#### Uncontrollable Dissipative Dynamical Systems

Madhu N. Belur Joint work with S. Karikalan, R. Abdulrazak & C. Athalye

### Control & Computing group Electrical Engineering Dept, IIT Bombay

December 2014

- Dissipative system: definition
- Algebraic Riccati Equation (ARE), LMI & Hamiltonian matrix
- RLC circuit example
- Main result: ARE solvability
- Unobservable state: problem?
- Embeddability
- RLC realization: nullator
- Conclusion

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

# Dissipativity, storage functions

#### Intuitively: a dissipative system

- has no source of energy,
- absorbs energy supplied,
- can store (previously supplied) energy.

Power:  $w^T \Sigma w$  with  $\Sigma$ : real, symmetric, nonsingular matrix Quadratic in w: the 'manifest' variables: e.g.: v, i in power  $Q_{\Psi}(w, \ell)$ : quadratic in  $w, \ell$ , and their derivatives too  $\ell$ : extra/auxiliary variables, for e.g., 'state'

#### Storage function

Given a system and and a notion of power  $w^T \Sigma w$ :

storage function  $Q_\Psi(w,\ell):\Leftrightarrow$ 

 $rac{d}{dt}Q_{\Psi}(w,\ell)\leqslant w^T\Sigma w ext{ for all}$  allowed system trajectories

Intuitively: a dissipative system

- has no source of energy,
- absorbs energy supplied,
- can store (previously supplied) energy.

Power:  $w^T \Sigma w$  with  $\Sigma$ : real, symmetric, nonsingular matrix Quadratic in w: the 'manifest' variables: e.g.: v, i in power  $Q_{\Psi}(w, \ell)$ : quadratic in  $w, \ell$ , and their derivatives too  $\ell$ : extra/auxiliary variables, for e.g., 'state'

#### Storage function

Given a system and and a notion of power  $w^T \Sigma w$ :

storage function  $Q_{\Psi}(w, \ell):\Leftrightarrow$ 

 $rac{d}{dt}Q_\Psi(w,\ell)\leqslant w^T\Sigma w ext{ for all}$  allowed system trajectories



One input, and one output  
Variables 
$$w = (v, i)$$
  
Supply rate  $= w^T \Sigma w =$   
 $vi = \frac{1}{2} \begin{bmatrix} v \\ i \end{bmatrix}^T \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} v \\ i \end{bmatrix}$ 

Though the circuit contains no source, v(t)i(t) can be negative at some time instants.

In any case (vi: of any sign)

$$rac{d}{dt}(rac{C_{1}v_{C_{1}}^{2}}{2}+rac{Li_{L}^{2}}{2}+rac{C_{2}v_{C_{2}}^{2}}{2})\leqslant vi$$

Rate of increase of stored energy  $\leq$  supplied power

**Faster increase**  $\Rightarrow$  **source** 

(日) (四) (日) (日) (日)



One input, and one output  
Variables 
$$w = (v, i)$$
  
Supply rate  $= w^T \Sigma w =$   
 $vi = \frac{1}{2} \begin{bmatrix} v \\ i \end{bmatrix}^T \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} v \\ i \end{bmatrix}$ 

Though the circuit contains no source, v(t)i(t) can be negative at some time instants.

In any case (vi: of any sign)

$$rac{d}{dt}(rac{C_{1}v_{C_{1}}^{2}}{2}+rac{Li_{L}^{2}}{2}+rac{C_{2}v_{C_{2}}^{2}}{2})\leqslant vi$$

Rate of increase of stored energy  $\leq$  supplied power

**Faster** increase  $\Rightarrow$  **source** 

(日) (四) (日) (日) (日)



One input, and one output  
Variables 
$$w = (v, i)$$
  
Supply rate  $= w^T \Sigma w =$   
 $vi = \frac{1}{2} \begin{bmatrix} v \\ i \end{bmatrix}^T \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} v \\ i \end{bmatrix}$ 

Though the circuit contains no source, v(t)i(t) can be negative at some time instants. In any case (vi: of any sign)

$$rac{d}{dt}(rac{C_{1}v_{C_{1}}^{2}}{2}+rac{Li_{L}^{2}}{2}+rac{C_{2}v_{C_{2}}^{2}}{2})\leqslant vi$$

Rate of increase of stored energy  $\leq$  supplied power

Faster increase  $\Rightarrow$  source

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・



One input, and one output  
Variables 
$$w = (v, i)$$
  
Supply rate  $= w^T \Sigma w =$   
 $vi = \frac{1}{2} \begin{bmatrix} v \\ i \end{bmatrix}^T \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} v \\ i \end{bmatrix}$ 

Though the circuit contains no source, v(t)i(t) can be negative at some time instants. In any case (vi: of any sign)

$$rac{d}{dt}(rac{C_{1}v_{C_{1}}^{2}}{2}+rac{Li_{L}^{2}}{2}+rac{C_{2}v_{C_{2}}^{2}}{2})\leqslant vi$$

Rate of increase of stored energy  $\leqslant$  supplied power

Faster increase  $\Rightarrow$  source

(日) (四) (日) (日) (日)



One input, and one output  
Variables 
$$w = (v, i)$$
  
Supply rate  $= w^T \Sigma w =$   
 $vi = \frac{1}{2} \begin{bmatrix} v \\ i \end{bmatrix}^T \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} v \\ i \end{bmatrix}$ 

Though the circuit contains no source, v(t)i(t) can be negative at some time instants. In any case (vi: of any sign)

$$rac{d}{dt}(rac{C_{1}v_{C_{1}}^{2}}{2}+rac{Li_{L}^{2}}{2}+rac{C_{2}v_{C_{2}}^{2}}{2})\leqslant vi$$

Rate of increase of stored energy  $\leqslant$  supplied power

**Faster** increase  $\Rightarrow$  **source** 

# What is general about $w^T \Sigma w$ ?

- vi: voltage  $\times$  current = physical power
- Fv: Force  $\times$  velocity = physical power
- pressure & flow-rate, etc.
- $\gamma^2 u^2 y^2$  disturbance attenuation:  $\mathcal{H}_{\infty}$ -norm
- $y = \phi(u)$ , and  $\phi$  is a 'sector' nonlinearity,  $\phi \in$  sector  $(\alpha, \beta) : \Leftrightarrow$

$$0\leqslant (y-lpha u)(u-rac{y}{eta})=egin{bmatrix}u\\y\end{bmatrix}^Tegin{bmatrix}-lpha&rac{(lpha+eta)}{2eta}\\rac{(lpha+eta)}{2eta}&rac{-1}{eta}\end{bmatrix}egin{bmatrix}u\\y\end{bmatrix}$$

- Popov criteria, involving dynamic notions of power
- A common framework for stability results: passivity result, small-gain theorem, circle criterion
- Stability results in nonlinear dynamical systems
- Lyapunov function:  $\frac{d}{dt}$  storage function  $\leq 0$ .

#### But, this talk: linear systems

# What is general about $w^T \Sigma w$ ?

- vi: voltage  $\times$  current = physical power
- Fv: Force  $\times$  velocity = physical power
- pressure & flow-rate, etc.
- $\gamma^2 u^2 y^2$  disturbance attenuation:  $\mathcal{H}_{\infty}$ -norm
- $y = \phi(u)$ , and  $\phi$  is a 'sector' nonlinearity,  $\phi \in$  sector  $(\alpha, \beta) :\Leftrightarrow$

$$0\leqslant (y-lpha u)(u-rac{y}{eta})=egin{bmatrix}u\y\end{bmatrix}^Tegin{bmatrix}-lpha&rac{(lpha+eta)}{2eta}\rac{(lpha+eta)}{2eta}&rac{-1}{eta}\end{bmatrix}egin{bmatrix}u\y\end{bmatrix}$$

- Popov criteria, involving dynamic notions of power
- A common framework for stability results: passivity result, small-gain theorem, circle criterion
- Stability results in nonlinear dynamical systems
- Lyapunov function:  $\frac{d}{dt}$  storage function  $\leq 0$ .

