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Take-aways and outline

Main take-aways: Perron Frobenius theorem

Many applications involve square matrices A with all entries positive

Eigenvalue farthest (from origin) is positive & that left/right eigenvectors are
significant

All entries of A are not positive, but non-negative =⇒ similar conclusions
(under graph-theoretic assumptions)

Outline

Eigenvalue/eigenvector

Positive matrices 6= positive-definite matrices

Perron Frobenius theorem

Stochastic matrices and Markov chains and other applications

Population dynamics

Graph theory

This talk’s content: standard: Perron/Frobenius: early 1900s, and from books/ppts:
Bapat/Raghavan/Šiljak/Sternberg
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Positive matrices

1 Consider A ∈ Rn×n. Denote A > 0 if each entry aij > 0.

2 A is called positive-definite if vTAv > 0 for every nonzero vector v.

In this talk, we do not need positive definite. For today, A > 0 entry-wise.

3 Eigenvalue/eigenvector of a matrix A:
If vector v satisfies

Av = λv for some number λ

then, v is called eigenvector and λ is called eigenvalue.
Obviously v = 0 would make this trivial. Hence insist: v 6= 0.

Further, even if A ∈ Rn×n, the eigenvalue λ might have to be complex,
then: look for v too in Cn.

View v as a direction that A does not ‘change’: but just scales it.
Eigenvector: direction that A does not change, just scales: scaling = eigenvalue

Eigenvalues: roots of polynomial det (sI −A), and then
for each root λ, look for nonzero vectors v in kernel of λI −A.
Computational procedure
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Linear algbra: eigenvalues, A ∈ Rn×n

Do eigenvalues always exist?

Yes, if complex allowed too.

Do real eigenvalues also exist? Maybe. Like roots of a polynomial.

Are eigenvectors unique? Just direction: so scaled vector also is eigenvector
Are eigenvectors unique upto direction? If eigenvalues are distinct, then yes.

Can eigenvalue be repeated? Possible, like roots of a polynomial.

Do eigenvectors form a ‘basis’? (≡ diagonalizable)
Yes, if distinct eigenvalues. If not, still possible (under certain conditions).

Repeated eigenvalue case ≡ Jordan canonical form
Matrices with repeated eigenvalues could be ‘diagonalizable’

Simple eigenvalue: not-repeated

Semi-simple eigenvalue: repeated, but yield that many eigenvectors
(not a hurdle to diagonalizability). Else: ‘defective’

Eigenvector can be normalized to length 1:

v corresponding to distinct eigenvalue λ is then (almost) unique:

v and −v (or αv with α ∈ C and |α| = 1).

If λ ∈ R, then v ∈ Rn (and v 6= 0). One can choose sign of one (nonzero)
component.
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Perron Frobenius theorem

Largest magnitude ≡ ‘farthest’ from the origin.
Consider A > 0 (recall: entry-wise). Then,

A has at least one real eigenvalue

A has at least one real and positive eigenvalue

Farthest λP is real and positive

λP is not repeated

No other eigenvalue λ of A is on the circle |z| = λP
(unique farthest)

All components in eigenvector vP corresponding to λP has same sign: +ve

Every other eigenvector (if real) has mixed signs.
(Unique eigenvector in positive ‘orthant’.)

What about A−1? Eigenvalues of A−1 are just inverse of eigenvalues of A
Eigenvectors are same!
But: A > 0 6⇒A−1 > 0.
(Will revisit later: M -matrices and N or Z matrices.)
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More on A > 0

Find vP > 0 such that AvP = λP vP .

Easy (both conceptually and computationally) to obtain estimate of λP and vP :

Take any nonzero x > 0. Ax, A ·Ax, Akx remains in positive orthant.

Normalize each time to length one (and positive orthant).

More generally, ‘power method’ helps for the dominant eigenvalue.

Convergence ‘rate’: how quickly effect due to others dies down:

Second farthest λ2 decides: |λ2|
λP

< 1

Spectral gap: 1− |λ2|
λP

How much within the circle |z| = λP the other eigenvalues are?
(Far within ⇔ quicker convergence.
Others on the circle ⇔ no convergence.)
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For A > 0

Throughout our talk, A ∈ Rn×n.
But now, some entries of A can be zero, and A > 0

What can be lost?

