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Outline

o Dissipative system: definition

o Algebraic Riccati Equation (ARE), LMI & Hamiltonian
matrix

o RLC circuit example

o Main result: ARE solvability
o Unobservable state: problem?
o Embeddability

o RLC realization: nullator

e Conclusion
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Dissipativity, storage functions

Intuitively: a dissipative system
@ has no source of energy,
o absorbs energy supplied,

e can store (previously supplied) energy.
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Dissipativity, storage functions

Intuitively: a dissipative system
@ has no source of energy,
o absorbs energy supplied,
e can store (previously supplied) energy.

Power: wTSw with X: real, symmetric, nonsingular matrix
Quadratic in w: the ‘manifest’ variables: e.g.: v,¢ in power
Qu(w,£): quadratic in w, £, and their derivatives too

£: extra/auxiliary variables, for e.g., ‘state’

Storage function

Given a system and and a notion of power wT Zw:

d T

Qv (w,£) < w'Tw for all
storage function Qg (w,¥) :& dt (w, £) <

allowed system trajectories
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RLC Circuit example

R; = Rc = R and L = R?2C = uncontrollable

One input, and one output
Variables w = (v, 1)
Supply rate = wTSw =

TR

Though the circuit contains no source, v(t)i(t) can be
negative
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R; = Rc = R and L = R?2C = uncontrollable

One input, and one output
Variables w = (v, 1)
Supply rate = wTSw =

TR

Though the circuit contains no source, v(t)i(t) can be
negative at some time instants.
In any case (vi: of any sign)

2 . 2
d Cyvg, | Lif C2vc2) < vi
dt 2 2 2
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RLC Circuit example

R; = Rc = R and L = R?2C = uncontrollable

One input, and one output
Variables w = (v, 1)
Supply rate = wTSw =

TR

Though the circuit contains no source, v(t)i(t) can be
negative at some time instants.
In any case (vi: of any sign)

i Clvél LZ%
dt 2 2
Rate of increase of stored energy < supplied power

02'02
202 ) < wvi

Faster increase = source
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What is general about wT Xaw ?

o vi: voltage X current = physical power
o Fv: Force X velocity = physical power

o pressure & flow-rate,

But, this talk: linear systems

KARIKALAN, BELUR, ATHALYE & ABDULRAZAK UNCONTROLLABLE DISSIPATIVE SYSTEMS 5/28



What is general about wT Xaw ?

o vi: voltage X current = physical power
o Fv: Force X velocity = physical power
o pressure & flow-rate, etc.

e v2u? — y? disturbance attenuation: H.,-norm

y = ¢(u), and ¢ is a ‘sector’ nonlinearity,
¢ € sector (a, ) &
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Dissipative := 3 a storage function

Define a system to be Y-dissipative if there exists a storage
function Qg (w, £), i.e.

d
aQ\p(w,K) < wTSw for all allowed trajectories

o w: manifest variables: power is supplied through these
variables: wT Zw

® Qu(w,¥£): quadratic function of (w, £) and their
derivatives too: energy stored within the system

o for Qg (w) = zT Kz with K as Algebraic Riccati
Inequality (ARI) solutions
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Dissipative := 3 a storage function

Define a system to be Y-dissipative if there exists a storage
function Qg (w, £), i.e.

d
aQ\p(’UJ,e) < wTSw for all allowed trajectories

o w: manifest variables: power is supplied through these
variables: wT Zw

® Qu(w,¥£): quadratic function of (w, £) and their
derivatives too: energy stored within the system

o for Qg (w) = zT Kz with K as Algebraic Riccati
Inequality (ARI) solutions

{all allowed trajectories} =: system ‘behavior’
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Behawvior

P(s), Q(s), N(s) and D(s) polynomial matrices of suitable size
Consider G(s) = P(s)71Q(s), P and Q need not be left-coprime
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QL) —P(H] ¥

y = 0 (Kernel representation)
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Y
Consider G(s) = N(s)D(s)™1

