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Outline

Singular Value Decomposition

Numerical and Exact Rank

QR methods for solving Ax = b and for rank
determination (with tolerance)

QR for solving Ax = b, for det(A), and A−1

Relative error and floating point

Basics of flop count

Eigenvalue definition and computation

Relevant reference books: Books on Matrix
Computation by

Golub & van Loan,

David Watkins,

Trefethen
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SVD definition/applications

U ∈ Rn×n is called orthogonal if U−1 = UT

Loosely speaking: using orthogonal matrices is
numerically good
Orthogonal matrices are like ‘rotation’.
(‘Reflectors’ also)
View any matrix A ∈ Rm×n as A : Rn → Rm.
For x ∈ Rn, we have y ∈ Rm defined as y = Ax.
Diagonal matrices: component-wise scaling
SVD ≡ any matrix Ax: rotate x first, then
component-wise scaling, then rotation again
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SVD: definition

SVD

For a matrix A ∈ Rm×n, its Singular Value
Decomposition (SVD) is defined as: UΣV := A
with

U ∈ Rm×m and V ∈ Rn×n are orthogonal

Σ ∈ Rm×n is diagonal with diagonal values σi

satisfying

σ1 > σ2 > · · · > σr > 0

with rank of A := r and r 6 min(m,n)
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σi are called the singular values.
(After ordering), σi are unique.
U and V are not unique.
σ1 =: σmax, the largest singular value equals
‘amplification’
‘Not full rank’ ≡ r < min(m,n)
When r = min(m,n), (i.e. full rank), then
σmin := σr indicates ‘nearness to losing rank’
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Nonsingular matrix

Generally used for square matrices only.
A ∈ Rn×n is called nonsingular if det(A) 6= 0.
Singular ≡ det(A) = 0

Singular or nonsingular is ‘layman/naive’
question

Do you live near a railway line? Yes/No

Actually: answer is not Yes/No, but depends
on ‘near’

Correct question: Do you live within 1km of a
railway line?

50 km ≡ near, for a village,
0.1 km ≡ near, for a “metro station”

Singular matrices can be made nonsingular by (as
little as) 0.0000001 amount of perturbation!!
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Relative distance to singular matrices

Consider square matrix A ∈ Rn×n. Following are
equivalent.

A is nonsingular

Rank A is full (i.e., r = m = n)

σmin > 0

A is invertible (i.e. A−1 exists and is unique.)

For each b ∈ Rn, there exists an x ∈ Rn such
that Ax = b.

‘Condition number of A’ (denoted by κ(A)) is
finite. (‘kappa’ of A)

κ(A) :=
σ1

σn
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SVD and nearness

Suppose A ∈ Rn×n and σn > 0.
What minimum perturbation ∆A would make
(A+ ∆A) singular?
How to measure ‘perturbation’? ‘size’ of a
perturbation needed to say ‘minimum’
SVD helps answer this: in the 2-norm
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Norm

For x ∈ Rn, x = (x1, x2, . . . , xn), the ‘2-norm’ is
defined as ‖x‖2 :=

√
x2

1 + x2
2 + · · ·x2

n

Also called ‘Euclidean’ norm
Norm is a notion of ‘distance’ (= ‘metric’)
2-norm: most common notion of distance. There
are other useful/convenient norms also.
‖x‖1 and ‖x‖∞ and ‖x‖p (with p > 1)
From now on: default: 2-norm: i.e. ‖x‖ means ‖x‖2

σmax = sup
x∈Rn,x6=0

‖Ax‖
‖x‖

Ratio (gain) of all possible vectors

Actually only directions being compared

Denominator=0 is ruled out
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Matrix norms

For vectors x ∈ Rn, ‖x‖ indicates size/length.
Verrrrry small vector, verrrry small perturbation
(vector), etc.
How to put ‘size’ to matrices? Small matrix?

Induced 2-norm

‖A‖2 := sup
x∈Rn,x6=0

‖Ax‖
‖x‖

‖A‖2 = σmax(A)

‘induced’ :≡ vector norm was used to define matrix
norm
Induced 2-norm of matrix is its maximum
‘amplification’
Induced 2-norm of matrix A is exactly σmax(A)
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A minimum perturbation

Any matrix B such that ‖B‖ < σn ensures
(A+B) is nonsingular

There exists (a carefully chosen) ∆A such that
‖∆A‖ = σn such that (A+ ∆A) is singular

∆A is nonunique

In fact,

1

κ(A)
= min

det(A+∆A=0)
{
‖∆A‖2

‖A‖2

}

Ill-conditioned ≡ κ(A)� 1

Well-conditioned ≡ κ(A) ≈ 1
(Note: by definition, κ(A) > 1)
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QR factorization

Two/three variants (depending on permutation
matrices)
Suppose A ∈ Rn×n. Its QR factorization is defined
as A =: QR, with Q orthogonal and R
upper-triangular

Q and R are not unique.

A is nonsingular ⇔ R is nonsingular

If A is nonsingular, and R has all diagonal
elements positive, then Q and R are unique

QR factorization linked to Gram-Schmidt
orthogonalization
Permutation matrices: help in ‘stability’ of
calculations
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Stability

Forward and backward stability
For example, when solving for x in Ax = b
We like: small changes in A and b cause small
changes in x (x̂). Forward stability x and x̂ are
‘close’.
Instead: Solved x̂ is EXACT solution for a ‘close
by’ Â and b̂: backward stability

Algorithm stability

Algorithm is called ‘stable’ if it ensures either
forward or backward stability

Proofs of backward or forward stability of an
algorithm are usually hard.
Even if one algorithm is bad, another good one
might exist.
However, sometimes, the problem itself is
ill-conditioned or ill-posed.
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by’ Â and b̂: backward stability

Algorithm stability

Algorithm is called ‘stable’ if it ensures either
forward or backward stability

Proofs of backward or forward stability of an
algorithm are usually hard.
Even if one algorithm is bad, another good one
might exist.
However, sometimes, the problem itself is
ill-conditioned or ill-posed.

Belur in SPIT-Dec17 SVD and eigenvalues 13/13