Farthest need not be real? Not possible.

(a) Farthest need not be positive.
(i.e. all λi are at the origin.) A = 0?

(b) A can have multiple eigenvalues at λP > 0

(c) If multiple at λP , simple/semi-simple/defective?

(d) Even if λP is not repeated, there can be multiple λi satisfying |λi| = λP .

(e) Multiple λi satisfy |λi| = λP but each one is simple.

(f) Some (graph-theoretic) assumptions on A > 0, can get all claims as A > 0.

All of the above (a), .. (f) can happen.
Relevant concepts: irreducible/strong-connectednes/primitive/ ergodic/Cesaro-limit/
stationarity (of Markov chain)/ ..more..
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For A > 0: examples

A :

[
0 0
0 0

]
,

[
0 1
0 0

]
,

[
1 1
0 1

]
,

[
1 0
0 1

]
,

[
0 1
1 0

]
,

0 1 0
0 0 1
1 0 0

 ,
λi : (0, 0) (0, 0) (1, 1) (1, 1) (1,−1) (1,− 1

2
±
√
3

2
)

But A = 0.99

0 1 0
0 0 1
1 0 0

+ 0.01

1 0 0
0 1 0
0 0 1

 has

exactly one eigenvalue on the unit-circle: λP = 1,
and remaining two strictly within the unit circle: |λ2| = |λ3| = 0.985

In fact, A = 0.99

0 1 0
0 0 1
1 0 0

+ 0.01

0 0 0
0 0 0
0 0 1

 has

exactly eigenvalue at 0.993 and other two closer (to the origin).
Some applications and then
more graph-theoretic properties.
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Directed graph associated with A ∈ Rn×n

Entry aij : i-th row and j-th column.

Graph: vertices and edges between a pair vertices

If edge has a direction: from vertex j to vertex i, then

directed edge and directed graph

Weighted graph: each edge has a weight

For A ∈ Rn×n, construct n-vertices: mark 1,2, . . . , n.

If aij 6= 0, draw a directed edge from j to i.

If aii 6= 0, draw a self-loop at i.

Potentially n2 edges.

Directed graph strongly connected :⇔ for any vertices i, j, there exists a directed
path from i to j.
(Self-loops do not help in strong-connectedness.)
A > 0: corresponding graph is strongly connected.
A > 0: Call A ‘irreducible’ if corresponding graph is strongly connected.
A = 0, or A = I: either no edge or only self-loops: A is reducible.
A any other permutation matrix: all eigenvalues on the unit-circle, λP = 1.
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Applications

Claim in Perron Frobenius theorem:
(Under some conditions): eigenvalue and eigenvector: real and positive.

What quantities have to be real, and positive?

Fraction of population in different age-groups: for one speci

Population of various species: interacting with each other

Population growth rates (for discrete time systems)

Probabilities: between 0 and 1: for example, Markov chain, and probability of
being in a state

Rankings: relative values: but need positive
Webpage rankings (for search engines) and ranking after a ‘pairwise comparison’

Prices of commodities: say a barter economy: ‘pure’ exchange

Employee ‘effort values’ and corresponding distribution of net-profit

Above applications can be modelled: but we need certain quantities
to remain positive (for meaningful interpretation).
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Markov chain

A is called (row-) stochastic if A > 0 and each row sums to 1

aij is probability that there is a transition from state i to state j.

λP = 1, right eigenvector = [1 1 1 · · · 1]T , and left-eigenvector contains
‘steady-state’ distribution

Unique steady-state distribution?,

linked to multiplicity of λP = 1:
simple/semi-simple

Large spectral gap ≡ quickly mixing Markov chain
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Google’s Page Rank Algorithm

Graph constructed from which webpage links to which

Graph constructed gives A such that λP = 1 and vP has webpage’s ranks:
highest value: most important webpage

Need ‘fast convergence’ in the power method: trade-off between high spectral
gap and relevance of the computed rankings
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Pairwise comparison matrix

Need to compare many items and ‘rank’ them
For example: items: criteria important for a decision process
Some criteria favour certain technology more than other technology: which is best
technology?