[Q(%) —P(% ] [u} = 0 (Kernel representation)
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P(s), Q(s), N(s) and D(s) polynomial matrices of suitable size
Consider G(s) = P(s)71Q(s), P and Q need not be left-coprime
System behavior B := {(u,y) | y = Gu}

[Q(%) —P(% ] [?ﬂ = 0 (Kernel representation)
Consider G(s) = N(s)D(s)™1

D(3)

. u|
B := {(u,y) | there exists an £ such that [y] = [N(

|o

)
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Consider G(s) = P(s)71Q(s), P and Q need not be left-coprime
System behavior B := {(u,y) | y = Gu}

[Q(%) —P(% ] [?ﬂ = 0 (Kernel representation)
Consider G(s) = N(s)D(s)™1
D(g)

. u|
B := {(u,y) | there exists an £ such that [y] = [N(

|o

)

Consider state space system ¢ = Ax + Bu and y = Cx + Du

B := {(u,y) | there exists an = such that
& = Ax 4+ Bu and y = Cx + Du}

or
B := {(z,u,y) | #+ = Az + Bu and y = Cz + Du}
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Dissipativity: important issues

@ Should not energy stored within the system be
‘expressible’ in terms of manifest variables?
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w.r.t. external supply.

e Qg (w) assumes ‘expressible’: ‘observable’ storage
function
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Dissipativity: important questions

Recall the storage
function

Cl ’Uél L’L% Cz'l)%2
2 2 2

e When RLL # RC>: can express vc,, Vo, and ¢r, in

v, 0, ¥,14,7 and 7 (derivatives of the manifest variables)
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Dissipativity: important questions

Recall the storage
function

Cl ’Uél L’L% Cz'l)%2
2 2 2

e When RLL # RC>: can express vc,, Vo, and ¢r, in

v, 0, ¥,14,7 and 7 (derivatives of the manifest variables)

° RLL = RC5 = uncontrollable

e Then: this storage function: not expressible in (v,4) and
their derivatives
Other observable storage functions?

e Will the storage function be ‘state functions’: x” Kz, for
some constant matrix K7
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For controllable 1D systems: key equivalence
(Willems & Trentelman: 1998)

) [ wIEw dt > 0 for all
System is JR

3-dissipati ) .
1ssipative system trajectories

e Behavior := all allowed system trajectories: ( € )

(]

Controllable < compactly supported trajectories: dense

(]

Compact support: start from rest, end at rest:
(no ‘initial /final energy’ issues)

e Controllability = there exist storage
functions

Some extensions to controllable nD systems:
Pillai & Willems, 2002:

no guaranteed observability (of storage function).
This talk: only 1D systems

«40>» «F>» «=Z)» «E)» = Q>
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Some extensions to controllable nD systems:
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no guaranteed observability (of storage function).
This talk: only 1D systems

KARIKALAN, BELUR, ATHALYE & ABDULRAZAK UNCONTROLLABLE DISSIPATIVE SYSTEMS 10/28



RLC circuit example

Consider again: Ry, = R¢ = R and L = R%C
(uncontrollable).
We expect system is dissipative.

One input, and one output
Variables w = (v, 1)
Supply rate = wTSZw =

=3[ R3]
o+(X) =1and o_() = 1.

04+(X) and o_(X): # positive and negative eigenvalues of X
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Storage functions, LMI, Algebraic Riccati Inequality

I, O 0
Qs(w) =wlEw,X= |0 I, 0 |,Jy: = H)q _OI}
0o o0 -—I. *

E:c = Az + Bu, y = Cx + Du, with (C, A) observable,
(A, B) possibly uncontrollable and w = (u, y)

Well-known result

3 a real symmetric solution K to the LMI

(KA + ATK — CTJq,rC) (KB - CTanrD) 0
(KB —C"J,.D)"'  —(I,+D"J;D)| =

Then, 2T Kz is a storage function (= dissipativity)

m : number of inputs, q 4+ r: number of outputs (= p)
c+(X)=m+qand o_(¥) =r.
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Riccati Equation and Hamiltonian

Schur complement of this LMI!

