \in \mathfrak{L}_{\text {cont }}^{w}$ was called $\boldsymbol{\Sigma}$-dissipative if

$$
\int_{\mathbb{R}} w^{T} \Sigma w d t \geqslant 0 \text { for all } w \in \mathfrak{B} \cap \mathfrak{D}
$$

- Call \mathfrak{B} dissipative on $\mathbb{R}_{\text {- }}$ if for all $\boldsymbol{w} \in \mathfrak{B} \cap \mathfrak{D}$ and for all T

$$
\int_{-\infty}^{T} w^{T} \Sigma w d t \geqslant 0 . \quad \begin{aligned}
& \text { ('bounded from below') } \\
& \text { (like physical storage) }
\end{aligned}
$$

- and on \mathbb{R}_{+}if $\int_{T}^{\infty} \boldsymbol{w}^{T} \Sigma w d t \geqslant 0$.
- dissipative $\quad \Leftrightarrow \exists$ storage function $Q_{\Psi}(w)$
- dissipative on $\mathbb{R}_{-} \Leftrightarrow \exists$ storage function $Q_{\Psi}(w)$
- dissipative on $\mathbb{R}_{+} \Leftrightarrow \exists$ storage function $Q_{\Psi}(w)$

Half-line dissipativity: $\boldsymbol{\Sigma}=\boldsymbol{\Sigma}^{T} \in \mathbb{R}^{w \times w}$

- Recall a behavior $\mathfrak{B} \in \mathfrak{L}_{\text {cont }}^{w}$ was called $\boldsymbol{\Sigma}$-dissipative if

$$
\int_{\mathbb{R}} w^{T} \Sigma w d t \geqslant 0 \text { for all } w \in \mathfrak{B} \cap \mathfrak{D}
$$

- Call \mathfrak{B} dissipative on $\mathbb{R}_{\text {_ }}$ if for all $w \in \mathfrak{B} \cap \mathfrak{D}$ and for all T

$$
\int_{-\infty}^{T} w^{T} \Sigma w d t \geqslant 0 . \quad \begin{aligned}
& \text { ('bounded from below') } \\
& \text { (like physical storage) }
\end{aligned}
$$

- and on \mathbb{R}_{+}if $\int_{T}^{\infty} \boldsymbol{w}^{T} \Sigma \boldsymbol{w} d t \geqslant 0$.
- dissipative $\quad \Leftrightarrow \exists$ storage function $Q_{\Psi}(w)$
- dissipative on $\mathbb{R}_{-} \Leftrightarrow \exists$ storage function $Q_{\Psi}(w)$
- dissipative on $\mathbb{R}_{+} \Leftrightarrow \exists$ storage function $Q_{\Psi}(w)$

Half-line dissipativity: $\boldsymbol{\Sigma}=\boldsymbol{\Sigma}^{T} \in \mathbb{R}^{w \times w}$

- Recall a behavior $\mathfrak{B} \in \mathfrak{L}_{\text {cont }}^{w}$ was called $\boldsymbol{\Sigma}$-dissipative if

$$
\int_{\mathbb{R}} w^{T} \Sigma w d t \geqslant 0 \text { for all } w \in \mathfrak{B} \cap \mathfrak{D}
$$

- Call \mathfrak{B} dissipative on $\mathbb{R}_{\text {- }}$ if for all $\boldsymbol{w} \in \mathfrak{B} \cap \mathfrak{D}$ and for all T

$$
\int_{-\infty}^{T} w^{T} \Sigma w d t \geqslant 0 . \quad \begin{aligned}
& \text { ('bounded from below') } \\
& \text { (like physical storage) }
\end{aligned}
$$

- and on \mathbb{R}_{+}if $\int_{T}^{\infty} \boldsymbol{w}^{T} \Sigma w d t \geqslant 0$.
- dissipative $\quad \Leftrightarrow \exists$ storage function $Q_{\Psi}(w)$
- dissipative on $\mathbb{R}_{-} \Leftrightarrow \exists$ storage function $Q_{\Psi}(w) \geqslant 0$
- dissipative on $\mathbb{R}_{+} \Leftrightarrow \exists$ storage function $Q_{\Psi}(w)$
- Recall a behavior $\mathfrak{B} \in \mathfrak{L}_{\text {cont }}^{w}$ was called $\boldsymbol{\Sigma}$-dissipative if

$$
\int_{\mathbb{R}} w^{T} \Sigma w d t \geqslant 0 \text { for all } w \in \mathfrak{B} \cap \mathfrak{D}
$$