Construct a pair-wise comparison matrix

If item i is 3 times more than item j, then aij := 3 and aji = 1/3.

Define aii = 1. This A is a positive matrix, and a ‘pairwise comparison matrix’

For example, A =


1 4 7

1
4

1 ∗
1
7
∗ 1


(Ideally (‘consistenly’), ∗ gets determined from other entries.)

Item 1 appears most important, and item 3 is least important.

A consistent method of pairwise comparing gives A of rank just one!

(In that case), Perron root: λP = n, and (right) eigenvector of A gives
importances.

T. Saaty has a good guideline about what consistency is acceptable.

Use for Analytic Hierarchy Process:
See work of T.Saaty/S.Raju/N.Rangaraj/A.W.Date, for example
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Leslie matrix: population dynamics: single-speci (from Sternberg)

Consider a speci-population stratified into various age-groups: x1, x2, etc.
x(k + 1) = Ax(k), with A as the population ‘transition matrix’:
Discrete-time system with state-transition matrix A.

x1(k + 1)
x2(k + 1)

...
xn−1(k + 1)
xn(k + 1)

 =


b1 b2 . . . bn−1 bn
s1 0 . . . 0 0
0 s2 . . . 0 0
...

...
. . .

. . .
...

0 0 . . . sn−1 0




x1(k)
x2(k)

...
xn−1(k)
xn(k)


Each si should be nonzero: if some si is zero, then xi+1, xi+2, · · · = 0: remove
those states.

Generally, b1 = 0: too young to have offspring.
At least one bi needs to be nonzero for population to sustain.
If only one bi is nonzero, then imprimitive: oscillations that do not stabilize:
spectral gap = 0
(Atlantic salmon die immediately after spawning.)
Two or more bi >, then primitive: oscillations stabilize to Perron vector
Perron root λP > 1 population grows
Perron root λP = 1 population is stable
Perron root λP < 1 population is decreasing
Only one eigenvector has all components positive/non-negative.

Belur, CC, EE (IIT Bombay) Perron Frobenius theorem Nov 19 14 / 19



Leslie matrix: population dynamics: single-speci (from Sternberg)

Consider a speci-population stratified into various age-groups: x1, x2, etc.
x(k + 1) = Ax(k), with A as the population ‘transition matrix’:
Discrete-time system with state-transition matrix A.

x1(k + 1)
x2(k + 1)

...
xn−1(k + 1)
xn(k + 1)

 =


b1 b2 . . . bn−1 bn
s1 0 . . . 0 0
0 s2 . . . 0 0
...

...
. . .

. . .
...

0 0 . . . sn−1 0




x1(k)
x2(k)

...
xn−1(k)
xn(k)


Each si should be nonzero: if some si is zero, then xi+1, xi+2, · · · = 0: remove
those states.
Generally, b1 = 0: too young to have offspring.

At least one bi needs to be nonzero for population to sustain.
If only one bi is nonzero, then imprimitive: oscillations that do not stabilize:
spectral gap = 0
(Atlantic salmon die immediately after spawning.)
Two or more bi >, then primitive: oscillations stabilize to Perron vector
Perron root λP > 1 population grows
Perron root λP = 1 population is stable
Perron root λP < 1 population is decreasing
Only one eigenvector has all components positive/non-negative.

Belur, CC, EE (IIT Bombay) Perron Frobenius theorem Nov 19 14 / 19



Leslie matrix: population dynamics: single-speci (from Sternberg)

Consider a speci-population stratified into various age-groups: x1, x2, etc.
x(k + 1) = Ax(k), with A as the population ‘transition matrix’:
Discrete-time system with state-transition matrix A.

x1(k + 1)
x2(k + 1)

...
xn−1(k + 1)
xn(k + 1)

 =


b1 b2 . . . bn−1 bn
s1 0 . . . 0 0
0 s2 . . . 0 0
...

...
. . .

. . .
...

0 0 . . . sn−1 0




x1(k)
x2(k)

...
xn−1(k)
xn(k)


Each si should be nonzero: if some si is zero, then xi+1, xi+2, · · · = 0: remove
those states.
Generally, b1 = 0: too young to have offspring.
At least one bi needs to be nonzero for population to sustain.

