Generic arbitrary pole placement and structural controllability

Madhu N. Belur

Control \& Computing, Electrical Engg Indian Institute of Technology Bombay (IITB)

Joint work with Rachel K. Kalaimani and S. Sivaramakrishnan
Talk in Sri Jayachamarajendra College of Engineering, Mysuru www.ee.iitb.ac.in/\~belur/talks/

2nd April 2016

Outline

- Structural system of equations: plant and controller
- Arbitrary pole placement problem
- Known results
- Bipartite graphs
- Necessary and sufficient conditions
- Unimodular completion

Structured system of equations

- Often just structure specified for the equations of the plant (plant \equiv the system to-be-controlled)
- Parameters not known precisely. (They vary slightly in practice.)
- If uncontrollable, sometimes slight perturbation in system parameters fetches controllability
- Structure: which variable occurs in which equation known
- This talk: only LTI systems

Linear ordinary constant-coefficient differential equations

- Construct a polynomial matrix, and then a 'bipartite' graph

Example

Plant equations: 3 differential equations in 4 variables: $w_{1}, w_{2}, w_{3} \& w_{4}$. System parameters: $a_{i j}$ and $b_{i j}$ are arbitrary real numbers. Construct $P(s) \in \mathbb{R}^{3 \times 4}[s]$:

$$
a_{11} \dot{w}_{1}+b_{11} w_{1}+a_{12} \dot{w}_{2}+b_{12} w_{2}=0
$$

$$
a_{21} \dot{w}_{1}+b_{21} w_{1}+b_{22} w_{2}=0
$$

$$
b_{31} w_{1}+a_{32} \dot{\bullet}_{2}+b_{32} w_{2}+a_{33} \dot{\bullet}_{3}+b_{33} w_{3}
$$

$$
+a_{34} \dot{\mathscr{w}}_{4}+b_{34} w_{4}=0
$$

$P(s)=\left[\begin{array}{cccc}a_{11} s+b_{11} & a_{12} s+b_{12} & 0 & 0 \\ a_{21} s+b_{21} & b_{22} & 0 & 0 \\ b_{31} & a_{32} s+b_{32} & a_{33} s+b_{33} & a_{34} s+b_{34}\end{array}\right]$

More examples of structured system of equations

Large circuits involving 2-terminal devices:

- System variables: V and I : across-voltages and through-currents
- KCL involving I variables, KVL: V variables
- Device equations linking components of V and I vectors
- Only device parameters: not precise: 'mixed' formulation (Murota, van der Woude)

More examples of structured system of equations

Large circuits involving 2-terminal devices:

- System variables: V and I : across-voltages and through-currents
- KCL involving I variables, KVL: V variables
- Device equations linking components of V and I vectors
- Only device parameters: not precise: ‘mixed’ formulation (Murota, van der Woude)

Decentralized control:

- Local plant equations, across-subsystem-interconnection equations
- Each local controller can involve only local variables
- Similar sensor/actuator allocation constraints across subsystems

Bipartite graph

- Plant's structure captured by a bipartite graph
- Bipartite graph G having vertices $V=\mathcal{R} \cup \mathcal{C}$ (disjoint union)
- Each edge in G has one vertex in \mathcal{R} and the other in \mathcal{C}
- Construct graph G from polynomial matrix $P(s)$ as follows.
- \mathcal{R} is the set of rows of $P(s)$ and
- \mathcal{C} : the columns of $P(s)$
- $p_{i j}(s) \neq 0 \Rightarrow$ put an edge between vertex $u_{i} \in \mathcal{R}$ and $v_{j} \in \mathcal{C}$.

Bipartite graph

- Plant's structure captured by a bipartite graph
- Bipartite graph G having vertices $V=\mathcal{R} \cup \mathcal{C}$ (disjoint union)
- Each edge in G has one vertex in \mathcal{R} and the other in \mathcal{C}
- Construct graph G from polynomial matrix $P(s)$ as follows.
- \mathcal{R} is the set of rows of $P(s)$ and
- \mathcal{C} : the columns of $P(s)$
- $p_{i j}(s) \neq 0 \Rightarrow$ put an edge between vertex $u_{i} \in \mathcal{R}$ and $v_{j} \in \mathcal{C}$.
- Distinguish between constant nonzero polynomials $p_{i j}$ and nonconstant polynomials