Algebraic Riccati inequality

KA+ A*K + KDK — C <0,
A D
cC —A*

Define the Hamiltonian matrix H := [

'(Is + DTJy,:D) > 0 and A := (A — B(Iz + DT Jq:D)~* DT J,:C),
D := B(In + D" Jo:D)"*B” and € = C” (Jg: + DDT)7'C.
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KA+ A*K+ KDK — C <0,
A D
c —-A*

e ARE solutions K < an n-dimensional H-invariant

Define the Hamiltonian matrix H := [

I
K
o Controllability of (A, 1~)): simplifies results

subspaces is a ‘graph’ subspace: image

'(Io + DTJy,:D) > 0 and A := (A — B(Iz + DT Jq: D) "' DT J,,:C),
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Riccati Equation and Hamiltonian

Schur complement of this LMI!

Algebraic Riccati inequality

KA+ A*K + KDK — C <0,
A D
CcC —-A*
e ARE solutions K < an n-dimensional H-invariant

Define the Hamiltonian matrix H := [

subspaces is a ‘graph’ subspace: image Il;.
o Controllability of (A, 1~)): simplifies results

e ‘Mixed’-sign: C is not sign-definite
(unlike LQ, Hoo-norm)
o Mixed-sign ARE: H.-control

'(Io + DTJy,:D) > 0 and A := (A — B(Iz + DT Jq: D) "' DT J,,:C),
D := B(In + D" Jo:D)"*BT and € = C” (Jy: + DDT)T'C.
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Main result

Suppose behavior 8 satisfies:

© uncontrollable poles are unmixed, i.e. no two of them
add to zero

@ The feed-through term D satisfies (I,,, + DTJ,,D) > 0
(Controllable part of 9 is strictly dissipative ‘at infinity”)

Define B on: as the controllable part of 8.
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Proof techniques

o Hamiltonian matrix has jR eigenvalues
(unlike controllable/observable LQ)

o Used results on Indefinite Linear Algebra:
Gohberg-Lancaster-Rodman
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Proof techniques

Hamiltonian matrix has jR eigenvalues
(unlike controllable/observable LQ)

o Used results on Indefinite Linear Algebra:
Gohberg-Lancaster-Rodman

e 3 an observable storage function, state function: =7 Kx

o For uncontrollable part:
expectedly the Lyapunov equation solvability condition
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Unobservable inevitable?

Suppose some uncontrollable poles are on the imaginary axis
(i.e. periodic solutions).
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Unobservable inevitable?

Suppose some uncontrollable poles are on the imaginary axis
(i.e. periodic solutions).
Then, unobservability of the ARE solution K is inevitable

Autonomous behavior B aut

Consider %az = Az, w = Czx, with o(A)NiR # 0
and power = —wTw.

Suppose 3 a storage function z7 Kz satisfying

d
aw Kz < Qs(w) for all w € B,y

Then every A € o(A) N iR is unobservable.
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Some non-autonomous B too

Need unobservable variables in storage function.

More precisely, for periodic uncontrollable trajectories,
3 storage functions = unobservable.

B with a ‘static’ controllable part

Consider %w = Az, ws = Cx 4+ Dw; with (C, A) observable.
Assume (I, + DTJ,,D) > 0 and o(A) C iR.
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Allow unobservability = ‘fallacious(?)’ possibilities

Can unobservable variables cause a problem?
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Allow unobservability = ‘fallacious(?)’ possibilities

Can unobservable variables cause a problem?
Every autonomous system is orthogonal to €= (R, R"™)
Willems (CDC-2004):
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Allow unobservability = ‘fallacious(?)’ possibilities

