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Structured system of equations

Often just structure specified for the equations of the plant
(plant ≡ the system to-be-controlled)
Parameters not known precisely. (They vary slightly in practice.)
If uncontrollable, sometimes slight perturbation in system
parameters fetches controllability
Structure: which variable occurs in which equation known
This talk: only LTI systems
Linear ordinary constant-coefficient differential equations
Construct a polynomial matrix, and then a ‘bipartite’ graph
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Example

Plant equations: 3 differential equations in 4 variables: w1,w2,w3 & w4.
System parameters: aij and bij are arbitrary real numbers.
Construct P(s) ∈ R3×4[s]:

a11
•
w1 + b11w1 + a12

•
w2 + b12w2 = 0

a21
•
w1 + b21w1 + b22w2 = 0

b31w1 + a32
•
w2 + b32w2 + a33

•
w3 + b33w3

+a34
•
w4 + b34w4 = 0

P(s) =
[ a11s+b11 a12s+b12 0 0

a21s+b21 b22 0 0
b31 a32s+b32 a33s+b33 a34s+b34

]
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More examples of structured system of equations

Large circuits involving 2-terminal devices:
System variables: V and I: across-voltages and through-currents
KCL involving I variables, KVL: V variables
Device equations linking components of V and I vectors
Only device parameters: not precise: ‘mixed’ formulation
(Murota, van der Woude)

Decentralized control:
Local plant equations, across-subsystem-interconnection
equations
Each local controller can involve only local variables
Similar sensor/actuator allocation constraints across subsystems
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Bipartite graph

Plant’s structure captured by a bipartite graph
Bipartite graph G having vertices V = R∪ C (disjoint union)
Each edge in G has one vertex inR and the other in C
Construct graph G from polynomial matrix P(s) as follows.
R is the set of rows of P(s) and
C: the columns of P(s)
pij(s) 6= 0⇒ put an edge between vertex ui ∈ R and vj ∈ C.

Distinguish between constant nonzero polynomials pij and
nonconstant polynomials
Plant is under-determined: more variables than equations
More vertices in C thanR (≡ under-determined)
Square P(s) ≡ |R| = |C|
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Questions

Is the system controllable? (Controllable: in ‘behavioral’ sense)
Does the bipartite graph reveal this? ‘Structurally controllable’
Dependence on values of aij and bij?
Can we achieve arbitrary pole placement?
What if the controller also has such constraints?
Controller constraints ≡ sensor/actuator allocation constraints
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Important phrases

Under-determined↔ wide, determined↔ square
matchings↔ one-to-one assignment (from prespecified edges)
perfect matching
poles↔ roots of characteristic polynomial
pole-placement↔ assign the (closed loop) poles
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Behavioral definitions

System ≡ set of all ‘allowed’ trajectories: ‘behavior’
All solution-trajectories allowed by the system equations
For LTI systems: System equations: P( d

dt )w = 0,
system variables: w
Polynomial matrix P(s) ∈ Rg×w[s], system described by g
equations.

Recall: 3 equations, 4 variables

a11
•
w1 + b11w1 + a12

•
w2 + b12w2 = 0

a21
•
w1 + b21w1 + b22w2 = 0

b31w1 + a32
•
w2 + b32w2 + a33

•
w3 + b33w3

+a34
•
w4 + b34w4 = 0

P(s) =[ a11s+b11 a12s+b12 0 0
a21s+b21 b22 0 0

b31 a32s+b32 a33s+b33 a34s+b34

]
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Behavioral controllability

System controllable :≡ trajectories allow mutual ‘patching’
Controllability ≡ P(λ) has full row rank for every λ ∈ C
Call such a P(s) left-prime

System structurally controllable :≡ for ‘almost all’ coefficients aij

and bij in P(s), we have left-primeness
Polynomial matrices allowed by that structure are ‘generically
left-prime’
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‘Generic’ ≡ almost always

B =

[
a b
c d

]
∈ R2×2 is nonsingular (unless ad − bc = 0).

Set of values a, b, c and d in R4 satisfying ad − bc = 0: ‘thin set’:
unlikely that arbitrarily chosen real values of a, b, c and d would
cause ad − bc = 0.
We say B is generically nonsingular.
Similarly, polynomials p(s) and q(s) with degrees m and n > 1
and arbitrary real coefficients generically do not have a common
factor.

With some structure: B =

[
0 b
0 d

]
∈ R2×2 is generically singular.