Bipartite graph

- Plant's structure captured by a bipartite graph
- Bipartite graph G having vertices $V=\mathcal{R} \cup \mathcal{C}$ (disjoint union)
- Each edge in G has one vertex in \mathcal{R} and the other in \mathcal{C}
- Construct graph G from polynomial matrix $P(s)$ as follows.
- \mathcal{R} is the set of rows of $P(s)$ and
- \mathcal{C} : the columns of $P(s)$
- $p_{i j}(s) \neq 0 \Rightarrow$ put an edge between vertex $u_{i} \in \mathcal{R}$ and $v_{j} \in \mathcal{C}$.
- Distinguish between constant nonzero polynomials $p_{i j}$ and nonconstant polynomials
- Plant is under-determined: more variables than equations
- More vertices in \mathcal{C} than \mathcal{R} (\equiv under-determined)

Bipartite graph

- Plant's structure captured by a bipartite graph
- Bipartite graph G having vertices $V=\mathcal{R} \cup \mathcal{C}$ (disjoint union)
- Each edge in G has one vertex in \mathcal{R} and the other in \mathcal{C}
- Construct graph G from polynomial matrix $P(s)$ as follows.
- \mathcal{R} is the set of rows of $P(s)$ and
- \mathcal{C} : the columns of $P(s)$
- $p_{i j}(s) \neq 0 \Rightarrow$ put an edge between vertex $u_{i} \in \mathcal{R}$ and $v_{j} \in \mathcal{C}$.
- Distinguish between constant nonzero polynomials $p_{i j}$ and nonconstant polynomials
- Plant is under-determined: more variables than equations
- More vertices in \mathcal{C} than \mathcal{R} (\equiv under-determined)
- Square $P(s) \equiv|\mathcal{R}|=|\mathcal{C}|$

Questions

- Is the system controllable? (Controllable: in 'behavioral' sense)
- Does the bipartite graph reveal this? 'Structurally controllable'
- Dependence on values of $a_{i j}$ and $b_{i j}$?
- Can we achieve arbitrary pole placement?
- What if the controller also has such constraints?
- Controller constraints \equiv sensor/actuator allocation constraints

Important phrases

- Under-determined \leftrightarrow wide, determined \leftrightarrow square
- matchings \leftrightarrow one-to-one assignment (from prespecified edges)
- perfect matching
- poles \leftrightarrow roots of characteristic polynomial
- pole-placement \leftrightarrow assign the (closed loop) poles

Behavioral definitions

- System \equiv set of all 'allowed' trajectories: 'behavior'
- All solution-trajectories allowed by the system equations
- For LTI systems: System equations: $P\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) w=0$, system variables: w
- Polynomial matrix $P(s) \in \mathbb{R}^{g \times w}[s]$, system described by g equations.

Behavioral definitions

- System \equiv set of all 'allowed' trajectories: ‘behavior'
- All solution-trajectories allowed by the system equations
- For LTI systems: System equations: $P\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) w=0$, system variables: w
- Polynomial matrix $P(s) \in \mathbb{R}^{g \times w}[s]$, system described by g equations.
Recall: 3 equations, 4 variables

$$
+a_{34} \dot{\mathcal{w}}_{4}+b_{34} w_{4}=0
$$

$$
\begin{aligned}
& a_{11} \dot{w}_{1}+b_{11} w_{1}+a_{12} \dot{w}_{2}+b_{12} w_{2}=0 \\
& a_{21} \dot{w}_{1}+b_{21} w_{1}+b_{22} w_{2}=0 \\
& P(s)= \\
& {\left[\begin{array}{cccc}
a_{11} s+b_{11} & a_{12} s+b_{12} & 0 & 0 \\
a_{21} s+b_{21} & b_{22} & 0 & 0 \\
b_{31} & a_{32} s+b_{32} & a_{33} s+b_{33} & a_{34} s+b_{34}
\end{array}\right]}
\end{aligned}
$$

Behavioral controllability

- System controllable $: \equiv$ trajectories allow mutual 'patching'
- Controllability $\equiv P(\lambda)$ has full row rank for every $\lambda \in \mathbb{C}$
- Call such a $P(s)$ left-prime

Behavioral controllability

- System controllable $: \equiv$ trajectories allow mutual 'patching'
- Controllability $\equiv P(\lambda)$ has full row rank for every $\lambda \in \mathbb{C}$
- Call such a $P(s)$ left-prime
- System structurally controllable $: \equiv$ for ‘almost all’ coefficients $a_{i j}$ and $b_{i j}$ in $P(s)$, we have left-primeness
- Polynomial matrices allowed by that structure are 'generically left-prime'

$‘$ 'Generic’ \equiv almost always

- $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathbb{R}^{2 \times 2}$ is nonsingular (unless $a d-b c=0$).
- Set of values a, b, c and d in \mathbb{R}^{4} satisfying $a d-b c=0$: 'thin set': unlikely that arbitrarily chosen real values of a, b, c and d would cause $a d-b c=0$.
- We say B is generically nonsingular.
- Similarly, polynomials $p(s)$ and $q(s)$ with degrees m and $n \geqslant 1$ and arbitrary real coefficients generically do not have a common factor.