Can unobservable variables cause a problem?
Every autonomous system is orthogonal to €= (R, R"™)
Willems (CDC-2004):

B, : any autonomous system B, : full = €°(R,R"™)

System 8, in variable w System 85 in variable v
d, = A
EZ = z d

"o — C=» 5T = —ATx 4+ CTo

Storage function 7z (unobservable from w and v).
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Allow unobservability = ‘fallacious(?)’ possibilities

Can unobservable variables cause a problem?
Every autonomous system is orthogonal to €= (R, R"™)
Willems (CDC-2004):

B, : any autonomous system B, : full = €°(R,R"™)

System 8, in variable w System 85 in variable v
d, = A
EZ = z d

"o — C=» 5T = —ATx 4+ CTo

Storage function 7z (unobservable from w and v).
B, and B, are ‘orthogonal’®
T
. _1|0 I 1 |w w|
Cons1derS_2{I O.VVeget2 v Sv = w"v.
The system B, X B, is S-lossless.

2For controllable behaviors 81 and B2, call them orthogonal if I]R wTvdt =0
for all w € B1 and v € B2 of compact support.
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Third definition?

Recall
Controllable systems:

o dissipativity defined without storage function

° fR wTZwdt > 0 V compactly supported w:
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o dissipative < 3 observable storage function
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o dissipativity defined without storage function
° fR wTSwdt > 0 V compactly supported w: (‘denseness’)
o dissipative < 3 observable storage function

Uncontrollable systems:

o C | | irai o5 dofiniti
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Third definition?

Recall
Controllable systems:

o dissipativity defined without storage function

° fR wTSwdt > 0 V compactly supported w: (‘denseness’)

o dissipative < 3 observable storage function
Uncontrollable systems:

o C | | irai o5 dofiniti

o Dissipative := Observable storage function exists
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Third definition?

Recall
Controllable systems:

o dissipativity defined without storage function

° fR wTSwdt > 0 V compactly supported w: (‘denseness’)

o dissipative < 3 observable storage function
Uncontrollable systems:

o Compacetly supperted-trajectories-definition

o Dissipative := Observable storage function exists

o Dissipative := Any (unobservable?) storage function
exists
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Third definition?

Recall
Controllable systems:

o dissipativity defined without storage function

° fR wTSwdt > 0 V compactly supported w: (‘denseness’)

o dissipative < 3 observable storage function
Uncontrollable systems:

o Compacetly supperted-trajectories-definition

o Dissipative := Observable storage function exists

o Dissipative := Any (unobservable?) storage function
exists

Unobservable storage function: not ok
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Embeddability in some controllable dissipative behavior

Consider a controllable behavior %8, and power wT Sw:
The dissipation inequality:

d
aQq,(fw) < wl'Sw for all w € B

o Every sub-behavior of B is also X-dissipative.
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Consider a controllable behavior %8, and power wT Sw:
The dissipation inequality:

d
aQ\p(w) < wl'Sw for all w € B

o Every sub-behavior of B is also X-dissipative.

o Controllable 2,, 9B, are orthogonal = their (respective)
sub-behaviors also orthogonal (even if uncontrollable)
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d
aQ\p(’U)) < wl'Sw for all w € B

o Every sub-behavior of B is also X-dissipative.

o Controllable 2,, 9B, are orthogonal = their (respective)
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Embeddability definition

A behavior B is called Y-dissipative if
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D] g s|sup
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d
aQ\p(’U)) < wl'Sw for all w € B

o Every sub-behavior of B is also X-dissipative.

o Controllable 2,, 9B, are orthogonal = their (respective)
sub-behaviors also orthogonal (even if uncontrollable)

Embeddability definition
A behavior B is called Y-dissipative if

there exists B5"P such that

B C WsupP BSUP jg I-dissipative
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Embeddability in some controllable dissipative behavior

Consider a controllable behavior %8, and power wT Sw:
The dissipation inequality:

d
aQ\p(’U)) < wl'Sw for all w € B

o Every sub-behavior of B is also X-dissipative.