- Call \mathfrak{B} dissipative on \mathbb{R}_{-}if for all $w \in \mathfrak{B} \cap \mathfrak{D}$ and for all T

$$
\int_{-\infty}^{T} w^{T} \Sigma w d t \geqslant 0 . \quad \begin{gathered}
\text { ('bounded from below') } \\
\text { (like physical storage) }
\end{gathered}
$$

- and on \mathbb{R}_{+}if $\int_{T}^{\infty} \boldsymbol{w}^{T} \Sigma w d t \geqslant 0$.
- dissipative $\quad \Leftrightarrow \exists$ storage function $Q_{\Psi}(w)$
- dissipative on $\mathbb{R}_{-} \Leftrightarrow \exists$ storage function $Q_{\Psi}(w) \geqslant 0$
- dissipative on $\mathbb{R}_{+} \Leftrightarrow \exists$ storage function $Q_{\Psi}(w) \leqslant 0$

Stability and half-line dissipativity

When supply rate Σ equals $\gamma^{2} u^{T} u-y^{T} y$ and for system with input u and output y (Case of maximal input cardinality: $\mathrm{m}(\mathfrak{B})=\sigma_{+}(\Sigma)$)

- dissipativity on $\mathbb{R}_{-} \Leftrightarrow$ transfer matrix is stable (no poles in CRHP)

Stability and half-line dissipativity

When supply rate Σ equals $\gamma^{2} u^{T} u-y^{T} y$ and for system with input u and output y (Case of maximal input cardinality: $\mathrm{m}(\mathfrak{B})=\sigma_{+}(\Sigma)$)

- dissipativity on $\mathbb{R}_{-} \Leftrightarrow$ transfer matrix is stable (no poles in CRHP)
- \mathfrak{B} is $\boldsymbol{\Sigma}$-dissipative on $\mathbb{R}_{-} \Leftrightarrow \mathfrak{B}^{\perp_{\Sigma}}$ is $-\boldsymbol{\Sigma}$-dissipative on \mathbb{R}_{+}

Stability and half-line dissipativity

When supply rate Σ equals $\gamma^{2} \boldsymbol{u}^{T} \boldsymbol{u}-\boldsymbol{y}^{T} \boldsymbol{y}$ and for system with input u and output y (Case of maximal input cardinality: $\mathrm{m}(\mathfrak{B})=\sigma_{+}(\Sigma)$)

- dissipativity on $\mathbb{R}_{-} \Leftrightarrow$ transfer matrix is stable (no poles in CRHP)
- \mathfrak{B} is Σ-dissipative on $\mathbb{R}_{-} \Leftrightarrow \mathfrak{B}^{\perp_{\Sigma}}$ is - Σ-dissipative on \mathbb{R}_{+}

Dissipativity on $\mathbb{R}_{-} \Leftrightarrow$ maximum storage function
$Q_{\Psi_{\max }}(w) \geqslant 0$ (i.e. $K_{\max } \geqslant 0$)
($Q_{\Psi_{\max }}(w)$: 'required supply')
Dissipativity on $\mathbb{R}_{+} \Leftrightarrow$ minimum storage function
$Q_{\Psi_{\text {min }}}(w) \leqslant 0$ (i.e. $K_{\text {min }} \leqslant 0$)
($Q_{\Psi_{\text {min }}}(w)$: 'available storage')

McMillan degree

Again assume controllable \mathfrak{B}

- Corresponding to $w=(y, u)$, also partition $M(\xi)=\left[\begin{array}{c}Y(\xi) \\ U(\xi)\end{array}\right], G(s)=-P(s)^{-1} Q(s)=\boldsymbol{Y}(s) U(s)^{-1}$ (left/right (polynomial) coprime factorization of $G(s)$)
- Amongst all maximal nonsingular minors P in $R(\xi)=\left[\begin{array}{ll}P(\xi) & Q(\xi)\end{array}\right]$, find one with maximum determinantal degree: $\mathrm{n}(\mathfrak{B})$: McMillan degree
- Ensures $G(s)$ is proper: $\operatorname{det} U(s)$ has same degree, and is also maximum
- $\mathrm{n}(\mathfrak{B})$: least number of 'states' (defined using a 'concatenability' axiom)