$‘$ 'Generic’ \equiv almost always

- $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathbb{R}^{2 \times 2}$ is nonsingular (unless $a d-b c=0$).
- Set of values a, b, c and d in \mathbb{R}^{4} satisfying $a d-b c=0$: 'thin set': unlikely that arbitrarily chosen real values of a, b, c and d would cause $a d-b c=0$.
- We say B is generically nonsingular.
- Similarly, polynomials $p(s)$ and $q(s)$ with degrees m and $n \geqslant 1$ and arbitrary real coefficients generically do not have a common factor.
- With some structure: $B=\left[\begin{array}{ll}0 & b \\ 0 & d\end{array}\right] \in \mathbb{R}^{2 \times 2}$ is generically singular.
- Location of zero/nonzero entries in a bipartite graph reveals generic nonsingularity.

$‘$ 'Generic’ \equiv almost always

- $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathbb{R}^{2 \times 2}$ is nonsingular (unless $a d-b c=0$).
- Set of values a, b, c and d in \mathbb{R}^{4} satisfying $a d-b c=0$: 'thin set': unlikely that arbitrarily chosen real values of a, b, c and d would cause $a d-b c=0$.
- We say B is generically nonsingular.
- Similarly, polynomials $p(s)$ and $q(s)$ with degrees m and $n \geqslant 1$ and arbitrary real coefficients generically do not have a common factor.
- With some structure: $B=\left[\begin{array}{ll}0 & b \\ 0 & d\end{array}\right] \in \mathbb{R}^{2 \times 2}$ is generically singular.
- Location of zero/nonzero entries in a bipartite graph reveals generic nonsingularity.
- Matching theory: Plummer, Lovász

State space controllability

Kalman's state space controllability: $\frac{\mathrm{d}}{\mathrm{d} t} x=A x+B u$:

- (A, B) controllable $: \equiv$ for any arbitrary initial condition x_{0} and arbitrary final condition x_{f}, there exist time $T \geqslant 0$ and an input $u:[0, T] \rightarrow \mathbb{R}^{m}$ such that $x(0)=x_{0}$ and $x(T)=x_{f}$
- (A, B) is controllable $\Leftrightarrow\left[B|A B| \cdots A^{n-1} B\right]$ is full row rank
- $\Leftrightarrow[s I-A \mid B]$ is 'left prime': $[\lambda I-A \mid B]$ has full row rank for every $\lambda \in \mathbb{C}$: Popov Belevitch Hautus (PBH) test.

Pole placement theorem

Given system $\frac{\mathrm{d}}{\mathrm{d} t} x=A x+B u$ with $A \in \mathbb{R}^{n \times n}$.
Under what conditions on (A, B) can we achieve:

Pole placement theorem

Given system $\frac{\mathrm{d}}{\mathrm{d} t} x=A x+B u$ with $A \in \mathbb{R}^{n \times n}$.
Under what conditions on (A, B) can we achieve:
for any (monic, degree n, real coefficients) polynomial $d(s)$, there exists a feedback matrix F such that characteristic polynomial of $(A+B F)$ is $d(s)$.

Pole placement theorem

Given system $\frac{\mathrm{d}}{\mathrm{d} t} x=A x+B u$ with $A \in \mathbb{R}^{n \times n}$.
Under what conditions on (A, B) can we achieve:
for any (monic, degree n, real coefficients) polynomial $d(s)$, there exists a feedback matrix F such that characteristic polynomial of $(A+B F)$ is $d(s)$.
Roots of $d(s)$ are desired closed loop poles

Pole placement theorem

Given system $\frac{\mathrm{d}}{\mathrm{d} t} x=A x+B u$ with $A \in \mathbb{R}^{n \times n}$.
Under what conditions on (A, B) can we achieve:
for any (monic, degree n, real coefficients) polynomial $d(s)$, there exists a feedback matrix F such that characteristic polynomial of $(A+B F)$ is $d(s)$.
Roots of $d(s)$ are desired closed loop poles
Also, eigenvalues of the matrix $A+B F$
Characteristic polynomial of $(A+B F):=$ roots of $\operatorname{det}(s I-A-B F)$

Pole placement theorem

Given system $\frac{\mathrm{d}}{\mathrm{d} t} x=A x+B u$ with $A \in \mathbb{R}^{n \times n}$.
Under what conditions on (A, B) can we achieve:
for any (monic, degree n, real coefficients) polynomial $d(s)$, there exists a feedback matrix F such that characteristic polynomial of $(A+B F)$ is $d(s)$.
Roots of $d(s)$ are desired closed loop poles
Also, eigenvalues of the matrix $A+B F$
Characteristic polynomial of $(A+B F):=$ roots of $\operatorname{det}(s I-A-B F)$
Feedback $u=F x$ achieves desired poles: 'pole-placement' Arbitrary pole placement possible $\Leftrightarrow(A, B)$ controllable