o Controllable 2,, 9B, are orthogonal = their (respective)
sub-behaviors also orthogonal (even if uncontrollable)

Embeddability definition
A behavior B is called Y-dissipative if

there exists B5"P such that

B C WsupP BSUP js -dissipative SBSYUP is controllable
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Dissipativity = not too many inputs

Suppose B is X-dissipative, with ¥ = X7 nonsingular
m(2B): number of inputs of a system
04+(X): number of positive eigenvalues of ¥
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Dissipativity = not too many inputs

Suppose B is X-dissipative, with ¥ = X7 nonsingular
m(2B): number of inputs of a system
04+(X): number of positive eigenvalues of ¥

Then, n(*B) < 04+(X)

Consider
> M, M, M3
1 0 O 0 1 10 1 0
01 o0 0 0 01 0o 1
0 0 —1 o0 0 00 0.5 0
0 0 0 -1 0 00 0 O

Yes Yes Yes
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m(2B): number of inputs of a system
04+(X): number of positive eigenvalues of ¥

Then, n(*B) < 04+(X)

Consider
> M, M, M3
1 0 O 0 1 10 1 0 1
01 o0 0 0 01 0o 1 0
0 0 —1 o0 0 00 0.5 0 0
0 0 0 -1 0 00 0 O 0
Yes Yes Yes

MiTEMi > 0 = rank(M;) < 2(= 04(X))
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Dissipativity = not too many inputs

Suppose B is X-dissipative, with ¥ = X7 nonsingular
m(2B): number of inputs of a system
04+(X): number of positive eigenvalues of ¥

Then, n(*B) < 04+(X)

Consider
> M, M, M3 N
1 0 O 0 1 10 1 0 1 0O
01 o0 0 0 01 0o 1 010
0 0 —1 o0 0 00 0.5 0 0 0 1
0 0 0 -1 0 00 0 O 0 0O
Yes Yes Yes No

MiTEMi > 0 = rank(M;) < 2(= 04(X))
Controllable systems: images of M(%) with m(28) = rank M (&)
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‘Fallacious example’ resolved

Recall 2B, and B,:

System 2, in variable w  System 2, in variable v
d
Lz = Az d . T T
dt’U) - C2 Em——A :E-I-Cv

Bi, Bo not embeddable in
controllable & orthogonal B7"P, B3P,
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‘Fallacious example’ resolved

Recall 2B, and B,:

System 2, in variable w  System 2, in variable v
d
Lz = Az d . T T
dtw - C2 Em——A :E-I-Cv

Bi, Bo not embeddable in
controllable & orthogonal B7"P, B3P,

o I,

Too many inputs (for what [I 0} allows: oy =n=o0_)
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‘Fallacious example’ resolved

Recall 2B, and B,:

System 2, in variable w  System 2, in variable v
iz = A
@* = 47 d

 _ Cs fx=—ATe+ CTv

Bi, Bo not embeddable in
controllable & orthogonal B7"P, B3P,

o I,

Too many inputs (for what [I 0

Recall that:

the system in (w,v) is ‘lossless’ with respect to B ﬂ

Storage function zTz (unobservable from w and v).

} allows: oy =n=o0_)

KARIKALAN, BELUR, ATHALYE & ABDULRAZAK UNCONTROLLABLE DISSIPATIVE SYSTEMS 22/28



‘Fallacious example’ resolved

Recall 2B, and B,:

System 2, in variable w  System 2, in variable v
iz = A
@* = 47 d

 _ Cs fx=—ATe+ CTv

Bi, Bo not embeddable in
controllable & orthogonal B7"P, B3P,

o I,

Too many inputs (for what [I 0

Recall that:

the system in (w,v) is ‘lossless’ with respect to B ﬂ

Storage function zTz (unobservable from w and v).