Location of zero/nonzero entries in a bipartite graph reveals
generic nonsingularity.
Matching theory: Plummer, Lovász
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State space controllability

Kalman’s state space controllability: d
dt x = Ax + Bu:

(A,B) controllable :≡ for any arbitrary initial condition x0 and
arbitrary final condition xf , there exist time T > 0 and an input
u : [0,T]→ Rm such that x(0) = x0 and x(T) = xf

(A,B) is controllable⇔ [B | AB | · · · An−1B] is full row rank
⇔ [sI − A | B] is ‘left prime’: [λI − A | B] has full row rank for
every λ ∈ C : Popov Belevitch Hautus (PBH) test.
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Pole placement theorem

Given system d
dt x = Ax + Bu with A ∈ Rn×n.

Under what conditions on (A,B) can we achieve:

for any (monic, degree n, real coefficients) polynomial d(s), there
exists a feedback matrix F such that characteristic polynomial of
(A + BF) is d(s).
Roots of d(s) are desired closed loop poles
Also, eigenvalues of the matrix A + BF
Characteristic polynomial of (A + BF) := roots of det (sI − A− BF)
Feedback u = Fx achieves desired poles: ‘pole-placement’
Arbitrary pole placement possible⇔ (A,B) controllable
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State space examples

A =

[
3 0
0 4

]
B =

[
0
1

]

Uncontrollable

A =

[
0 1
0 4

]
B =

[
0
1

]
Controllable

u = f1x1. (State x = (x1, x2))
View this control law as:

[
∗ 0 ∗

] x1

x2

u

 = 0

Plant laws and controller laws give at least two perfect matchings!
Notice loop through controller edges
Feedback ≡ loop
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Problem formulation

Left-prime: the only factors that can be pulled from ‘left’ side are
those with polynomial inverse
[s + 1 s] = a(1

a [s + 1 s]) (with any real a 6= 0) (left prime)
[s(s + 1) s2] = s([s + 1 s]) (not left prime)
[a(s) b(s)] is left-prime ≡ a and b have no common roots
‘Most state space systems are controllable’ ≡ [sI − A B] is
generically left-prime
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Problem formulation

1 Find conditions on the plant’s structure: the bipartite graph
Gp(RP, C; Ep) such that plant is controllable for almost all
coefficients (system parameters).

Suppose controller too has structural constraints (sensor/actuator
constraints): Gk(RK, C; Ek)

2 Given plant and controller structures: Gp(RP, C; Ep) and
Gk(RK, C; Ek), find conditions on these graphs for ability to
achieve arbitrary pole placement
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Control as interconnection

Suppose plant has laws P( d
dt )w = 0 and controller has K( d

dt )w = 0
After interconnection, w has to satisfy both sets of laws

Define A(s) :=

[
P(s)
K(s)

]
.

Controlled, i.e. closed loop system: A( d
dt )w = 0

Closed loop is autonomous1: A(s) is square and nonsingular
Pole placement: given desired polynomial d, construct K to get
det A = d
For example, d has all roots sufficiently left (in the complex
plane)

Generic nonsingularity↔ perfect matchings

1WLOG, P and K are full row rank. Controller is assumed ‘regular’. Behavioral
background (see Belur & Trentelman, IEEE-TAC, 2002)
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Matchings and inadmissible edges

For a graph Gp(RP, C; Ep)

Matching M: subset M ⊆ E such that each vertex is degree 1
Maximum matching: maximum cardinality of M
For square matrix P(s): |R| = |C|.
Maximum matching of size |R| ≡: perfect matching

Matching theory: very well-developed (Lovász, Plummer, Asratian,
Denley, Häggkvist, Tassa)
In particular, elementary-bipartite-graphs
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Perfect matchings

Think of set of men M and set of women W.
Each edge: man-woman ‘compatibility’ (don’t mind marriage)
Suppose equal number of men and women
‘Perfect match’ ≡ all get matched
Other examples (bipartite graph): College-students match,
hospitals-patients match, Students-hostels match
Also, preference possible: stable marriage
Also, in male hostels, room-partner compatibility: non-bipartite
graph
In square matrix, take row set R and column set C:
compatibility between some r ∈ R and c ∈ C ≡ r, c) entry is
nonzero
Nonzero terms in determinant expansion↔ perfect matching
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Rank, nonsingularity, inadmissible-edges

If |R| 6 |C|, then maximum matching contains at most |R| edges:
R-saturating

Rank = size of maximal nonzero minor
Some edges do not occur in any maximum matching:
inadmissible edges
Inadmissible edges do not affect rank considerations
When P(s) is square,
inadmissible edges↔ entries in P that do not affect det P
For example, upper triangular (and square) matrix:
all super-diagonal entries↔ inadmissible edges

Link between structured matrices and graph theory:
Generically nonzero terms do not cancel.