State space examples

$$
A=\left[\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

State space examples

$$
A=\left[\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { Uncontrollable }
$$

State space examples

$$
\begin{gathered}
A=\left[\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { Uncontrollable } \\
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 4
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{gathered}
$$

State space examples

$$
\begin{gathered}
A=\left[\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { Uncontrollable } \\
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 4
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { Controllable }
\end{gathered}
$$

$u=f_{1} x_{1}$. (State $\left.x=\left(x_{1}, x_{2}\right)\right)$
View this control law as:

$$
\left[\begin{array}{lll}
* & 0 & *
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
u
\end{array}\right]=0
$$

State space examples

$$
\begin{gathered}
A=\left[\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { Uncontrollable } \\
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 4
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { Controllable }
\end{gathered}
$$

$u=f_{1} x_{1}$. (State $\left.x=\left(x_{1}, x_{2}\right)\right)$
View this control law as:

$$
\left[\begin{array}{lll}
* & 0 & *
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
u
\end{array}\right]=0
$$

Plant laws and controller laws give at least two perfect matchings!

State space examples

$$
\begin{gathered}
A=\left[\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { Uncontrollable } \\
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 4
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { Controllable }
\end{gathered}
$$

$u=f_{1} x_{1}$. (State $\left.x=\left(x_{1}, x_{2}\right)\right)$
View this control law as:

$$
\left[\begin{array}{lll}
* & 0 & *
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
u
\end{array}\right]=0
$$

Plant laws and controller laws give at least two perfect matchings! Notice loop through controller edges
Feedback \equiv loop

Problem formulation

- Left-prime: the only factors that can be pulled from 'left' side are those with polynomial inverse
- $\left[\begin{array}{ll}s+1 & s\end{array}\right]=a\left(\frac{1}{a}[s+1 s]\right)$ (with any real $a \neq 0$) (left prime)
- $\left[s(s+1) s^{2}\right]=s\left(\left[\begin{array}{ll} \\ s+1 & s\end{array}\right]\right)$ (not left prime)
- $[a(s) b(s)]$ is left-prime $\equiv a$ and b have no common roots
- 'Most state space systems are controllable' $\equiv\left[\begin{array}{lll}s I-A & B\end{array}\right]$ is generically left-prime

Problem formulation

1 Find conditions on the plant's structure: the bipartite graph $G^{p}\left(\mathcal{R}_{P}, \mathcal{C} ; E_{p}\right)$ such that plant is controllable for almost all coefficients (system parameters).

Problem formulation

1 Find conditions on the plant's structure: the bipartite graph $G^{p}\left(\mathcal{R}_{P}, \mathcal{C} ; E_{p}\right)$ such that plant is controllable for almost all coefficients (system parameters).

Suppose controller too has structural constraints (sensor/actuator constraints): $G^{k}\left(\mathcal{R}_{K}, \mathcal{C} ; E_{k}\right)$

Problem formulation

1 Find conditions on the plant's structure: the bipartite graph $G^{p}\left(\mathcal{R}_{P}, \mathcal{C} ; E_{p}\right)$ such that plant is controllable for almost all coefficients (system parameters).

Suppose controller too has structural constraints (sensor/actuator constraints): $G^{k}\left(\mathcal{R}_{K}, \mathcal{C} ; E_{k}\right)$
2 Given plant and controller structures: $G^{p}\left(\mathcal{R}_{P}, \mathcal{C} ; E_{p}\right)$ and $G^{k}\left(\mathcal{R}_{K}, \mathcal{C} ; E_{k}\right)$, find conditions on these graphs for ability to achieve arbitrary pole placement

Control as interconnection

- Suppose plant has laws $P\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) w=0$ and controller has $K\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) w=0$
- After interconnection, w has to satisfy both sets of laws
- Define $A(s):=\left[\begin{array}{c}P(s) \\ K(s)\end{array}\right]$.

Controlled, i.e. closed loop system: $A\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) w=0$

- Closed loop is autonomous ${ }^{1}: A(s)$ is square and nonsingular
- Pole placement: given desired polynomial d, construct K to get $\operatorname{det} A=d$
- For example, d has all roots sufficiently left (in the complex plane)

[^0]
Control as interconnection

- Suppose plant has laws $P\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) w=0$ and controller has $K\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) w=0$
- After interconnection, w has to satisfy both sets of laws
- Define $A(s):=\left[\begin{array}{l}P(s) \\ K(s)\end{array}\right]$.