#### But, this talk: linear systems

(日) (同) (三) (三) (三) (○) (○)

# What is general about $\boldsymbol{w}^T \boldsymbol{\Sigma} \boldsymbol{w}$ ?

- vi: voltage  $\times$  current = physical power
- Fv: Force  $\times$  velocity = physical power
- pressure & flow-rate, etc.
- $\gamma^2 u^2 y^2$  disturbance attenuation:  $\mathcal{H}_{\infty}$ -norm
- $y = \phi(u)$ , and  $\phi$  is a 'sector' nonlinearity,  $\phi \in \text{sector } (\alpha, \beta) :\Leftrightarrow$

$$0\leqslant (y-lpha u)(u-rac{y}{eta})=egin{bmatrix}u\\y\end{bmatrix}^Tegin{bmatrix}-lpha&rac{(lpha+eta)}{2eta}\\rac{(lpha+eta)}{2eta}&rac{-1}{eta}\end{bmatrix}egin{bmatrix}u\\y\end{bmatrix}$$

- Popov criteria, involving dynamic notions of power
- A common framework for stability results: passivity result, small-gain theorem, circle criterion
- Stability results in nonlinear dynamical systems
- Lyapunov function:  $\frac{d}{dt}$  storage function  $\leq 0$ .
- But, this talk: linear systems

# What is general about $\boldsymbol{w}^T \boldsymbol{\Sigma} \boldsymbol{w}$ ?

- vi: voltage  $\times$  current = physical power
- Fv: Force  $\times$  velocity = physical power
- pressure & flow-rate, etc.
- $\gamma^2 u^2 y^2$  disturbance attenuation:  $\mathcal{H}_{\infty}$ -norm
- $y = \phi(u)$ , and  $\phi$  is a 'sector' nonlinearity,  $\phi \in \text{sector } (\alpha, \beta) :\Leftrightarrow$

$$0\leqslant (y-lpha u)(u-rac{y}{eta})=egin{bmatrix}u\\y\end{bmatrix}^Tegin{bmatrix}-lpha&rac{(lpha+eta)}{2eta}\\rac{(lpha+eta)}{2eta}&rac{-1}{eta}\end{bmatrix}egin{bmatrix}u\\y\end{bmatrix}$$

- Popov criteria, involving dynamic notions of power
- A common framework for stability results: passivity result, small-gain theorem, circle criterion
- Stability results in nonlinear dynamical systems
- Lyapunov function:  $\frac{d}{dt}$  storage function  $\leq 0$ .

But, this talk: linear systems

# What is general about $\boldsymbol{w}^T \boldsymbol{\Sigma} \boldsymbol{w}$ ?

- vi: voltage  $\times$  current = physical power
- Fv: Force  $\times$  velocity = physical power
- pressure & flow-rate, etc.
- $\gamma^2 u^2 y^2$  disturbance attenuation:  $\mathcal{H}_{\infty}$ -norm
- $y = \phi(u)$ , and  $\phi$  is a 'sector' nonlinearity,  $\phi \in \text{sector } (\alpha, \beta) :\Leftrightarrow$

$$0\leqslant (y-lpha u)(u-rac{y}{eta})=egin{bmatrix}u\\y\end{bmatrix}^Tegin{bmatrix}-lpha&rac{(lpha+eta)}{2eta}\\rac{(lpha+eta)}{2eta}&rac{-1}{eta}\end{bmatrix}egin{bmatrix}u\\y\end{bmatrix}$$

- Popov criteria, involving dynamic notions of power
- A common framework for stability results: passivity result, small-gain theorem, circle criterion
- Stability results in nonlinear dynamical systems
- Lyapunov function:  $\frac{d}{dt}$  storage function  $\leq 0$ .

But, this talk: linear systems

Define a system to be  $\Sigma$ -dissipative if there exists a storage function  $Q_{\Psi}(w, \ell)$ , i.e.

$$rac{d}{dt}Q_{\Psi}(w,\ell)\leqslant w^T\Sigma w ext{ for all allowed trajectories}$$

- w: manifest variables: power is supplied through these variables:  $w^T \Sigma w$
- $Q_{\Psi}(w, \ell)$ : quadratic function of  $(w, \ell)$  and their derivatives too: energy stored within the system
- for  $Q_{\Psi}(w) = x^T K x$  with K as Algebraic Riccati Inequality (ARI) solutions

{all allowed trajectories} =: system 'behavior'

Define a system to be  $\Sigma$ -dissipative if there exists a storage function  $Q_{\Psi}(w, \ell)$ , i.e.

$$rac{d}{dt}Q_{\Psi}(w,\ell)\leqslant w^T\Sigma w ext{ for all allowed trajectories}$$

- w: manifest variables: power is supplied through these variables:  $w^T \Sigma w$
- $Q_{\Psi}(w, \ell)$ : quadratic function of  $(w, \ell)$  and their derivatives too: energy stored within the system
- for  $Q_{\Psi}(w) = x^T K x$  with K as Algebraic Riccati Inequality (ARI) solutions

{all allowed trajectories} =: system 'behavior'

6/28

P(s), Q(s), N(s) and D(s) polynomial matrices of suitable sizeConsider  $G(s) = P(s)^{-1}Q(s)$ , P and Q need not be left-coprime System behavior  $\mathfrak{B} := \{(u, y) \mid y = Gu\}$   $\left[Q(\frac{d}{dt}) - P(\frac{d}{dt})\right] \begin{bmatrix} u \\ y \end{bmatrix} = 0$  (Kernel representation) Consider  $G(s) = N(s)D(s)^{-1}$ 

$$\mathfrak{B} := \{(u,y) \mid ext{ there exists an } \ell ext{ such that } \begin{bmatrix} u \\ y \end{bmatrix} = \begin{bmatrix} D(rac{d}{dt}) \\ N(rac{d}{dt}) \end{bmatrix} \ell \}$$

Consider state space system  $\dot{x} = Ax + Bu$  and y = Cx + Du

$$\mathfrak{B} := \{(u, y) \mid ext{ there exists an } x ext{ such that } \dot{x} = Ax + Bu ext{ and } y = Cx + Du \}$$

or

$$\mathfrak{B}:=\{(x,u,y)\mid \dot{x}=Ax+Bu ext{ and } y=Cx+Du\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

P(s), Q(s), N(s) and D(s) polynomial matrices of suitable size Consider  $G(s) = P(s)^{-1}Q(s)$ , P and Q need not be left-coprime System behavior  $\mathfrak{B} := \{(u, y) \mid y = Gu\}$ 

 $egin{bmatrix} Q(rac{d}{dt}) & -P(rac{d}{dt}) \end{bmatrix} iggl[ egin{smallmatrix} u \\ y \end{bmatrix} = 0 \ ( ext{Kernel representation}) \ nsider \ G(s) = N(s)D(s)^{-1} \end{cases}$ 

 $\mathfrak{B} := \{(u,y) \mid ext{ there exists an } \ell ext{ such that } egin{bmatrix} u \ y \end{bmatrix} = egin{bmatrix} D(rac{d}{dt}) \ N(rac{d}{dt}) \end{bmatrix} \ell \}$ 

Consider state space system  $\dot{x} = Ax + Bu$  and y = Cx + Du

 $\mathfrak{B} := \{(u, y) \mid ext{ there exists an } x ext{ such that } \dot{x} = Ax + Bu ext{ and } y = Cx + Du \}$ 

or

$$\mathfrak{B}:=\{(x,u,y)\mid \dot{x}=Ax+Bu ext{ and } y=Cx+Du\}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ の

P(s), Q(s), N(s) and D(s) polynomial matrices of suitable size Consider  $G(s) = P(s)^{-1}Q(s)$ , P and Q need not be left-coprime System behavior  $\mathfrak{B} := \{(u, y) \mid y = Gu\}$ 

 $egin{bmatrix} Q(rac{d}{dt}) & -P(rac{d}{dt}) \end{bmatrix} egin{bmatrix} u \ y \end{bmatrix} = 0 \ ( ext{Kernel representation}) \ ext{nsider} \ G(s) = N(s) D(s)^{-1} \end{cases}$ 

$$\mathfrak{B} := \{(u,y) \mid ext{ there exists an } \ell ext{ such that } \begin{bmatrix} u \\ y \end{bmatrix} = \begin{bmatrix} D(rac{a}{dt}) \\ N(rac{d}{dt}) \end{bmatrix} \ell \}$$