Belur, Rachel, Krishnan (EE-IIT Bombay) Talk at SJCE 20 / 28
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Controller verticesRK and C

Controller introduces more laws: more rows (more vertices):
call themRK

Controller laws act on the same variables

Let controller structure be Gk(RK, C; Ek)

Ek describes which variable can occur in which controller
equation
Controller no constraints ≡ complete bipartite graph onRK and C
Closed loop autonomous ≡ |RP|+ |RK| = |C|
This is the interconnected system.
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New bipartite graph: with controller
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Too many colours!
Plant non-constant edges, plant constant edges,
inadmissible edges, controller edges
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Main result: pole placement

Let Gp(RP, C; Ep) and Gk(RK, C; Ek) be plant and controller structures.
DefineR := RP ∪RK and E := Ep ∪ Ek.

Construct Gaut(R, C; E), the graph of the interconnected system.
Remove the inadmissible edges from Gaut to get Gaut

a .
Then the following are equivalent.

1 Arbitrary pole placement is possible generically using controllers
having structure Gk.

2 There do not exist subsets r ⊆ RP and c ⊂ C that satisfy the
following three conditions
(a) |r| = |c|,
(b) there is a nonconstant plant edge in Gaut

a incident on r,
(c) every perfect matching M of Gaut

a matches r and c.
3 Every nonconstant plant edge in Gaut

a is in some cycle containing
controller edges in Gaut

a .
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Main result: structural controllability

Consider Gp(RP, C; Ep) with |R| < |C| and remove all inadmissible
edges from Gp to obtain Gp

a.
Let g1, g2, . . . gt be the connected components of Gp

a.
Then the following are equivalent.

1 The plant is structurally controllable.
2 The graph Gp represents an equivalence class of generically

left-prime polynomial matrices.

3 Each component gi that contains a nonconstant plant edge
satisfies |R(gi)| < |C(gi)|.

4 For each nonconstant plant edge e in Gp
a, there existR-saturating

matchings M and N such that e is in a path in Gp
a[M∆N].2

2The subgraph of Gp
a on the symmetric difference between M and N. The

symmetric difference between two sets A and B, denoted as A∆B, is defined as
(A ∪ B)\(A ∩ B).

Belur, Rachel, Krishnan (EE-IIT Bombay) Talk at SJCE 24 / 28



Main result: structural controllability

Consider Gp(RP, C; Ep) with |R| < |C| and remove all inadmissible
edges from Gp to obtain Gp

a.
Let g1, g2, . . . gt be the connected components of Gp

a.
Then the following are equivalent.

1 The plant is structurally controllable.
2 The graph Gp represents an equivalence class of generically

left-prime polynomial matrices.
3 Each component gi that contains a nonconstant plant edge

satisfies |R(gi)| < |C(gi)|.
4 For each nonconstant plant edge e in Gp

a, there existR-saturating
matchings M and N such that e is in a path in Gp

a[M∆N].2

2The subgraph of Gp
a on the symmetric difference between M and N. The

symmetric difference between two sets A and B, denoted as A∆B, is defined as
(A ∪ B)\(A ∩ B).

Belur, Rachel, Krishnan (EE-IIT Bombay) Talk at SJCE 24 / 28



Unimodular completion

Call a polynomial matrix U(s) ∈ Rg×g[s] unimodular if
det U(s) ∈ R\0
P(s) is left-prime≡ P(s) can be completed to a unimodular matrix

P(s) is left-prime⇔ there exists K(s) such that A(s) :=

[
P(s)
K(s)

]
has determinant equal to 1.

Given a structure of zero/nonzero entries in P(s), we found under
what conditions P can be ‘completed’ to a unimodular matrix.
Completion K(s) could have its constraints/structure too
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Known results

Murota, van der Woude: generic Smith form: bipartite graphs

Also, ‘mixed’ formulation (Recall KCL/KVL laws). Using
matroids
Structural controllability: primarily directed, non-bipartite graphs
only state space.
Structurally fixed modes: Šiljak.
Papadimitriou and Tsitsiklis: algorithmic running time (state
space).
Hogben: Completion problems: constant matrices (‘>’, Hicks,
many more)

Belur, Rachel, Krishnan (EE-IIT Bombay) Talk at SJCE 26 / 28



Known results

Murota, van der Woude: generic Smith form: bipartite graphs
Also, ‘mixed’ formulation (Recall KCL/KVL laws).