Controlled, i.e. closed loop system: $A\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\right) w=0$

- Closed loop is autonomous ${ }^{1}: A(s)$ is square and nonsingular
- Pole placement: given desired polynomial d, construct K to get $\operatorname{det} A=d$
- For example, d has all roots sufficiently left (in the complex plane)

Generic nonsingularity \leftrightarrow perfect matchings

[^1]
Matchings and inadmissible edges

For a graph $G^{p}\left(\mathcal{R}_{P}, \mathcal{C} ; E_{p}\right)$

- Matching M : subset $M \subseteq E$ such that each vertex is degree 1
- Maximum matching: maximum cardinality of M
- For square matrix $P(s):|\mathcal{R}|=|\mathcal{C}|$.

Maximum matching of size $|\mathcal{R}| \equiv$: perfect matching
Matching theory: very well-developed (Lovász, Plummer, Asratian, Denley, Häggkvist, Tassa)
In particular, elementary-bipartite-graphs

Perfect matchings

- Think of set of men M and set of women W.
- Each edge: man-woman 'compatibility' (don't mind marriage)
- Suppose equal number of men and women
- 'Perfect match' \equiv all get matched
- Other examples (bipartite graph): College-students match, hospitals-patients match, Students-hostels match
- Also, preference possible: stable marriage
- Also, in male hostels, room-partner compatibility: non-bipartite graph
- In square matrix, take row set R and column set C : compatibility between some $r \in R$ and $c \in C \equiv r, c)$ entry is nonzero
- Nonzero terms in determinant expansion \leftrightarrow perfect matching

Rank, nonsingularity, inadmissible-edges

- If $|\mathcal{R}| \leqslant|\mathcal{C}|$, then maximum matching contains at most $|\mathcal{R}|$ edges: \mathcal{R}-saturating

Rank, nonsingularity, inadmissible-edges

- If $|\mathcal{R}| \leqslant|\mathcal{C}|$, then maximum matching contains at most $|\mathcal{R}|$ edges: \mathcal{R}-saturating
- Rank = size of maximal nonzero minor
- Some edges do not occur in any maximum matching: inadmissible edges
- Inadmissible edges do not affect rank considerations

Rank, nonsingularity, inadmissible-edges

- If $|\mathcal{R}| \leqslant|\mathcal{C}|$, then maximum matching contains at most $|\mathcal{R}|$ edges: \mathcal{R}-saturating
- Rank = size of maximal nonzero minor
- Some edges do not occur in any maximum matching: inadmissible edges
- Inadmissible edges do not affect rank considerations
- When $P(s)$ is square, inadmissible edges \leftrightarrow entries in P that do not affect det P

Rank, nonsingularity, inadmissible-edges

- If $|\mathcal{R}| \leqslant|\mathcal{C}|$, then maximum matching contains at most $|\mathcal{R}|$ edges: \mathcal{R}-saturating
- Rank = size of maximal nonzero minor
- Some edges do not occur in any maximum matching: inadmissible edges
- Inadmissible edges do not affect rank considerations
- When $P(s)$ is square, inadmissible edges \leftrightarrow entries in P that do not affect det P
- For example, upper triangular (and square) matrix: all super-diagonal entries \leftrightarrow inadmissible edges

Rank, nonsingularity, inadmissible-edges

- If $|\mathcal{R}| \leqslant|\mathcal{C}|$, then maximum matching contains at most $|\mathcal{R}|$ edges: \mathcal{R}-saturating
- Rank = size of maximal nonzero minor
- Some edges do not occur in any maximum matching: inadmissible edges
- Inadmissible edges do not affect rank considerations
- When $P(s)$ is square, inadmissible edges \leftrightarrow entries in P that do not affect det P
- For example, upper triangular (and square) matrix: all super-diagonal entries \leftrightarrow inadmissible edges

Link between structured matrices and graph theory:

Rank, nonsingularity, inadmissible-edges

- If $|\mathcal{R}| \leqslant|\mathcal{C}|$, then maximum matching contains at most $|\mathcal{R}|$ edges: \mathcal{R}-saturating
- Rank = size of maximal nonzero minor
- Some edges do not occur in any maximum matching: inadmissible edges
- Inadmissible edges do not affect rank considerations
- When $P(s)$ is square, inadmissible edges \leftrightarrow entries in P that do not affect det P
- For example, upper triangular (and square) matrix: all super-diagonal entries \leftrightarrow inadmissible edges

Link between structured matrices and graph theory: Generically nonzero terms do not cancel.