Model order reduction

Given $\mathfrak{B} \in \mathfrak{L}_{\text {cont }}^{w}$ and symmetric nonsingular $\Sigma \in \mathbb{R}^{w \times w}$ Suppose \mathfrak{B} is strictly $\boldsymbol{\Sigma}$-dissipative on \mathbb{R}_{-}and suppose n is the McMillan degree of \mathfrak{B}
Choose $k<n$. Find $\hat{\mathfrak{B}} \in \mathfrak{L}_{\text {cont }}^{w}$ such that
(1) $\hat{\mathfrak{B}}$ has McMillan degree at most k
(2) $\mathrm{m}(\hat{\mathfrak{B}})=\mathrm{m}(\mathfrak{B})$
(3) $\hat{\mathfrak{B}}$ is also strictly $\boldsymbol{\Sigma}$-dissipative on \mathbb{R}_{-}
(-) $\hat{\mathfrak{B}}$ satisfies $\left(\hat{\mathfrak{B}}^{*}\right)_{\text {anti-stab }} \subset \mathfrak{B}^{*}$
(Fourth point: trajectories in \mathfrak{B} of minimal dissipation are retained into $\hat{\mathfrak{B}}$)
$\mathfrak{B}^{*}=M\left(\frac{d}{d t}\right) \operatorname{ker} \partial \Phi^{\prime}\left(\frac{d}{d t}\right)$ and
strict dissipativity \Leftrightarrow no $\boldsymbol{j} \mathbb{R}$ roots of $\operatorname{det} \partial \Phi^{\prime}(\xi)$

Proposed by Sorensen, SCL 2005, and as interpreted in Minh, Trentelman \& Rapisarda (MCSS, 2009)

$$
w^{T} \Sigma w=u^{T} y, w=(u, y)
$$

$\frac{d}{d t} x=A x+B u$, and $y=C x+D u$ for \mathfrak{B}, and hence
$\mathfrak{B}^{\perp_{\Sigma}}$ represented by $\frac{d}{d t} z=-A^{T} z+C^{T} u, y=B^{T} z-D^{T} u$
$\left(\operatorname{Try} \frac{d}{d t} x^{T} z \stackrel{?}{=} u^{T} y\right)$
Interconnecting (\& assuming strict passivity $\Rightarrow D+D^{T}>0$)

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{z}
\end{array}\right]=H\left[\begin{array}{l}
x \\
z
\end{array}\right] \text { and }\left[\begin{array}{l}
u \\
y
\end{array}\right]=L\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { with } H \text { and } L \text { respectively as }
$$

Proposed by Sorensen, SCL 2005, and as interpreted in Minh, Trentelman \& Rapisarda (MCSS, 2009)
$w^{T} \Sigma w=u^{T} y, w=(u, y)$
$\frac{d}{d t} x=A x+B u$, and $y=C x+D u$ for \mathfrak{B}, and hence
$\mathfrak{B}^{\perp_{\Sigma}}$ represented by $\frac{d}{d t} z=-A^{T} z+C^{T} u, y=B^{T} z-D^{T} u$
$\left(\operatorname{Tr} y \frac{d}{d t} x^{T} z \stackrel{?}{=} u^{T} y\right)$
Interconnecting (ℓ assuming strict passivity $\Rightarrow D+D^{T}>0$)

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{z}
\end{array}\right]=H\left[\begin{array}{l}
x \\
z
\end{array}\right] \text { and }\left[\begin{array}{l}
u \\
y
\end{array}\right]=L\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { with } H \text { and } L \text { respectively as }
$$

Algorithm

Proposed by Sorensen, SCL 2005, and as interpreted in Minh, Trentelman \& Rapisarda (MCSS, 2009)
$w^{T} \Sigma \boldsymbol{\Sigma}=u^{T} y, w=(u, y)$
$\frac{d}{d t} x=A x+B u$, and $y=C x+D u$ for \mathfrak{B}, and hence
$\mathfrak{B}^{\perp_{\Sigma}}$ represented by $\frac{d}{d t} z=-A^{T} z+C^{T} u, y=B^{T} z-D^{T} u$
$\left(\operatorname{Tr} y \frac{d}{d t} x^{T} z \stackrel{?}{=} u^{T} y\right)$
Interconnecting (\& assuming strict passivity $\Rightarrow D+D^{T}>0$)