If only one bi is nonzero, then imprimitive: oscillations that do not stabilize:
spectral gap = 0
(Atlantic salmon die immediately after spawning.)
Two or more bi >, then primitive: oscillations stabilize to Perron vector
Perron root λP > 1 population grows
Perron root λP = 1 population is stable
Perron root λP < 1 population is decreasing
Only one eigenvector has all components positive/non-negative.

Belur, CC, EE (IIT Bombay) Perron Frobenius theorem Nov 19 14 / 19



Leslie matrix: population dynamics: single-speci (from Sternberg)

Consider a speci-population stratified into various age-groups: x1, x2, etc.
x(k + 1) = Ax(k), with A as the population ‘transition matrix’:
Discrete-time system with state-transition matrix A.

x1(k + 1)
x2(k + 1)

...
xn−1(k + 1)
xn(k + 1)

 =


b1 b2 . . . bn−1 bn
s1 0 . . . 0 0
0 s2 . . . 0 0
...

...
. . .

. . .
...

0 0 . . . sn−1 0




x1(k)
x2(k)

...
xn−1(k)
xn(k)


Each si should be nonzero: if some si is zero, then xi+1, xi+2, · · · = 0: remove
those states.
Generally, b1 = 0: too young to have offspring.
At least one bi needs to be nonzero for population to sustain.
If only one bi is nonzero, then imprimitive: oscillations that do not stabilize:

spectral gap = 0
(Atlantic salmon die immediately after spawning.)
Two or more bi >, then primitive: oscillations stabilize to Perron vector
Perron root λP > 1 population grows
Perron root λP = 1 population is stable
Perron root λP < 1 population is decreasing
Only one eigenvector has all components positive/non-negative.

Belur, CC, EE (IIT Bombay) Perron Frobenius theorem Nov 19 14 / 19



Leslie matrix: population dynamics: single-speci (from Sternberg)

Consider a speci-population stratified into various age-groups: x1, x2, etc.
x(k + 1) = Ax(k), with A as the population ‘transition matrix’:
Discrete-time system with state-transition matrix A.

x1(k + 1)
x2(k + 1)

...
xn−1(k + 1)
xn(k + 1)

 =


b1 b2 . . . bn−1 bn
s1 0 . . . 0 0
0 s2 . . . 0 0
...

...
. . .

. . .
...

0 0 . . . sn−1 0




x1(k)
x2(k)

...
xn−1(k)
xn(k)


Each si should be nonzero: if some si is zero, then xi+1, xi+2, · · · = 0: remove
those states.
Generally, b1 = 0: too young to have offspring.
At least one bi needs to be nonzero for population to sustain.
If only one bi is nonzero, then imprimitive: oscillations that do not stabilize:
spectral gap = 0

(Atlantic salmon die immediately after spawning.)
Two or more bi >, then primitive: oscillations stabilize to Perron vector
Perron root λP > 1 population grows
Perron root λP = 1 population is stable
Perron root λP < 1 population is decreasing
Only one eigenvector has all components positive/non-negative.

Belur, CC, EE (IIT Bombay) Perron Frobenius theorem Nov 19 14 / 19



Leslie matrix: population dynamics: single-speci (from Sternberg)

Consider a speci-population stratified into various age-groups: x1, x2, etc.
x(k + 1) = Ax(k), with A as the population ‘transition matrix’:
Discrete-time system with state-transition matrix A.

x1(k + 1)
x2(k + 1)

...
xn−1(k + 1)
xn(k + 1)

 =


b1 b2 . . . bn−1 bn
s1 0 . . . 0 0
0 s2 . . . 0 0
...

...
. . .

. . .
...

0 0 . . . sn−1 0




x1(k)
x2(k)

...
xn−1(k)
xn(k)


Each si should be nonzero: if some si is zero, then xi+1, xi+2, · · · = 0: remove
those states.
Generally, b1 = 0: too young to have offspring.
At least one bi needs to be nonzero for population to sustain.
If only one bi is nonzero, then imprimitive: oscillations that do not stabilize:
spectral gap = 0
(Atlantic salmon die immediately after spawning.)
Two or more bi >, then primitive: oscillations stabilize to Perron vector

Perron root λP > 1 population grows
Perron root λP = 1 population is stable
Perron root λP < 1 population is decreasing
Only one eigenvector has all components positive/non-negative.