Controller vertices \mathcal{R}_{K} and \mathcal{C}

- Controller introduces more laws: more rows (more vertices): call them \mathcal{R}_{K}
- Controller laws act on the same variables

Controller vertices \mathcal{R}_{K} and \mathcal{C}

- Controller introduces more laws: more rows (more vertices): call them \mathcal{R}_{K}
- Controller laws act on the same variables
- Let controller structure be $G^{k}\left(\mathcal{R}_{K}, \mathcal{C} ; E_{k}\right)$
- E_{k} describes which variable can occur in which controller equation
- Controller no constraints \equiv complete bipartite graph on \mathcal{R}_{K} and \mathcal{C}

Controller vertices \mathcal{R}_{K} and \mathcal{C}

- Controller introduces more laws: more rows (more vertices): call them \mathcal{R}_{K}
- Controller laws act on the same variables
- Let controller structure be $G^{k}\left(\mathcal{R}_{K}, \mathcal{C} ; E_{k}\right)$
- E_{k} describes which variable can occur in which controller equation
- Controller no constraints \equiv complete bipartite graph on \mathcal{R}_{K} and \mathcal{C}
- Closed loop autonomous $\equiv\left|\mathcal{R}_{P}\right|+\left|\mathcal{R}_{K}\right|=|\mathcal{C}|$ This is the interconnected system.

New bipartite graph: with controller

New bipartite graph: with controller

Too many colours!
Plant non-constant edges, plant constant edges, inadmissible edges, controller edges

Main result: pole placement

Let $G^{p}\left(\mathcal{R}_{P}, \mathcal{C} ; E_{p}\right)$ and $G^{k}\left(\mathcal{R}_{K}, \mathcal{C} ; E_{k}\right)$ be plant and controller structures.
Define $\mathcal{R}:=\mathcal{R}_{P} \cup \mathcal{R}_{K}$ and $E:=E_{p} \cup E_{k}$.

Main result: pole placement

Let $G^{p}\left(\mathcal{R}_{P}, \mathcal{C} ; E_{p}\right)$ and $G^{k}\left(\mathcal{R}_{K}, \mathcal{C} ; E_{k}\right)$ be plant and controller structures.
Define $\mathcal{R}:=\mathcal{R}_{P} \cup \mathcal{R}_{K}$ and $E:=E_{p} \cup E_{k}$.
Construct $G^{\text {aut }}(\mathcal{R}, \mathcal{C} ; E)$, the graph of the interconnected system.
Remove the inadmissible edges from $G^{\text {aut }}$ to get $G_{a}^{\text {aut }}$.

Main result: pole placement

Let $G^{p}\left(\mathcal{R}_{P}, \mathcal{C} ; E_{p}\right)$ and $G^{k}\left(\mathcal{R}_{K}, \mathcal{C} ; E_{k}\right)$ be plant and controller structures.
Define $\mathcal{R}:=\mathcal{R}_{P} \cup \mathcal{R}_{K}$ and $E:=E_{p} \cup E_{k}$.
Construct $G^{\text {aut }}(\mathcal{R}, \mathcal{C} ; E)$, the graph of the interconnected system.
Remove the inadmissible edges from $G^{\text {aut }}$ to get $G_{a}^{\text {aut }}$.
Then the following are equivalent.
(1) Arbitrary pole placement is possible generically using controllers having structure G^{k}.

Main result: pole placement

Let $G^{p}\left(\mathcal{R}_{P}, \mathcal{C} ; E_{p}\right)$ and $G^{k}\left(\mathcal{R}_{K}, \mathcal{C} ; E_{k}\right)$ be plant and controller structures.
Define $\mathcal{R}:=\mathcal{R}_{P} \cup \mathcal{R}_{K}$ and $E:=E_{p} \cup E_{k}$.
Construct $G^{\text {aut }}(\mathcal{R}, \mathcal{C} ; E)$, the graph of the interconnected system.
Remove the inadmissible edges from $G^{\text {aut }}$ to get $G_{a}^{\text {aut }}$.
Then the following are equivalent.
(1) Arbitrary pole placement is possible generically using controllers having structure G^{k}.
(2) There do not exist subsets $r \subseteq \mathcal{R}_{P}$ and $c \subset \mathcal{C}$ that satisfy the following three conditions
(a) $|r|=|c|$,
(b) there is a nonconstant plant edge in $G_{a}^{\text {aut }}$ incident on r,
(c) every perfect matching M of $G_{a}^{\text {aut }}$ matches r and c.