Algorithm

Proposed by Sorensen, SCL 2005, and as interpreted in Minh, Trentelman \& Rapisarda (MCSS, 2009)
$w^{T} \Sigma w=u^{T} y, w=(u, y)$
$\frac{d}{d t} x=A x+B u$, and $y=C x+D u$ for \mathfrak{B}, and hence
$\mathfrak{B}^{\perp_{\Sigma}}$ represented by $\frac{d}{d t} z=-A^{T} z+C^{T} u, y=B^{T} z-D^{T} u$
$\left(\right.$ Try $\left.\frac{d}{d t} x^{T} z \stackrel{?}{=} u^{T} y\right)$
Interconnecting (\& assuming strict passivity $\Rightarrow D+D^{T}>0$)

Algorithm

Proposed by Sorensen, SCL 2005, and as interpreted in Minh, Trentelman \& Rapisarda (MCSS, 2009)
$w^{T} \Sigma \boldsymbol{\Sigma}=u^{T} y, w=(u, y)$
$\frac{d}{d t} x=A x+B u$, and $y=C x+D u$ for \mathfrak{B}, and hence
$\mathfrak{B}^{\perp_{\Sigma}}$ represented by $\frac{d}{d t} z=-A^{T} z+C^{T} u, y=B^{T} z-D^{T} u$
$\left(\right.$ Try $\left.\frac{d}{d t} x^{T} z \stackrel{?}{=} u^{T} y\right)$
Interconnecting (\& assuming strict passivity $\Rightarrow D+D^{T}>0$)

$$
\begin{gathered}
{\left[\begin{array}{c}
\dot{x} \\
\dot{z}
\end{array}\right]=H\left[\begin{array}{l}
x \\
z
\end{array}\right] \text { and }\left[\begin{array}{l}
u \\
y
\end{array}\right]=L\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { with } H \text { and } L \text { respectively as }} \\
{\left[\begin{array}{cc}
A-B\left(D+D^{T}\right)^{-1} C & B\left(D+D^{T}\right)^{-1} B^{T} \\
-C^{T}\left(D+D^{T}\right)^{-1} C & -A^{T}+C^{T}\left(D+D^{T}\right)^{-1} B^{T}
\end{array}\right],\left[\begin{array}{cc}
-\left(D+D^{T}\right)^{-1} C & \left(D+D^{T}\right)^{-1} B^{T} \\
C-D\left(D+D^{T}\right)^{-1} C & D\left(D+D^{T}\right)^{-1} B^{T}
\end{array}\right]}
\end{gathered}
$$

Algorithm: continued

Choose anti-Hurwitz $R \in \mathbb{R}^{\mathrm{k} \times \mathrm{k}}$ (from ORHP spectral zeros) and corresponding real X and Y such that

$$
H\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{l}
X \\
Y
\end{array}\right] R .
$$

Strict dissipativities $\Rightarrow X$ and Y are both full column rank. They are 'part' of maximal ARE solution (known to be symmetric), same argument helps $X^{T} Y \in \mathbb{R}^{k \times k}$ being symmetric and positive definite.

Algorithm: continued

Choose anti-Hurwitz $R \in \mathbb{R}^{\mathrm{k} \times \mathrm{k}}$ (from ORHP spectral zeros) and corresponding real X and Y such that

$$
H\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{l}
X \\
Y
\end{array}\right] R .
$$

Strict dissipativities $\Rightarrow X$ and Y are both full column rank. They are 'part' of maximal ARE solution (known to be symmetric), same argument helps $X^{T} \boldsymbol{Y} \in \mathbb{R}^{k \times k}$ being symmetric and positive definite.