} allows: oy =n=o0_)

KARIKALAN, BELUR, ATHALYE & ABDULRAZAK UNCONTROLLABLE DISSIPATIVE SYSTEMS 22/28



Independent result for observable storage function

An independent result that deduces:
enough inputs, uncontrollable = cannot be lossless (w.r.t.
observable storage function).

Theorem 10, Shodhan Rao, IJC, 2012

Suppose B is lossless (:= 3 an observable storage function)
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An independent result that deduces:
enough inputs, uncontrollable = cannot be lossless (w.r.t.
observable storage function).

Theorem 10, Shodhan Rao, IJC, 2012

Suppose B is lossless (:= 3 an observable storage function)
0 In]

with power = wTYw, and ¥ = [I 7
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Independent result for observable storage function

An independent result that deduces:
enough inputs, uncontrollable = cannot be lossless (w.r.t.
observable storage function).

Theorem 10, Shodhan Rao, IJC, 2012

Suppose B is lossless (:= 3 an observable storage function)
with power = w'Sw, and ¥ = [IO Ié‘]

and B has n-inputs.
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Independent result for observable storage function

An independent result that deduces:
enough inputs, uncontrollable = cannot be lossless (w.r.t.
observable storage function).

Theorem 10, Shodhan Rao, IJC, 2012

Suppose B is lossless (:= 3 an observable storage function)
o I,

I, O

and B has n-inputs. Then, B is controllable.

with power = wTYw, and ¥ =
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Embeddability: pros/cons

o Embeddability definition removes fallacious examples

o Concludes independently an
observable-storage-function-based dissipativity result

Drawbacks?
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Embeddability: pros/cons

o Embeddability definition removes fallacious examples

o Concludes independently an
observable-storage-function-based dissipativity result

Drawbacks?
Can construct nonzero 8B that is both
strictly X-dissipative and strictly anti X-dissipative!
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Embeddability: pros/cons

o Embeddability definition removes fallacious examples
o Concludes independently an
observable-storage-function-based dissipativity result
Drawbacks?
Can construct nonzero B that is both
strictly X-dissipative and strictly anti X-dissipative!

Theorem

Suppose & = BT is nonsingular and indefinite.
Then, 3 nonzero behavior B such that

@ can construct controllable B and B_ with B =B NB_,
o B is strictly X dissipative, and
e B _ is strictly —3 dissipative.
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Embeddability: pros/cons

o Embeddability definition removes fallacious examples
o Concludes independently an
observable-storage-function-based dissipativity result
Drawbacks?
Can construct nonzero B that is both
strictly X-dissipative and strictly anti X-dissipative!

Theorem

Suppose & = BT is nonsingular and indefinite.
Then, 3 nonzero behavior B such that

@ can construct controllable B and B_ with B =B NB_,
o B is strictly X dissipative, and
e B _ is strictly —3 dissipative.

Further, any such 2B is autonomous, i.e. zero number of inputs.
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Embeddability: another drawback

The non-strict case:

Theorem

Suppose & = BT is nonsingular and indefinite. Then, can construct
B such that

o there exist controllable B and B_ with B =B NBV_,
o B is X dissipative, and

o B _ is -3 dissipative.
Further,
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Embeddability: another drawback

The non-strict case:

Theorem

Suppose & = BT is nonsingular and indefinite. Then, can construct
B such that

o there exist controllable B and B_ with B =B NBV_,
o B is X dissipative, and
o B _ is -3 dissipative.

Further,
any such B satisfies m(B) < min(o4(X),0_(X)).
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The non-strict case:

Theorem

Suppose & = BT is nonsingular and indefinite. Then, can construct
B such that

o there exist controllable B and B_ with B =B NBV_,
o B is X dissipative, and

o B _ is -3 dissipative.
Further,
any such B satisfies m(B) < min(o4(X),0_(X)).
In case B is uncontrollable, m(B) < min(o4(X),o_(X)).
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Embeddability: another drawback

The non-strict case:

Theorem

Suppose & = BT is nonsingular and indefinite. Then, can construct
B such that

o there exist controllable B and B_ with B =B NBV_,
o B is X dissipative, and
o B _ is -3 dissipative.
Further,
any such B satisfies m(B) < min(o4(X),0_(X)).
In case B is uncontrollable, m(B) < min(o4(X),o_(X)).
n(B) > 1 = neither By nor B_ are strictly dissipative.
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(Uncontrollable) RLC' circuit revisited

Suppose (for the last time) Ry = Rc = R and L = R2C.