Main result: pole placement

Let $G^{p}\left(\mathcal{R}_{P}, \mathcal{C} ; E_{p}\right)$ and $G^{k}\left(\mathcal{R}_{K}, \mathcal{C} ; E_{k}\right)$ be plant and controller structures.
Define $\mathcal{R}:=\mathcal{R}_{P} \cup \mathcal{R}_{K}$ and $E:=E_{p} \cup E_{k}$.
Construct $G^{\text {aut }}(\mathcal{R}, \mathcal{C} ; E)$, the graph of the interconnected system.
Remove the inadmissible edges from $G^{\text {aut }}$ to get $G_{a}^{\text {aut }}$.
Then the following are equivalent.
(1) Arbitrary pole placement is possible generically using controllers having structure G^{k}.
(2) There do not exist subsets $r \subseteq \mathcal{R}_{P}$ and $c \subset \mathcal{C}$ that satisfy the following three conditions
(a) $|r|=|c|$,
(b) there is a nonconstant plant edge in $G_{a}^{\text {aut }}$ incident on r,
(c) every perfect matching M of $G_{a}^{\text {aut }}$ matches r and c.
(3) Every nonconstant plant edge in $G_{a}^{\text {aut }}$ is in some cycle containing controller edges in $G_{a}^{\text {aut }}$.

Main result: structural controllability

Consider $G^{p}\left(\mathcal{R}_{P}, \mathcal{C} ; E_{p}\right)$ with $|\mathcal{R}|<|\mathcal{C}|$ and remove all inadmissible edges from G^{p} to obtain G_{a}^{p}.
Let $g_{1}, g_{2}, \ldots g_{t}$ be the connected components of G_{a}^{p}. Then the following are equivalent.
(1) The plant is structurally controllable.
(2) The graph G^{p} represents an equivalence class of generically left-prime polynomial matrices.
${ }^{2}$ The subgraph of G_{a}^{p} on the symmetric difference between M and N. The symmetric difference between two sets A and B, denoted as $A \Delta B$, is defined as $(A \cup B) \backslash(A \cap B)$.

Main result: structural controllability

Consider $G^{p}\left(\mathcal{R}_{P}, \mathcal{C} ; E_{p}\right)$ with $|\mathcal{R}|<|\mathcal{C}|$ and remove all inadmissible edges from G^{p} to obtain G_{a}^{p}.
Let $g_{1}, g_{2}, \ldots g_{t}$ be the connected components of G_{a}^{p}.
Then the following are equivalent.
(1) The plant is structurally controllable.
(2) The graph G^{p} represents an equivalence class of generically left-prime polynomial matrices.
(0) Each component g_{i} that contains a nonconstant plant edge satisfies $\left|\mathcal{R}\left(g_{i}\right)\right|<\left|\mathcal{C}\left(g_{i}\right)\right|$.
© For each nonconstant plant edge e in G_{a}^{p}, there exist \mathcal{R}-saturating matchings M and N such that e is in a path in $G_{a}^{p}[M \Delta N] .^{2}$
${ }^{2}$ The subgraph of G_{a}^{p} on the symmetric difference between M and N. The symmetric difference between two sets A and B, denoted as $A \Delta B$, is defined as $(A \cup B) \backslash(A \cap B)$.

Unimodular completion

- Call a polynomial matrix $U(s) \in \mathbb{R}^{g \times g}[s]$ unimodular if $\operatorname{det} U(s) \in \mathbb{R} \backslash 0$
- $P(s)$ is left-prime $\equiv P(s)$ can be completed to a unimodular matrix
- $P(s)$ is left-prime \Leftrightarrow there exists $K(s)$ such that $A(s):=\left[\begin{array}{l}P(s) \\ K(s)\end{array}\right]$ has determinant equal to 1 .

Unimodular completion

- Call a polynomial matrix $U(s) \in \mathbb{R}^{g \times g}[s]$ unimodular if $\operatorname{det} U(s) \in \mathbb{R} \backslash 0$
- $P(s)$ is left-prime $\equiv P(s)$ can be completed to a unimodular matrix
- $P(s)$ is left-prime \Leftrightarrow there exists $K(s)$ such that $A(s):=\left[\begin{array}{l}P(s) \\ K(s)\end{array}\right]$ has determinant equal to 1 .
- Given a structure of zero/nonzero entries in $P(s)$, we found under what conditions P can be 'completed' to a unimodular matrix.

Unimodular completion

- Call a polynomial matrix $U(s) \in \mathbb{R}^{g \times g}[s]$ unimodular if $\operatorname{det} U(s) \in \mathbb{R} \backslash 0$
- $P(s)$ is left-prime $\equiv P(s)$ can be completed to a unimodular matrix
- $P(s)$ is left-prime \Leftrightarrow there exists $K(s)$ such that $A(s):=\left[\begin{array}{l}P(s) \\ K(s)\end{array}\right]$ has determinant equal to 1 .
- Given a structure of zero/nonzero entries in $P(s)$, we found under what conditions P can be 'completed' to a unimodular matrix.
- Completion $K(s)$ could have its constraints/structure too

Known results

- Murota, van der Woude: generic Smith form: bipartite graphs

Known results

- Murota, van der Woude: generic Smith form: bipartite graphs Also, 'mixed' formulation (Recall KCL/KVL laws).