Consider state space system  $\dot{x} = Ax + Bu$  and y = Cx + Du

 $\mathfrak{B} := \{(u, y) \mid ext{ there exists an } x ext{ such that } \dot{x} = Ax + Bu ext{ and } y = Cx + Du \}$ 

or

$$\mathfrak{B}:=\{(x,u,y)\mid \dot{x}=Ax+Bu ext{ and } y=Cx+Du\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

P(s), Q(s), N(s) and D(s) polynomial matrices of suitable sizeConsider  $G(s) = P(s)^{-1}Q(s), P$  and Q need not be left-coprime System behavior  $\mathfrak{B} := \{(u, y) \mid y = Gu\}$  $\left[Q(\frac{d}{dt}) - P(\frac{d}{dt})\right] \begin{bmatrix} u \\ y \end{bmatrix} = 0$  (Kernel representation)

Consider  $G(s) = N(s)D(s)^{-1}$ 

$$\mathfrak{B} := \{(u,y) \mid ext{ there exists an } \ell ext{ such that } \begin{bmatrix} u \\ y \end{bmatrix} = \begin{bmatrix} D(rac{a}{dt}) \\ N(rac{d}{dt}) \end{bmatrix} \ell \}$$

Consider state space system  $\dot{x} = Ax + Bu$  and y = Cx + Du

$$\mathfrak{B} := \{(u, y) \mid ext{ there exists an } x ext{ such that } \dot{x} = Ax + Bu ext{ and } y = Cx + Du \}$$

or

$$\mathfrak{B}:=\{(x,u,y)\mid \dot{x}=Ax+Bu ext{ and } y=Cx+Du\}$$

P(s), Q(s), N(s) and D(s) polynomial matrices of suitable size Consider  $G(s) = P(s)^{-1}Q(s)$ , P and Q need not be left-coprime System behavior  $\mathfrak{B} := \{(u, y) \mid y = Gu\}$ 

 $\begin{bmatrix} Q(\frac{d}{dt}) & -P(\frac{d}{dt}) \end{bmatrix} \begin{bmatrix} u \\ y \end{bmatrix} = 0$  (Kernel representation) Consider  $G(s) = N(s)D(s)^{-1}$ 

$$\mathfrak{B}:=\{(u,y) \mid ext{ there exists an } \ell ext{ such that } egin{bmatrix} u \ y \end{bmatrix} = egin{bmatrix} D(rac{d}{dt}) \ N(rac{d}{dt}) \end{bmatrix} \ell \}$$

Consider state space system  $\dot{x} = Ax + Bu$  and y = Cx + Du

 $\mathfrak{B} := \{(u, y) \mid ext{ there exists an } x ext{ such that } \dot{x} = Ax + Bu ext{ and } y = Cx + Du \}$ 

or

$$\mathfrak{B}:=\{(x,u,y)\mid \dot{x}=Ax+Bu ext{ and } y=Cx+Du\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

P(s), Q(s), N(s) and D(s) polynomial matrices of suitable size Consider  $G(s) = P(s)^{-1}Q(s)$ , P and Q need not be left-coprime System behavior  $\mathfrak{B} := \{(u, y) \mid y = Gu\}$ 

$$egin{bmatrix} Q(rac{d}{dt}) & -P(rac{d}{dt})\end{bmatrix} iggl[ egin{smallmatrix} u \\ y \end{bmatrix} = 0 \ ( ext{Kernel representation}) \ ext{Consider} \ G(s) = N(s)D(s)^{-1} \end{cases}$$

$$\mathfrak{B}:=\{(u,y) \mid ext{ there exists an } \ell ext{ such that } egin{bmatrix} u \ y \end{bmatrix} = egin{bmatrix} D(rac{d}{dt}) \ N(rac{d}{dt}) \end{bmatrix} \ell \}$$

Consider state space system  $\dot{x} = Ax + Bu$  and y = Cx + Du

$$\mathfrak{B} := \{(u, y) \mid ext{ there exists an } x ext{ such that } \dot{x} = Ax + Bu ext{ and } y = Cx + Du \}$$

 $\mathbf{or}$ 

$$\mathfrak{B}:=\{(x,u,y)\mid\dot{x}=Ax+Bu ext{ and }y=Cx+Du\}$$

- Should not energy stored within the system be 'expressible' in terms of manifest variables?
- After all, storage function exists for energy-auditing w.r.t. external supply.
- $Q_{\Psi}(w)$  assumes 'expressible': 'observable' storage function
- Definition of dissipativity : existential
- How to check if a storage function exists?

- Should not energy stored within the system be 'expressible' in terms of manifest variables?
- After all, storage function exists for energy-auditing w.r.t. external supply.
- $Q_{\Psi}(w)$  assumes 'expressible': 'observable' storage function
- Definition of dissipativity : existential
- How to check if a storage function exists?

- Should not energy stored within the system be 'expressible' in terms of manifest variables?
- After all, storage function exists for energy-auditing w.r.t. external supply.
- $Q_{\Psi}(w)$  assumes 'expressible': 'observable' storage function
- Definition of dissipativity : existential
- How to check if a storage function exists?

- Should not energy stored within the system be 'expressible' in terms of manifest variables?
- After all, storage function exists for energy-auditing w.r.t. external supply.
- $Q_{\Psi}(w)$  assumes 'expressible': 'observable' storage function
- Definition of dissipativity : existential
- How to check if a storage function exists?

# Dissipativity: important questions



Recall the storage function

$$rac{C_1 v_{C_1}^2}{2} + rac{L i_L^2}{2} + rac{C_2 v_{C_2}^2}{2}$$

- When  $\frac{L}{R_L} \neq RC_2$ : <u>can express</u>  $v_{C_1}$ ,  $v_{C_2}$  and  $i_L$  in  $v, \dot{v}, \ddot{v}, i, \dot{i}$  and  $\ddot{i}$  (derivatives of the manifest variables)
- $\frac{L}{R_I} = RC_2 \Rightarrow$  uncontrollable
- Then: this storage function: not expressible in (v, i) and their derivatives Other observable storage functions?
- Will the storage function be 'state functions':  $x^T K x$ , for some constant matrix K?

・ロト ・四ト ・ヨト ・ヨ



Recall the storage function

$$rac{C_1 v_{C_1}^2}{2} + rac{L i_L^2}{2} + rac{C_2 v_{C_2}^2}{2}$$

- When  $\frac{L}{R_L} \neq RC_2$ : <u>can express</u>  $v_{C_1}$ ,  $v_{C_2}$  and  $i_L$  in  $v, \dot{v}, \ddot{v}, i, \dot{i}$  and  $\ddot{i}$  (derivatives of the manifest variables)
- $\frac{L}{R_L} = RC_2 \Rightarrow$  uncontrollable
- Then: this storage function: not expressible in (v, i) and their derivatives

Other observable storage functions?

• Will the storage function be 'state functions':  $x^T K x$ , for some constant matrix K?



Recall the storage function

$$rac{C_1 v_{C_1}^2}{2} + rac{L i_L^2}{2} + rac{C_2 v_{C_2}^2}{2}$$

- When  $\frac{L}{R_L} \neq RC_2$ : <u>can express</u>  $v_{C_1}$ ,  $v_{C_2}$  and  $i_L$  in  $v, \dot{v}, \ddot{v}, i, \dot{i}$  and  $\ddot{i}$  (derivatives of the manifest variables)
- $\frac{L}{R_L} = RC_2 \Rightarrow$  uncontrollable
- Then: this storage function: not expressible in (v, i) and their derivatives Other observable storage functions?
- Will the storage function be 'state functions':  $x^T K x$ , for some constant matrix K?