Using
matroids
Structural controllability: primarily directed, non-bipartite graphs
only state space.
Structurally fixed modes: Šiljak.
Papadimitriou and Tsitsiklis: algorithmic running time (state
space).
Hogben: Completion problems: constant matrices (‘>’, Hicks,
many more)

Belur, Rachel, Krishnan (EE-IIT Bombay) Talk at SJCE 26 / 28



Known results

Murota, van der Woude: generic Smith form: bipartite graphs
Also, ‘mixed’ formulation (Recall KCL/KVL laws). Using
matroids

Structural controllability: primarily directed, non-bipartite graphs
only state space.
Structurally fixed modes: Šiljak.
Papadimitriou and Tsitsiklis: algorithmic running time (state
space).
Hogben: Completion problems: constant matrices (‘>’, Hicks,
many more)

Belur, Rachel, Krishnan (EE-IIT Bombay) Talk at SJCE 26 / 28



Known results

Murota, van der Woude: generic Smith form: bipartite graphs
Also, ‘mixed’ formulation (Recall KCL/KVL laws). Using
matroids
Structural controllability: primarily directed, non-bipartite graphs

only state space.
Structurally fixed modes: Šiljak.
Papadimitriou and Tsitsiklis: algorithmic running time (state
space).
Hogben: Completion problems: constant matrices (‘>’, Hicks,
many more)

Belur, Rachel, Krishnan (EE-IIT Bombay) Talk at SJCE 26 / 28



Known results

Murota, van der Woude: generic Smith form: bipartite graphs
Also, ‘mixed’ formulation (Recall KCL/KVL laws). Using
matroids
Structural controllability: primarily directed, non-bipartite graphs
only state space.

Structurally fixed modes: Šiljak.
Papadimitriou and Tsitsiklis: algorithmic running time (state
space).
Hogben: Completion problems: constant matrices (‘>’, Hicks,
many more)

Belur, Rachel, Krishnan (EE-IIT Bombay) Talk at SJCE 26 / 28



Known results

Murota, van der Woude: generic Smith form: bipartite graphs
Also, ‘mixed’ formulation (Recall KCL/KVL laws). Using
matroids
Structural controllability: primarily directed, non-bipartite graphs
only state space.
Structurally fixed modes: Šiljak.

Papadimitriou and Tsitsiklis: algorithmic running time (state
space).
Hogben: Completion problems: constant matrices (‘>’, Hicks,
many more)

Belur, Rachel, Krishnan (EE-IIT Bombay) Talk at SJCE 26 / 28



Known results

Murota, van der Woude: generic Smith form: bipartite graphs
Also, ‘mixed’ formulation (Recall KCL/KVL laws). Using
matroids
Structural controllability: primarily directed, non-bipartite graphs
only state space.
Structurally fixed modes: Šiljak.
Papadimitriou and Tsitsiklis: algorithmic running time (state
space).

Hogben: Completion problems: constant matrices (‘>’, Hicks,
many more)

Belur, Rachel, Krishnan (EE-IIT Bombay) Talk at SJCE 26 / 28



Known results

Murota, van der Woude: generic Smith form: bipartite graphs
Also, ‘mixed’ formulation (Recall KCL/KVL laws). Using
matroids
Structural controllability: primarily directed, non-bipartite graphs
only state space.
Structurally fixed modes: Šiljak.
Papadimitriou and Tsitsiklis: algorithmic running time (state
space).
Hogben: Completion problems: constant matrices (‘>’, Hicks,
many more)

Belur, Rachel, Krishnan (EE-IIT Bombay) Talk at SJCE 26 / 28



Main take-aways

For square matrices, bipartite graph between rows and columns
Each perfect matching : a term in determinant expansion
Some entries don’t occur in any term in determinant
Some edges don’t occur in any perfect matching: inadmissible
edges
Autonomous system (no inputs) : square system of equations
Autonomous : at least one perfect matching
Pole-placement⇔ all (nonconstant) admissible plant edges
through some controller loop
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Conclusions

(a) Obtained equivalent graph-conditions on plant and controller
structure for generic arbitrary pole placement.

(b) Obtained new graph-conditions for structural controllability.
(c) Specializing to the state space case gives new results for structural

controllability.
(d) Algorithmic running time is easy due to standard graph

algorithms. Lower running time for sparse case, comparable for
general case.

(e) Removal of inadmissible edges is central to all graph conditions.
Control significance? No edge is inadmissible if a large system is
built from SISO subsystems using just the series, parallel and
feedback interconnection.

Questions. Thank you
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