Belur, CC, EE (IIT Bombay) Perron Frobenius theorem Nov 19 14 / 19



Leslie matrix: population dynamics: single-speci (from Sternberg)

Consider a speci-population stratified into various age-groups: x1, x2, etc.
x(k + 1) = Ax(k), with A as the population ‘transition matrix’:
Discrete-time system with state-transition matrix A.

x1(k + 1)
x2(k + 1)

...
xn−1(k + 1)
xn(k + 1)

 =


b1 b2 . . . bn−1 bn
s1 0 . . . 0 0
0 s2 . . . 0 0
...

...
. . .

. . .
...

0 0 . . . sn−1 0




x1(k)
x2(k)

...
xn−1(k)
xn(k)


Each si should be nonzero: if some si is zero, then xi+1, xi+2, · · · = 0: remove
those states.
Generally, b1 = 0: too young to have offspring.
At least one bi needs to be nonzero for population to sustain.
If only one bi is nonzero, then imprimitive: oscillations that do not stabilize:
spectral gap = 0
(Atlantic salmon die immediately after spawning.)
Two or more bi >, then primitive: oscillations stabilize to Perron vector
Perron root λP > 1 population grows
Perron root λP = 1 population is stable

Perron root λP < 1 population is decreasing
Only one eigenvector has all components positive/non-negative.

Belur, CC, EE (IIT Bombay) Perron Frobenius theorem Nov 19 14 / 19



Leslie matrix: population dynamics: single-speci (from Sternberg)

Consider a speci-population stratified into various age-groups: x1, x2, etc.
x(k + 1) = Ax(k), with A as the population ‘transition matrix’:
Discrete-time system with state-transition matrix A.

x1(k + 1)
x2(k + 1)

...
xn−1(k + 1)
xn(k + 1)

 =


b1 b2 . . . bn−1 bn
s1 0 . . . 0 0
0 s2 . . . 0 0
...

...
. . .

. . .
...

0 0 . . . sn−1 0




x1(k)
x2(k)

...
xn−1(k)
xn(k)


Each si should be nonzero: if some si is zero, then xi+1, xi+2, · · · = 0: remove
those states.
Generally, b1 = 0: too young to have offspring.
At least one bi needs to be nonzero for population to sustain.
If only one bi is nonzero, then imprimitive: oscillations that do not stabilize:
spectral gap = 0
(Atlantic salmon die immediately after spawning.)
Two or more bi >, then primitive: oscillations stabilize to Perron vector
Perron root λP > 1 population grows
Perron root λP = 1 population is stable
Perron root λP < 1 population is decreasing

Only one eigenvector has all components positive/non-negative.

Belur, CC, EE (IIT Bombay) Perron Frobenius theorem Nov 19 14 / 19



Leslie matrix: population dynamics: single-speci (from Sternberg)

Consider a speci-population stratified into various age-groups: x1, x2, etc.
x(k + 1) = Ax(k), with A as the population ‘transition matrix’:
Discrete-time system with state-transition matrix A.

x1(k + 1)
x2(k + 1)

...
xn−1(k + 1)
xn(k + 1)

 =


b1 b2 . . . bn−1 bn
s1 0 . . . 0 0
0 s2 . . . 0 0
...

...
. . .

. . .
...

0 0 . . . sn−1 0




x1(k)
x2(k)

...
xn−1(k)
xn(k)


Each si should be nonzero: if some si is zero, then xi+1, xi+2, · · · = 0: remove
those states.
Generally, b1 = 0: too young to have offspring.
At least one bi needs to be nonzero for population to sustain.
If only one bi is nonzero, then imprimitive: oscillations that do not stabilize:
spectral gap = 0
(Atlantic salmon die immediately after spawning.)
Two or more bi >, then primitive: oscillations stabilize to Perron vector
Perron root λP > 1 population grows
Perron root λP = 1 population is stable
Perron root λP < 1 population is decreasing
Only one eigenvector has all components positive/non-negative.