・ロト ・四ト ・ヨト ・ヨ

#### For controllable 1D systems: key equivalence (Willems & Trentelman: 1998)

System is  $\Sigma$ -dissipative

 $\int_{\mathbb{R}} w^T \Sigma w \ dt \ge 0 \ ext{for all}$  compactly supported system trajectories

- Behavior := all allowed system trajectories: (  $\mathfrak{C}^{\infty}$  )
- Controllable  $\Leftrightarrow$  compactly supported trajectories: dense
- Compact support: start from rest, end at rest: (no 'initial/final energy' issues)
- Controllability  $\Rightarrow$  there exist observable storage functions

Some extensions to controllable nD systems: Pillai & Willems, 2002: no guaranteed observability (of storage function). This talk: only 1D systems

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

For controllable 1D systems: key equivalence (Willems & Trentelman: 1998)

System is  $\Sigma$ -dissipative

• Behavior := all allowed system trajectories: (  $\mathfrak{C}^{\infty}$  )

- Controllable  $\Leftrightarrow$  compactly supported trajectories: dense
- Compact support: start from rest, end at rest: (no 'initial/final energy' issues)
- Controllability  $\Rightarrow$  there exist observable storage functions

Some extensions to controllable nD systems: Pillai & Willems, 2002: no guaranteed observability (of storage function). This talk: only 1D systems

《日》 《御》 《문》 《문》 - 臣

For controllable 1D systems: key equivalence (Willems & Trentelman: 1998)

System is  $\Sigma$ -dissipative

• Behavior := all allowed system trajectories: (  $\mathbb{C}^{\infty}$  )

- Controllable  $\Leftrightarrow$  compactly supported trajectories: dense
- Compact support: start from rest, end at rest: (no 'initial/final energy' issues)
- Controllability  $\Rightarrow$  there exist observable storage functions

Some extensions to controllable nD systems: Pillai & Willems, 2002: no guaranteed observability (of storage function). This talk: only 1D systems

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

For controllable 1D systems: key equivalence (Willems & Trentelman: 1998)

System is  $\Sigma$ -dissipative

 $\begin{array}{l} & \int_{\mathbb{R}} w^T \Sigma w \ dt \geqslant 0 \ \text{for all} \\ \Leftrightarrow \ \begin{array}{l} \text{compactly supported} \\ \text{system trajectories} \end{array} \end{array}$ 

• Behavior := all allowed system trajectories: (  $\mathfrak{C}^{\infty}$  )

#### • Controllable $\Leftrightarrow$ compactly supported trajectories: dense

- Compact support: start from rest, end at rest: (no 'initial/final energy' issues)
- Controllability  $\Rightarrow$  there exist observable storage functions

Some extensions to controllable nD systems: Pillai & Willems, 2002: no guaranteed observability (of storage function). This talk: only 1D systems

《日》 《御》 《문》 《문》 - 臣

For controllable 1D systems: key equivalence (Willems & Trentelman: 1998)

System is  $\Sigma$ -dissipative

 $\begin{array}{l} \int_{\mathbb{R}} w^T \Sigma w \ dt \ge 0 \ \text{for all} \\ \Leftrightarrow \ \begin{array}{l} \text{compactly supported} \\ \text{system trajectories} \end{array} \end{array}$ 

- Behavior := all allowed system trajectories: (  $\mathfrak{C}^{\infty}$  )
- Controllable  $\Leftrightarrow$  compactly supported trajectories: dense
- Compact support: start from rest, end at rest: (no 'initial/final energy' issues)
- Controllability  $\Rightarrow$  there exist observable storage functions

Some extensions to controllable nD systems: Pillai & Willems, 2002: no guaranteed observability (of storage function). This talk: only 1D systems

For controllable 1D systems: key equivalence (Willems & Trentelman: 1998)

System is  $\Sigma$ -dissipative

- Behavior := all allowed system trajectories: (  $\mathfrak{C}^{\infty}$  )
- Controllable  $\Leftrightarrow$  compactly supported trajectories: dense
- Compact support: start from rest, end at rest: (no 'initial/final energy' issues)
- Controllability ⇒ there exist observable storage functions

Some extensions to controllable nD systems: Pillai & Willems, 2002: no guaranteed observability (of storage function). This talk: only 1D systems

For controllable 1D systems: key equivalence (Willems & Trentelman: 1998)

System is  $\Sigma$ -dissipative

 $\int_{\mathbb{R}} w^T \Sigma w \ dt \ge 0 \ ext{for all}$   $\Leftrightarrow \quad \begin{array}{c} \int_{\mathbb{R}} w^T \Sigma w \ dt \ge 0 \ ext{for all} \\ \text{system trajectories} \end{array}$ 

- Behavior := all allowed system trajectories: (  $\mathfrak{C}^{\infty}$  )
- Controllable  $\Leftrightarrow$  compactly supported trajectories: dense
- Compact support: start from rest, end at rest: (no 'initial/final energy' issues)
- Controllability ⇒ there exist observable storage functions

Some extensions to controllable nD systems: Pillai & Willems, 2002: no guaranteed observability (of storage function). This talk: only 1D systems
For controllable 1D systems: key equivalence (Willems & Trentelman: 1998)

System is  $\Sigma$ -dissipative

 $\int_{\mathbb{R}} w^T \Sigma w \ dt \ge 0 \ ext{for all}$   $\Leftrightarrow \quad \begin{array}{c} \int_{\mathbb{R}} w^T \Sigma w \ dt \ge 0 \ ext{for all} \\ \text{system trajectories} \end{array}$ 

- Behavior := all allowed system trajectories: (  $\mathfrak{C}^{\infty}$  )
- Controllable  $\Leftrightarrow$  compactly supported trajectories: dense
- Compact support: start from rest, end at rest: (no 'initial/final energy' issues)
- Controllability ⇒ there exist observable storage functions

Some extensions to controllable nD systems: Pillai & Willems, 2002: no guaranteed observability (of storage function). This talk: only 1D systems

Consider again:  $R_L = R_C = R$  and  $L = R^2 C$ (uncontrollable). We expect system is dissipative.



One input, and one output  
Variables 
$$w = (v, i)$$
  
Supply rate  $= w^T \Sigma w =$   
 $vi = \frac{1}{2} \begin{bmatrix} v \\ i \end{bmatrix}^T \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} v \\ i \end{bmatrix}$ 

 $\sigma_{+}(\Sigma) = 1$  and  $\sigma_{-}(\Sigma) = 1$ .  $\sigma_{+}(\Sigma)$  and  $\sigma_{-}(\Sigma)$ : # positive and negative eigenvalues of  $\Sigma$ 

・ロト ・ 同ト ・ ヨト ・ ヨト

Storage functions, LMI, Algebraic Riccati Inequality

$$Q_{\Sigma}(w)=w^T\Sigma w,\,\Sigma=egin{bmatrix}I_{ ext{m}}&0&0\0&I_{ ext{q}}&0\0&0&-I_{ ext{r}}\end{bmatrix},\,J_{ ext{q,r}}=egin{bmatrix}I_{ ext{q}}&0\0&-I_{ ext{r}}\end{bmatrix}$$

 $rac{d}{dt}x = Ax + Bu, \quad y = Cx + Du$ , with (C, A) observable, (A, B) possibly uncontrollable and w = (u, y)

Well-known result

 $\exists$  a real symmetric solution K to the LMI

$$\begin{bmatrix} (KA + A^TK - C^TJ_{\mathtt{q},\mathtt{r}}C) & (KB - C^TJ_{\mathtt{q},\mathtt{r}}D) \\ (KB - C^TJ_{\mathtt{q},\mathtt{r}}D)^T & -(I_{\mathtt{m}} + D^TJ_{\mathtt{q},\mathtt{r}}D) \end{bmatrix} \leqslant 0$$

Then,  $x^T K x$  is a storage function ( $\Rightarrow$  dissipativity)

m: number of inputs, q + r: number of outputs (= p)  $\sigma_+(\Sigma) = m + q$  and  $\sigma_-(\Sigma) = r$ .