# inputs = # outputs = 1
cr(¥)=0_()=1
Variables w = (v, 1)
Supply rate = wTSZw =

=3[ [t ol [

System has a (different) observable storage function.
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(Uncontrollable) RLC' circuit revisited

Suppose (for the last time) Ry = Rc = R and L = R2C.

# inputs = # outputs = 1
cr(¥)=0_()=1
Variables w = (v, 1)
Supply rate = wTSZw =

=3[ [t ol [

System has a (different) observable storage function.
However,

cannot embed this in a controllable dissipative system
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Mazximum input cardinality

# system inputs = positive signature of supply rate
For example,

w = (v,1) and power = vi, then ¥ = % [(1) (1)]

KARIKALAN, BELUR, ATHALYE & ABDULRAZAK UNCONTROLLABLE DISSIPATIVE SYSTEMS 27/28



Mazimum input cardinality

# system inputs = positive signature of supply rate
For example,

w = (v,1) and power = vi, then ¥ = % [(1) (1)]

@ Are there physical systems where
number of inputs < positive signature?
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Mazimum input cardinality

# system inputs = positive signature of supply rate
For example,

w = (v,1) and power = vi, then ¥ = % [(1) (1)]

@ Are there physical systems where
number of inputs < positive signature? Yes

o Consider a one-port network: v = 0, ¢« = 0: ‘Nullator’
Both open and short:
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@ Are there physical systems where
number of inputs < positive signature? Yes

o Consider a one-port network: v = 0, ¢« = 0: ‘Nullator’
Both open and short: controllable, ‘passive’
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w = (v,1) and power = vi, then ¥ = % [(1) (1)]

@ Are there physical systems where
number of inputs < positive signature? Yes

o Consider a one-port network: v = 0, ¢« = 0: ‘Nullator’
Both open and short: controllable, ‘passive’

o Studied extensively by Carlin, Tellegen in 1960s
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Mazimum input cardinality

# system inputs = positive signature of supply rate
For example,

w = (v,1) and power = vi, then ¥ = % [(1) (1)]

@ Are there physical systems where
number of inputs < positive signature? Yes

o Consider a one-port network: v = 0, ¢« = 0: ‘Nullator’
Both open and short: controllable, ‘passive’

Studied extensively by Carlin, Tellegen in 1960s

Cannot be realized using just RLC components
(Carlin, 1964, IEEE Circuit Theory)
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Mazimum input cardinality

# system inputs = positive signature of supply rate
For example,

w = (v,1) and power = vi, then ¥ = % [(1) (1)]
@ Are there physical systems where
number of inputs < positive signature? Yes
o Consider a one-port network: v = 0, ¢« = 0: ‘Nullator’
Both open and short: controllable, ‘passive’

Studied extensively by Carlin, Tellegen in 1960s

Cannot be realized using just RLC components
(Carlin, 1964, IEEE Circuit Theory)

Need active elements (linked to norators, op-amps)
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For (A, B) uncontrollable

e New ARE solvability results (used Indefinite Linear
Algebra)

e Showed unobservable storage function inevitable for
‘lossless’ (periodic) systems

e Embeddability definition
rules out fallacious examples,

o
e yields an observable-storage-function-based result,
e causes new fallacies!

o admits the nullator as passive

e But nullator is using passive elements

Questions? Thank you

«40>» «F>» «=Z)» «E)» = Q>
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Algebra)
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