Belur, CC, EE (IIT Bombay) Perron Frobenius theorem Nov 19 14 / 19



A different population model: multi-species

Suppose different species 1, 2, . . . , n grow with growth-rates ai > 0 as follows:

ẋ1 = a1x1
ẋ2 = a2x2

...
ẋn = anxn

rewritten as


ẋ1
ẋ2
...
ẋn

 = A


x1
x2
...
xn


Then each speci-population grows independently, and A is a diagonal matrix.

Eigenvalues = ai
Now assume off-diagonal terms of A are negative:
i.e. one species amount causes decrease in another
speci population (assuming xi(t) > 0.)

Will population of all species stabilize?

What if diagonal elements ‘sufficiently positive’ compared to that row/column’s
(negative) elements?

Loosely speaking, eigenvalues won’t change much if off-diagonal terms are ‘small’.
This brings us to Z and M-matrices: closely linked to Perron-Frobenius theorem.
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Z matrix and M matrix

A matrix A ∈ Rn×n is called a Z-matrix if all off-diagonal elements are nonpositive:
aij 6 0 for all i 6= j.

Further, if diagonal elements are ‘sufficiently’ positive, then a Z-matrix is called an
M-matrix. Any of the following can be considered a definition.
Following are equivalent for a Z-matrix: A ∈ Rn×n

Each eigenvalue of A has real-part positive

For any x > 0, we have Ax > 0.

A−1 exists and A−1 > 0.

For some B > 0, A = sI −B, with s > λP (B)

Inverse of eigenvalue nearest (to the origin) of A = farthest eigenvalue of A−1

Conversely, if P > 0, and P is invertible, and suppose off-diagonal elements of P−1

are nonpositive, then P−1 is a (nonsingular) M-matrix.
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Laplacian of graphs are (singular) M-matrices

Consider an undirected graph G with n-vertices and edges (with possibly
non-negative weights).
The Laplacian matrix L ∈ Rn×n is defined as L := D −A:

symmetric, singular.
D is the diagonal ‘degree’ matrix
(degree of a node: number of edges incident on that node)
N is the neighbourhood (adjacency) matrix:
Nij := 1, if nodes vi and vj are neighbours, 0 otherwise.

Known: L is singular, symmetric, and positive semi-definite

ẋ = −Lx is a stable differential equation

L is a (singular) M-matrix

For Laplacian matrix L, add ε > 0 to any diagonal element
Perturbed L (say Lε) is now invertible.
Smallest eigenvalue of L is > 0 now. Check that smallest eigenvalue is ≈ ε
Lε is a non-singular M-matrix ⇔ (Lε)

−1 > 0
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(degree of a node: number of edges incident on that node)
N is the neighbourhood (adjacency) matrix:
Nij := 1, if nodes vi and vj are neighbours, 0 otherwise.

Known: L is singular, symmetric, and positive semi-definite

ẋ = −Lx is a stable differential equation

L is a (singular) M-matrix

For Laplacian matrix L, add ε > 0 to any diagonal element
Perturbed L (say Lε) is now invertible.
Smallest eigenvalue of L is > 0 now. Check that smallest eigenvalue is ≈ ε
Lε is a non-singular M-matrix ⇔ (Lε)

−1 > 0
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Exponential of a Laplacian matrix

Recall, for a square matrix P : define eP = I + P + P2

2!
+ · · ·

Consider Laplacian matrix L. Note L = LT : (undirected graph)

e−LT is a (doubly) stochastic matrix for any Laplacian matrix L and time T > 0.

View discretization of ẋ = −Lx at sampling period T > 0 to get
x(k + 1) = e−LTx(k)

Stable in continuous time: eigenvalues in left-half-complex plane

Stable in discrete time: eigenvalues in disc of radius = 1

Eigenvalues of eA = eλi
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Conclusion

Perron Frobenius theorem

Saw some applications involve square matrices A with all entries positive

Eigenvalue farthest (from origin) is positive & that left/right eigenvectors are
significant

When all entries of A are not positive, but non-negative
under some graph-conditions, have some of these conclusions.

Thanks to Debasattam and Debraj for prompt clarifications

http://www.ee.iitb.ac.in/%7Ebelur/talks
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