# Schur complement of this $LMI^1$

Algebraic Riccati inequality

$$K ilde{A}+ ilde{A}^*K+K ilde{D}K- ilde{C}\leqslant 0,$$

Define the Hamiltonian matrix H :=

$$= egin{bmatrix} ilde{A} & ilde{D} \ ilde{C} & - ilde{A}^* \end{bmatrix}$$

- ARE solutions  $K \Leftrightarrow$  an *n*-dimensional *H*-invariant subspaces is a 'graph' subspace: image  $\begin{bmatrix} I \\ K \end{bmatrix}$
- Controllability of  $(\tilde{A}, \tilde{D})$ : simplifies results
- 'Mixed'-sign:  $\tilde{C}$  is not sign-definite (unlike LQ,  $\mathcal{H}_{\infty}$ -norm)
- Mixed-sign ARE:  $\mathcal{H}_{\infty}$ -control

$$\begin{split} ^1(I_{\mathtt{m}}+D^TJ_{\mathtt{q},\mathtt{r}}D) &> 0 \text{ and } \tilde{A} := (A-B(I_{\mathtt{m}}+D^TJ_{\mathtt{q},\mathtt{r}}D)^{-1}D^TJ_{\mathtt{q},\mathtt{r}}C), \\ \tilde{D} := B(I_{\mathtt{m}}+D^TJ_{\mathtt{q},\mathtt{r}}D)^{-1}B^T \text{ and } \tilde{C} = C^T(J_{\mathtt{q},\mathtt{r}}+DD^T) \mathbb{F}^1C. \end{split}$$

## Schur complement of this $LMI^1$

Algebraic Riccati inequality

$$K ilde{A}+ ilde{A}^*K+K ilde{D}K- ilde{C}\leqslant 0,$$

Define the Hamiltonian matrix  $H := \begin{bmatrix} \tilde{A} & \tilde{D} \\ \tilde{C} & -\tilde{A}^* \end{bmatrix}$ 

- ARE solutions  $K \Leftrightarrow$  an *n*-dimensional *H*-invariant subspaces is a 'graph' subspace: image  $\begin{bmatrix} I \\ K \end{bmatrix}$
- Controllability of  $(\tilde{A}, \tilde{D})$ : simplifies results
- 'Mixed'-sign:  $\tilde{C}$  is not sign-definite (unlike LQ,  $\mathcal{H}_{\infty}$ -norm)
- Mixed-sign ARE:  $\mathcal{H}_{\infty}$ -control

$$\begin{split} ^{1}(I_{\mathtt{m}}+D^{T}J_{\mathtt{q},\mathtt{r}}D) &> 0 \text{ and } \tilde{A} := (A-B(I_{\mathtt{m}}+D^{T}J_{\mathtt{q},\mathtt{r}}D)^{-1}D^{T}J_{\mathtt{q},\mathtt{r}}C), \\ \tilde{D} := B(I_{\mathtt{m}}+D^{T}J_{\mathtt{q},\mathtt{r}}D)^{-1}B^{T} \text{ and } \tilde{C} = C^{T}(J_{\mathtt{q},\mathtt{r}}+DD^{T}) \mathbb{F}^{1}C. \end{split}$$

## Schur complement of this $LMI^1$

Algebraic Riccati inequality

$$K ilde{A}+ ilde{A}^*K+K ilde{D}K- ilde{C}\leqslant 0,$$

Define the Hamiltonian matrix  $H := \begin{bmatrix} A & D \\ \tilde{C} & -\tilde{A}^* \end{bmatrix}$ 

- ARE solutions  $K \Leftrightarrow$  an *n*-dimensional *H*-invariant subspaces is a 'graph' subspace: image  $\begin{bmatrix} I \\ K \end{bmatrix}$
- Controllability of  $(\tilde{A}, \tilde{D})$ : simplifies results
- 'Mixed'-sign:  $\tilde{C}$  is not sign-definite (unlike LQ,  $\mathcal{H}_{\infty}$ -norm)
- Mixed-sign ARE:  $\mathcal{H}_{\infty}$ -control

$$\begin{split} ^1(I_{\mathtt{m}}+D^TJ_{\mathtt{q},\mathtt{r}}D) &> 0 \text{ and } \tilde{A} := (A-B(I_{\mathtt{m}}+D^TJ_{\mathtt{q},\mathtt{r}}D)^{-1}D^TJ_{\mathtt{q},\mathtt{r}}C), \\ \tilde{D} := B(I_{\mathtt{m}}+D^TJ_{\mathtt{q},\mathtt{r}}D)^{-1}B^T \text{ and } \tilde{C} = C^T(J_{\mathtt{q},\mathtt{r}}+DD^T)^{-1}C. \end{split}$$

## Schur complement of this $LMI^1$

Algebraic Riccati inequality

$$K ilde{A}+ ilde{A}^*K+K ilde{D}K- ilde{C}\leqslant 0,$$

Define the Hamiltonian matrix  $H := \begin{bmatrix} A & D \\ \tilde{C} & -\tilde{A}^* \end{bmatrix}$ 

- ARE solutions  $K \Leftrightarrow$  an *n*-dimensional *H*-invariant subspaces is a 'graph' subspace: image  $\begin{bmatrix} I \\ K \end{bmatrix}$
- Controllability of  $(\tilde{A}, \tilde{D})$ : simplifies results
- 'Mixed'-sign:  $\tilde{C}$  is not sign-definite (unlike LQ,  $\mathcal{H}_{\infty}$ -norm)
- Mixed-sign ARE:  $\mathcal{H}_{\infty}$ -control

$$\begin{split} ^{1}(I_{\mathtt{m}}+D^{T}J_{\mathtt{q},\mathtt{r}}D) &> 0 \text{ and } \tilde{A} := (A-B(I_{\mathtt{m}}+D^{T}J_{\mathtt{q},\mathtt{r}}D)^{-1}D^{T}J_{\mathtt{q},\mathtt{r}}C), \\ \tilde{D} := B(I_{\mathtt{m}}+D^{T}J_{\mathtt{q},\mathtt{r}}D)^{-1}B^{T} \text{ and } \tilde{C} = C^{T}(J_{\mathtt{q},\mathtt{r}}+DD^{T})^{-1}C. \end{split}$$

- uncontrollable poles are unmixed, i.e. no two of them add to zero
- The feed-through term D satisfies  $(I_m + D^T J_{q,r}D) > 0$ (Controllable part of  $\mathfrak{B}$  is strictly dissipative 'at infinity') Define  $\mathfrak{B}_{cont}$  as the controllable part of  $\mathfrak{B}$ .

Then,  $\mathfrak{B}$  is  $\Sigma$ -dissipative  $\Leftrightarrow \mathfrak{B}_{cont}$  is  $\Sigma$ -dissipative.

First: Lyapunov equation solvability (autonomous part) After all, Lyapunov functions: storage functions for autonomous systems

(日) (四) (종) (종) (종)

- uncontrollable poles are unmixed, i.e. no two of them add to zero
- The feed-through term D satisfies  $(I_m + D^T J_{q,r} D) > 0$ (Controllable part of  $\mathfrak{B}$  is strictly dissipative 'at infinity')

Define  $\mathfrak{B}_{cont}$  as the controllable part of  $\mathfrak{B}$ .

Then,  $\mathfrak{B}$  is  $\Sigma$ -dissipative  $\Leftrightarrow \mathfrak{B}_{cont}$  is  $\Sigma$ -dissipative.

First: Lyapunov equation solvability (autonomous part) After all, Lyapunov functions: storage functions for autonomous systems Second:  $(I_m + D^T J_{a,r}D) > 0$ :

strictness of energy absorption for feed-through term

・ロト ・日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- uncontrollable poles are unmixed, i.e. no two of them add to zero
- The feed-through term D satisfies  $(I_m + D^T J_{q,r} D) > 0$ (Controllable part of  $\mathfrak{B}$  is strictly dissipative 'at infinity')

Define  $\mathfrak{B}_{cont}$  as the controllable part of  $\mathfrak{B}$ .

Then,  $\mathfrak{B}$  is  $\Sigma$ -dissipative  $\Leftrightarrow \mathfrak{B}_{cont}$  is  $\Sigma$ -dissipative.

First: Lyapunov equation solvability (autonomous part) After all, Lyapunov functions: storage functions for autonomous systems

Second:  $(I_m + D^T J_{q,r} D) > 0$ : strictness of energy absorption for feed-through term

- uncontrollable poles are unmixed, i.e. no two of them add to zero
- The feed-through term D satisfies  $(I_m + D^T J_{q,r} D) > 0$ (Controllable part of  $\mathfrak{B}$  is strictly dissipative 'at infinity')

Define  $\mathfrak{B}_{cont}$  as the controllable part of  $\mathfrak{B}$ .

Then,  $\mathfrak{B}$  is  $\Sigma$ -dissipative  $\Leftrightarrow \mathfrak{B}_{cont}$  is  $\Sigma$ -dissipative.