Known results

- Murota, van der Woude: generic Smith form: bipartite graphs Also, 'mixed' formulation (Recall KCL/KVL laws). Using matroids

Known results

- Murota, van der Woude: generic Smith form: bipartite graphs Also, 'mixed' formulation (Recall KCL/KVL laws). Using matroids
- Structural controllability: primarily directed, non-bipartite graphs

Known results

- Murota, van der Woude: generic Smith form: bipartite graphs Also, 'mixed' formulation (Recall KCL/KVL laws). Using matroids
- Structural controllability: primarily directed, non-bipartite graphs only state space.

Known results

- Murota, van der Woude: generic Smith form: bipartite graphs Also, 'mixed' formulation (Recall KCL/KVL laws). Using matroids
- Structural controllability: primarily directed, non-bipartite graphs only state space.
- Structurally fixed modes: Šiljak.

Known results

- Murota, van der Woude: generic Smith form: bipartite graphs Also, 'mixed' formulation (Recall KCL/KVL laws). Using matroids
- Structural controllability: primarily directed, non-bipartite graphs only state space.
- Structurally fixed modes: Šiljak.
- Papadimitriou and Tsitsiklis: algorithmic running time (state space).

Known results

- Murota, van der Woude: generic Smith form: bipartite graphs Also, 'mixed' formulation (Recall KCL/KVL laws). Using matroids
- Structural controllability: primarily directed, non-bipartite graphs only state space.
- Structurally fixed modes: Šiljak.
- Papadimitriou and Tsitsiklis: algorithmic running time (state space).
- Hogben: Completion problems: constant matrices ('>', Hicks, many more)

Main take-aways

- For square matrices, bipartite graph between rows and columns
- Each perfect matching : a term in determinant expansion
- Some entries don't occur in any term in determinant
- Some edges don't occur in any perfect matching: inadmissible edges
- Autonomous system (no inputs) : square system of equations
- Autonomous : at least one perfect matching
- Pole-placement \Leftrightarrow all (nonconstant) admissible plant edges through some controller loop

Conclusions

(a) Obtained equivalent graph-conditions on plant and controller structure for generic arbitrary pole placement.

Conclusions

(a) Obtained equivalent graph-conditions on plant and controller structure for generic arbitrary pole placement.
(b) Obtained new graph-conditions for structural controllability.

Conclusions

(a) Obtained equivalent graph-conditions on plant and controller structure for generic arbitrary pole placement.
(b) Obtained new graph-conditions for structural controllability.
(c) Specializing to the state space case gives new results for structural controllability.

Conclusions

(a) Obtained equivalent graph-conditions on plant and controller structure for generic arbitrary pole placement.
(b) Obtained new graph-conditions for structural controllability.
(c) Specializing to the state space case gives new results for structural controllability.
(d) Algorithmic running time is easy due to standard graph algorithms. Lower running time for sparse case, comparable for general case.

Conclusions

(a) Obtained equivalent graph-conditions on plant and controller structure for generic arbitrary pole placement.
(b) Obtained new graph-conditions for structural controllability.
(c) Specializing to the state space case gives new results for structural controllability.
(d) Algorithmic running time is easy due to standard graph algorithms. Lower running time for sparse case, comparable for general case.
(e) Removal of inadmissible edges is central to all graph conditions. Control significance?

Conclusions

(a) Obtained equivalent graph-conditions on plant and controller structure for generic arbitrary pole placement.
(b) Obtained new graph-conditions for structural controllability.
(c) Specializing to the state space case gives new results for structural controllability.
(d) Algorithmic running time is easy due to standard graph algorithms. Lower running time for sparse case, comparable for general case.
(e) Removal of inadmissible edges is central to all graph conditions. Control significance? No edge is inadmissible if a large system is built from SISO subsystems using just the series, parallel and feedback interconnection.

Conclusions

(a) Obtained equivalent graph-conditions on plant and controller structure for generic arbitrary pole placement.
(b) Obtained new graph-conditions for structural controllability.
(c) Specializing to the state space case gives new results for structural controllability.
(d) Algorithmic running time is easy due to standard graph algorithms. Lower running time for sparse case, comparable for general case.
(e) Removal of inadmissible edges is central to all graph conditions. Control significance? No edge is inadmissible if a large system is built from SISO subsystems using just the series, parallel and feedback interconnection.

[^0]: ${ }^{1}$ WLOG, P and K are full row rank. Controller is assumed 'regular'. Behavioral background (see Belur \& Trentelman, IEEE-TAC, 2002)

[^1]: ${ }^{1}$ WLOG, P and K are full row rank. Controller is assumed 'regular'. Behavioral background (see Belur \& Trentelman, IEEE-TAC, 2002)