- Obtain $X^{T} Y=Q S^{2} Q^{T}$ with $Q^{T}=Q^{-1}$, and S diagonal.
- Define $V:=X Q S^{-1}$ and $W:=Y Q S^{-1}$,
- $\hat{A}:=W^{T} A V, \hat{B}:=W^{T} B, \hat{C}:=C V$ and $\hat{D}:=D$
- Define reduced order system $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$.
$W^{T} V$ is identity matrix and
$W V^{T}$ satisfies $\left(W V^{T}\right)^{2}=W V^{T}$
?? $X^{T} Y$ is the largest ARE solution of the reduced system??
Recall: we sought \hat{B} :
(1) $\hat{\mathfrak{B}}$ has McMillan degree at most k
(2) $\mathrm{m}(\hat{\mathfrak{B}})=\mathrm{m}(\mathfrak{B})$
(- $\hat{\mathfrak{B}}$ is strictly $\boldsymbol{\Sigma}$-dissipative on \mathbb{R}_{-}
(1) $\hat{\mathfrak{B}}$ satisfies $\left(\hat{\mathfrak{B}}^{*}\right)_{\text {anti-stab }} \subset \mathfrak{B}^{*}$

With $\hat{X}:=\hat{Y}:=S Q^{T}$ (Sorensen, SCL-'05), Minh, et al gets

$$
\hat{H}\left[\begin{array}{c}
\hat{\boldsymbol{X}} \\
\hat{\boldsymbol{Y}}
\end{array}\right]=\left[\begin{array}{c}
\hat{\boldsymbol{X}} \\
\hat{\boldsymbol{Y}}
\end{array}\right] R
$$

Further, $\hat{L} \hat{X}=L X$ and $\hat{L} \hat{Y}=L Y$ give $\left(\hat{\mathfrak{B}}^{*}\right)_{\text {anti-stab }} \subset \mathfrak{B}^{*}$

- Lagrange interpolating polynomials
- Rational interpolant with degree constraint \rightarrow 'Löwner' matrices
- Link with Nevanlinna Pick interpolation problem
- Given N pairs $\left(x_{i}, y_{i}\right) \in \mathbb{C}^{2}$, find p.r. interpolant $G(s)$
- Pick matrix Π with $\Pi_{i j}$ defined as

$$
\frac{y_{i}+y_{j}^{*}}{x_{i}+x_{j}^{*}} \quad \text { and } \quad \frac{1-w_{i} w_{j}^{*}}{x_{i}+x_{j}^{*}} \quad \text { and } \quad \frac{1-w_{i} w_{j}^{*}}{1-z_{i} z_{j}^{*}}
$$

depending on P.R., B.R. (OLHP), B.R. $(|z|=1)$, with

$$
w_{i}:=\frac{1-y_{i}}{1+y_{i}} \quad \text { and } \quad z_{i}:=\frac{1-x_{i}}{1+x_{i}}
$$

"Model reduction by interpolating at (some) spectral zeros" "Pick matrix \equiv minimum energy required across trajectories in ker $A\left(\frac{d}{d t}\right) "$ (QDF, Willems \& Trentelman, SIAM 1998)

- Lagrange interpolating polynomials
- Rational interpolant with degree constraint \rightarrow 'Löwner' matrices
- Link with Nevanlinna Pick interpolation problem
- Given N pairs $\left(x_{i}, y_{i}\right) \in \mathbb{C}^{2}$, find p.r. interpolant $G(s)$
- Pick matrix Π with $\Pi_{i j}$ defined as

$$
\frac{y_{i}+y_{j}^{*}}{x_{i}+x_{j}^{*}} \quad \text { and } \quad \frac{1-w_{i} w_{j}^{*}}{x_{i}+x_{j}^{*}} \quad \text { and } \quad \frac{1-w_{i} w_{j}^{*}}{1-z_{i} z_{j}^{*}}
$$

depending on P.R., B.R. (OLHP), B.R. $(|z|=1)$, with

$$
w_{i}:=\frac{1-y_{i}}{1+y_{i}} \quad \text { and } \quad z_{i}:=\frac{1-x_{i}}{1+x_{i}}
$$

"Model reduction by interpolating at (some) spectral zeros" "Pick matrix \equiv minimum energy required across trajectories in ker $\boldsymbol{A}\left(\frac{d}{d t}\right) "$ (QDF, Willems \& Trentelman, SIAM 1998)

Thank you
http://www.ee.iitb.ac.in/~belur/talks/