First: Lyapunov equation solvability (autonomous part) After all, Lyapunov functions: storage functions for autonomous systems

Second:  $(I_m + D^T J_{q,r} D) > 0$ : strictness of energy absorption for feed-through term

- uncontrollable poles are unmixed, i.e. no two of them add to zero
- The feed-through term D satisfies  $(I_m + D^T J_{q,r} D) > 0$ (Controllable part of  $\mathfrak{B}$  is strictly dissipative 'at infinity')

Define  $\mathfrak{B}_{cont}$  as the controllable part of  $\mathfrak{B}$ .

Then,  $\mathfrak{B}$  is  $\Sigma$ -dissipative  $\Leftrightarrow \mathfrak{B}_{cont}$  is  $\Sigma$ -dissipative.

First: Lyapunov equation solvability (autonomous part) After all, Lyapunov functions: storage functions for autonomous systems

Second:  $(I_m + D^T J_{q,r} D) > 0$ : strictness of energy absorption for feed-through term

- Hamiltonian matrix has  $j\mathbb{R}$  eigenvalues (unlike controllable/observable LQ)
- Used results on Indefinite Linear Algebra: Gohberg-Lancaster-Rodman
- $\exists$  an observable storage function, state function:  $x^T K x$
- For uncontrollable part: expectedly the Lyapunov equation solvability condition

- Hamiltonian matrix has  $j\mathbb{R}$  eigenvalues (unlike controllable/observable LQ)
- Used results on Indefinite Linear Algebra: Gohberg-Lancaster-Rodman
- $\exists$  an observable storage function, state function:  $x^T K x$
- For uncontrollable part: expectedly the Lyapunov equation solvability condition

- Hamiltonian matrix has  $j\mathbb{R}$  eigenvalues (unlike controllable/observable LQ)
- Used results on Indefinite Linear Algebra: Gohberg-Lancaster-Rodman
- $\exists$  an observable storage function, state function:  $x^T K x$
- For uncontrollable part: expectedly the Lyapunov equation solvability condition

- Hamiltonian matrix has  $j\mathbb{R}$  eigenvalues (unlike controllable/observable LQ)
- Used results on Indefinite Linear Algebra: Gohberg-Lancaster-Rodman
- $\exists$  an observable storage function, state function:  $x^T K x$
- For uncontrollable part:

expectedly the Lyapunov equation solvability condition

- Hamiltonian matrix has  $j\mathbb{R}$  eigenvalues (unlike controllable/observable LQ)
- Used results on Indefinite Linear Algebra: Gohberg-Lancaster-Rodman
- $\exists$  an observable storage function, state function:  $x^T K x$
- For uncontrollable part: expectedly the Lyapunov equation solvability condition

# Suppose some uncontrollable poles are on the imaginary axis (i.e. periodic solutions).

Then, unobservability of the ARE solution K is inevitable

Autonomous behavior  $\mathfrak{B}_{aut}$ 

Consider 
$$\frac{d}{dt}x = Ax$$
,  $w = Cx$ , with  $\sigma(A) \cap i\mathbb{R} \neq \emptyset$   
and power  $= -w^T w$ .  
Suppose  $\exists$  a storage function  $x^T Kx$  satisfying

$$rac{d}{dt}x^TKx \leqslant Q_{\Sigma}(w) \quad ext{ for all } w \in \mathfrak{B}_{ ext{aut}}.$$

Then every  $\lambda \in \sigma(A) \cap i\mathbb{R}$  is unobservable.

Suppose some uncontrollable poles are on the imaginary axis (i.e. periodic solutions). Then unchemorability of the ABE solution K is inevitable

Then, unobservability of the ARE solution K is inevitable

#### Autonomous behavior $\mathfrak{B}_{aut}$

Consider  $\frac{d}{dt}x = Ax$ , w = Cx, with  $\sigma(A) \cap i\mathbb{R} \neq \emptyset$ and power  $= -w^T w$ . Suppose  $\exists$  a storage function  $x^T K x$  satisfying

$$rac{d}{dt}x^TKx \leqslant Q_{\Sigma}(w) \quad ext{ for all } w \in \mathfrak{B}_{ ext{aut}}.$$

Then every  $\lambda \in \sigma(A) \cap i\mathbb{R}$  is unobservable.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三回 のへの

Suppose some uncontrollable poles are on the imaginary axis (i.e. periodic solutions).

Then, unobservability of the ARE solution K is inevitable

#### Autonomous behavior $\mathfrak{B}_{aut}$

Consider 
$$\frac{d}{dt}x = Ax$$
,  $w = Cx$ , with  $\sigma(A) \cap i\mathbb{R} \neq \emptyset$   
and power  $= -w^T w$ .  
Suppose  $\exists$  a storage function  $x^T Kx$  satisfying

$$rac{d}{dt}x^TKx \leqslant Q_{\Sigma}(w) \quad ext{ for all } w \in \mathfrak{B}_{ ext{aut}}.$$

Then every  $\lambda \in \sigma(A) \cap i\mathbb{R}$  is unobservable.

**Need** unobservable variables in storage function.

More precisely, for periodic uncontrollable trajectories,  $\exists$  storage functions  $\Rightarrow$  unobservable.

 $\mathfrak{B}$  with a 'static' controllable part

Consider  $\frac{d}{dt}x = Ax$ ,  $w_2 = Cx + Dw_1$  with (C, A) observable. Assume  $(I_m + D^T J_{q,r}D) > 0$  and  $\sigma(A) \subset i\mathbb{R}$ .

Then,  $\nexists$  a symmetric solution to the corresponding ARE.

・ロト ・四ト ・ヨト ・ヨト

Need unobservable variables in storage function.

More precisely, for periodic uncontrollable trajectories,  $\exists$  storage functions  $\Rightarrow$  unobservable.

#### $\mathfrak{B}$ with a 'static' controllable part

Consider  $\frac{d}{dt}x = Ax$ ,  $w_2 = Cx + Dw_1$  with (C, A) observable. Assume  $(I_m + D^T J_{q,r}D) > 0$  and  $\sigma(A) \subset i\mathbb{R}$ . Then,  $\not\exists$  a symmetric solution to the corresponding ARE.

・ロト ・四ト ・ヨト ・ヨト

Need unobservable variables in storage function.

More precisely, for periodic uncontrollable trajectories,  $\exists$  storage functions  $\Rightarrow$  unobservable.

#### $\mathfrak{B}$ with a 'static' controllable part

Consider  $\frac{d}{dt}x = Ax$ ,  $w_2 = Cx + Dw_1$  with (C, A) observable. Assume  $(I_m + D^T J_{q,r}D) > 0$  and  $\sigma(A) \subset i\mathbb{R}$ . Then,  $\not\exists$  a symmetric solution to the corresponding ARE.

・ロト ・四ト ・ヨト ・ヨト

# Allow unobservability $\Rightarrow$ 'fallacious(?)' possibilities

Can unobservable variables cause a problem? Every autonomous system is <u>orthogonal</u> to  $\mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R}^n)$ Willems (CDC-2004):

 $\mathfrak{B}_1$ : any autonomous system  $\mathfrak{B}_2$ : full  $= \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^n)$ System  $\mathfrak{B}_1$  in variable w  $\frac{d}{dt}z = Az$  w = Cz  $\mathfrak{B}_2$ : full  $= \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^n)$ System  $\mathfrak{B}_2$  in variable w $\frac{d}{dt}x = -A^Tx + C^Tv$ 

Storage function  $x^T z$  (unobservable from w and v).  $\mathfrak{B}_1$  and  $\mathfrak{B}_2$  are 'orthogonal'<sup>2</sup>

Consider  $S = \frac{1}{2} \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$ . We get  $\frac{1}{2} \begin{bmatrix} w \\ v \end{bmatrix}^T S \begin{bmatrix} w \\ v \end{bmatrix} = w^T v$ . The system  $\mathfrak{B}_1 \times \mathfrak{B}_2$  is S-lossless.

<sup>2</sup>For controllable behaviors  $\mathfrak{B}_1$  and  $\mathfrak{B}_2$ , call them orthogonal if  $\int_{\mathbb{R}} w^T v dt = 0$ for all  $w \in \mathfrak{B}_1$  and  $v \in \mathfrak{B}_2$  of compact support.  $\langle \Box \rangle \langle \overline{\sigma} \rangle \langle \overline{\sigma} \rangle \langle \overline{\varepsilon} \rangle$ 

# Can unobservable variables cause a problem? Every autonomous system is <u>orthogonal</u> to $\mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^n)$ Willems (CDC-2004):

 $\mathfrak{B}_{1}: \text{ any autonomous system} \qquad \mathfrak{B}_{2}: \text{ full } = \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{n})$ System  $\mathfrak{B}_{1}$  in variable w  $\frac{d}{dt}z = Az$  w = CzSystem  $\mathfrak{B}_{2}$  in variable v  $\frac{d}{dt}x = -A^{T}x + C^{T}v$ 

Storage function  $x^T z$  (unobservable from w and v).  $\mathfrak{B}_1$  and  $\mathfrak{B}_2$  are 'orthogonal'<sup>2</sup>

Consider  $S = \frac{1}{2} \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$ . We get  $\frac{1}{2} \begin{bmatrix} w \\ v \end{bmatrix}^T S \begin{bmatrix} w \\ v \end{bmatrix} = w^T v$ . The system  $\mathfrak{B}_1 \times \mathfrak{B}_2$  is S-lossless.

<sup>2</sup>For controllable behaviors  $\mathfrak{B}_1$  and  $\mathfrak{B}_2$ , call them orthogonal if  $\int_{\mathbb{R}} w^T v dt = 0$ for all  $w \in \mathfrak{B}_1$  and  $v \in \mathfrak{B}_2$  of compact support.  $\langle \Box \rangle \langle \overline{\sigma} \rangle \langle \overline{\sigma} \rangle \langle \overline{\varepsilon} \rangle \langle \overline{\varepsilon}$  Allow unobservability  $\Rightarrow$  'fallacious(?)' possibilities

Can unobservable variables cause a problem? Every autonomous system is <u>orthogonal</u> to  $\mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^n)$ Willems (CDC-2004):

 $\mathfrak{B}_1$ : any autonomous system  $\mathfrak{B}_2$ : full  $= \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^n)$ System  $\mathfrak{B}_1$  in variable w  $\frac{d}{dt}z = Az$  w = Cz  $\mathfrak{B}_2$ : full  $= \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^n)$ System  $\mathfrak{B}_2$  in variable v $\frac{d}{dt}x = -A^Tx + C^Tv$ 

Storage function  $x^T z$  (unobservable from w and v).  $\mathfrak{B}_1$  and  $\mathfrak{B}_2$  are 'orthogonal'<sup>2</sup> Consider  $S = \frac{1}{2} \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$ . We get  $\frac{1}{2} \begin{bmatrix} w \\ v \end{bmatrix}^T S \begin{bmatrix} w \\ v \end{bmatrix} = w^T v$ . The system  $\mathfrak{B}_1 \times \mathfrak{B}_2$  is S-lossless.

<sup>2</sup>For controllable behaviors  $\mathfrak{B}_1$  and  $\mathfrak{B}_2$ , call them orthogonal if  $\int_{\mathbb{R}} w^T v dt = 0$ for all  $w \in \mathfrak{B}_1$  and  $v \in \mathfrak{B}_2$  of compact support.  $\langle \Box \rangle \langle \overline{\sigma} \rangle \langle \overline{\sigma} \rangle \langle \overline{z} \rangle \langle \overline{z} \rangle \langle \overline{z} \rangle \langle \overline{z} \rangle$  Can unobservable variables cause a problem? Every autonomous system is <u>orthogonal</u> to  $\mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R}^n)$ Willems (CDC-2004):

<sup>2</sup>For controllable behaviors  $\mathfrak{B}_1$  and  $\mathfrak{B}_2$ , call them orthogonal if  $\int_{\mathbb{R}} w^T v dt = 0$ for all  $w \in \mathfrak{B}_1$  and  $v \in \mathfrak{B}_2$  of compact support.

The system  $\mathfrak{B}_1 \times \mathfrak{B}_2$  is S-lossless.

18/28

### **Controllable** systems:

- dissipativity defined without storage function
- $\int_{\mathbb{R}} w^T \Sigma w dt \ge 0 \,\,\forall \,\, ext{compactly supported } w$ : ('denseness')
- dissipative  $\Leftrightarrow \exists$  observable storage function

# **Uncontrollable systems:**

- Compactly supported trajectories definition
- Dissipative  $:\equiv$  Observable storage function exists
- Dissipative := Any (unobservable?) storage function exists

Unobservable storage function: not ok

《日》 《御》 《문》 《문》 - 臣

**Controllable** systems:

- dissipativity defined without storage function
- $\int_{\mathbb{R}} w^T \Sigma w dt \ge 0 \,\, orall \,\, ext{compactly supported } w$ : ('denseness')
- dissipative  $\Leftrightarrow \exists$  observable storage function

# **Uncontrollable systems:**

- Compactly supported trajectories definition
- Dissipative  $:\equiv$  Observable storage function exists
- Dissipative := Any (unobservable?) storage function exists

Unobservable storage function: not ok

**Controllable** systems:

- dissipativity defined without storage function
- $\int_{\mathbb{R}} w^T \Sigma w dt \ge 0 \,\, orall \,\, ext{compactly supported } w$ : ('denseness')
- dissipative  $\Leftrightarrow \exists$  observable storage function

# Uncontrollable systems:

- Compactly supported trajectories definition
- Dissipative : $\equiv$  Observable storage function exists
- Dissipative := Any (unobservable?) storage function exists

Unobservable storage function: not ok

**Controllable** systems:

- dissipativity defined without storage function
- $\int_{\mathbb{R}} w^T \Sigma w dt \ge 0 \,\, orall \,\, ext{compactly supported } w$ : ('denseness')
- dissipative  $\Leftrightarrow \exists$  observable storage function

# Uncontrollable systems:

- Compactly supported trajectories definition
- Dissipative  $:\equiv$  Observable storage function exists
- Dissipative := Any (unobservable?) storage function exists

Unobservable storage function: not ok

**Controllable** systems:

- dissipativity defined without storage function
- $\int_{\mathbb{R}} w^T \Sigma w dt \ge 0 \,\, orall \,\, ext{compactly supported } w$ : ('denseness')
- dissipative  $\Leftrightarrow \exists$  observable storage function

# Uncontrollable systems:

- Compactly supported trajectories definition
- Dissipative  $:\equiv$  Observable storage function exists
- Dissipative := Any (unobservable?) storage function exists

Unobservable storage function: not ok

**Controllable** systems:

- dissipativity defined without storage function
- $\int_{\mathbb{R}} w^T \Sigma w dt \ge 0 \,\, orall \,\, ext{compactly supported } w$ : ('denseness')
- dissipative  $\Leftrightarrow \exists$  observable storage function

# Uncontrollable systems:

- Compactly supported trajectories definition
- Dissipative := Observable storage function  $\frac{exists}{exist}$
- Dissipative := Any (unobservable?) storage function exists

Unobservable storage function: not ok

Embeddability in some controllable dissipative behavior

Consider a controllable behavior  $\mathfrak{B}$ , and power  $w^T \Sigma w$ : The dissipation inequality:

$$rac{d}{dt}Q_{\Psi}(w)\leqslant w^T\Sigma w ext{ for all } w\in\mathfrak{B}$$

- Every sub-behavior of  $\mathfrak{B}$  is also  $\Sigma$ -dissipative.
- Controllable  $\mathfrak{B}_1, \mathfrak{B}_2$  are orthogonal  $\Rightarrow$  their (respective) sub-behaviors also orthogonal (even if uncontrollable)

Embeddability definition

A behavior  $\mathfrak{B}$  is called  $\Sigma$ -dissipative if

there exists  $\mathfrak{B}^{sup}$  such that

 $\mathfrak{B} \subseteq \mathfrak{B}^{\mathrm{sup}} \qquad \mathfrak{B}^{\mathrm{sup}} \text{ is } \Sigma \text{-dissipative}$ 

 $\mathfrak{B}^{sup}$  is controllable

Embeddability in some controllable dissipative behavior

Consider a controllable behavior  $\mathfrak{B}$ , and power  $w^T \Sigma w$ : The dissipation inequality:

$$rac{d}{dt}Q_{\Psi}(w)\leqslant w^T\Sigma w ext{ for all } w\in \mathfrak{B}$$

- Every sub-behavior of  $\mathfrak{B}$  is also  $\Sigma$ -dissipative.
- Controllable  $\mathfrak{B}_1, \mathfrak{B}_2$  are orthogonal  $\Rightarrow$  their (respective) sub-behaviors also orthogonal (even if uncontrollable)



Embeddability in some controllable dissipative behavior

Consider a controllable behavior  $\mathfrak{B}$ , and power  $w^T \Sigma w$ : The dissipation inequality:

$$rac{d}{dt}Q_{\Psi}(w)\leqslant w^T\Sigma w ext{ for all } w\in\mathfrak{B}$$

- Every sub-behavior of  $\mathfrak{B}$  is also  $\Sigma$ -dissipative.
- Controllable  $\mathfrak{B}_1, \mathfrak{B}_2$  are orthogonal  $\Rightarrow$  their (respective) sub-behaviors also orthogonal (even if uncontrollable)


Consider a controllable behavior  $\mathfrak{B}$ , and power  $w^T \Sigma w$ : The dissipation inequality:

$$rac{d}{dt}Q_{\Psi}(w)\leqslant w^T\Sigma w ext{ for all } w\in\mathfrak{B}$$

- Every sub-behavior of  $\mathfrak{B}$  is also  $\Sigma$ -dissipative.
- Controllable  $\mathfrak{B}_1, \mathfrak{B}_2$  are orthogonal  $\Rightarrow$  their (respective) sub-behaviors also orthogonal (even if uncontrollable)



Consider a controllable behavior  $\mathfrak{B}$ , and power  $w^T \Sigma w$ : The dissipation inequality:

$$rac{d}{dt}Q_{\Psi}(w)\leqslant w^T\Sigma w ext{ for all } w\in\mathfrak{B}$$

- Every sub-behavior of  $\mathfrak{B}$  is also  $\Sigma$ -dissipative.
- Controllable  $\mathfrak{B}_1, \mathfrak{B}_2$  are orthogonal  $\Rightarrow$  their (respective) sub-behaviors also orthogonal (even if uncontrollable)



Consider a controllable behavior  $\mathfrak{B}$ , and power  $w^T \Sigma w$ : The dissipation inequality:

$$rac{d}{dt}Q_{\Psi}(w)\leqslant w^T\Sigma w ext{ for all } w\in\mathfrak{B}$$

- Every sub-behavior of  $\mathfrak{B}$  is also  $\Sigma$ -dissipative.
- Controllable  $\mathfrak{B}_1, \mathfrak{B}_2$  are orthogonal  $\Rightarrow$  their (respective) sub-behaviors also orthogonal (even if uncontrollable)



Consider a controllable behavior  $\mathfrak{B}$ , and power  $w^T \Sigma w$ : The dissipation inequality:

$$rac{d}{dt}Q_{\Psi}(w)\leqslant w^T\Sigma w ext{ for all } w\in\mathfrak{B}$$

- Every sub-behavior of  $\mathfrak{B}$  is also  $\Sigma$ -dissipative.
- Controllable  $\mathfrak{B}_1, \mathfrak{B}_2$  are orthogonal  $\Rightarrow$  their (respective) sub-behaviors also orthogonal (even if uncontrollable)



Suppose  $\mathfrak{B}$  is  $\Sigma$ -dissipative, with  $\Sigma = \Sigma^T$  nonsingular  $\mathfrak{m}(\mathfrak{B})$ : number of inputs of a system  $\sigma_+(\Sigma)$ : number of positive eigenvalues of  $\Sigma$ 



 $M_i^T \Sigma M_i \ge 0 \Rightarrow \operatorname{rank}(M_i) \le 2(=\sigma_+(\Sigma))$ Controllable systems: images of  $M(\frac{d}{dt})$  with  $\mathfrak{m}(\mathfrak{B}) = \operatorname{rank} M(\xi)$ 

21/28

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Suppose  $\mathfrak{B}$  is  $\Sigma$ -dissipative, with  $\Sigma = \Sigma^T$  nonsingular  $\mathfrak{m}(\mathfrak{B})$ : number of inputs of a system  $\sigma_+(\Sigma)$ : number of positive eigenvalues of  $\Sigma$ 

Then,  $\mathtt{m}(\mathfrak{B}) \leqslant \sigma_+(\Sigma)$ 

#### Consider

|    |   | $\boldsymbol{\Sigma}$ |     | $M_1$             | $M_2$                                 | $M_{3}$                               | $oldsymbol{N}$                        |
|----|---|-----------------------|-----|-------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| [1 | 0 | 0                     | 0 ] | $\lceil 1 \rceil$ | $\begin{bmatrix} 1 & 0 \end{bmatrix}$ | $\begin{bmatrix} 1 & 0 \end{bmatrix}$ | $\begin{bmatrix} 1 & 0 \end{bmatrix}$ |
| 0  | 1 | 0                     | 0   | 0                 | $\begin{bmatrix} 0 & 1 \end{bmatrix}$ | 0 1                                   | 0 1 0                                 |
| 0  | 0 | -1                    | 0   | 0                 | 0 0                                   | 0.5 0                                 | 0 0 1                                 |
| 0  | 0 | 0                     | -1  | 0                 | $\begin{bmatrix} 0 & 0 \end{bmatrix}$ |                                       | 0 0 0                                 |
| _  |   |                       | _   | Yes               | Yes                                   | Yes                                   | No                                    |

 $M_i^T \Sigma M_i \ge 0 \Rightarrow \operatorname{rank}(M_i) \le 2(=\sigma_+(\Sigma))$ Controllable systems: images of  $M(\frac{d}{dt})$  with  $\mathfrak{m}(\mathfrak{B}) = \operatorname{rank} M(\xi)$ 

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三回 のへの

Suppose  $\mathfrak{B}$  is  $\Sigma$ -dissipative, with  $\Sigma = \Sigma^T$  nonsingular  $\mathfrak{m}(\mathfrak{B})$ : number of inputs of a system  $\sigma_+(\Sigma)$ : number of positive eigenvalues of  $\Sigma$ 

Then,  $\mathtt{m}(\mathfrak{B}) \leqslant \sigma_+(\Sigma)$ 

#### Consider



 $M_i^T \Sigma M_i \ge 0 \Rightarrow \operatorname{rank}(M_i) \le 2(=\sigma_+(\Sigma))$ Controllable systems: images of  $M(\frac{d}{dt})$  with  $\mathfrak{m}(\mathfrak{B}) = \operatorname{rank} M(\xi)$ 

◆□▶ ◆圖▶ ★ 圖▶ ★ 圖▶ ▲ 圖 - 釣�?

Suppose  $\mathfrak{B}$  is  $\Sigma$ -dissipative, with  $\Sigma = \Sigma^T$  nonsingular  $\mathfrak{m}(\mathfrak{B})$ : number of inputs of a system  $\sigma_+(\Sigma)$ : number of positive eigenvalues of  $\Sigma$ 

Then,  $\mathtt{m}(\mathfrak{B}) \leqslant \sigma_+(\Sigma)$ 

#### Consider

|    |   | $\boldsymbol{\Sigma}$ |     | $M_1$             | $M_2$                                               | $M_3$                                 | $oldsymbol{N}$                        |
|----|---|-----------------------|-----|-------------------|-----------------------------------------------------|---------------------------------------|---------------------------------------|
| [1 | 0 | 0                     | 0 ] | $\lceil 1 \rceil$ | $\begin{bmatrix} 1 & 0 \end{bmatrix}$               | $\begin{bmatrix} 1 & 0 \end{bmatrix}$ | $\begin{bmatrix} 1 & 0 \end{bmatrix}$ |
| 0  | 1 | 0                     | 0   | 0                 | $\left  \begin{array}{c} 0 & 1 \end{array} \right $ | $\begin{vmatrix} 0 & 1 \end{vmatrix}$ | 0 1 0                                 |
| 0  | 0 | -1                    | 0   | 0                 | 0 0                                                 | 0.5 0                                 | 0 0 1                                 |
| 0  | 0 | 0                     | -1  | 0                 | $\begin{bmatrix} 0 & 0 \end{bmatrix}$               |                                       |                                       |
| -  |   |                       | -   | Yes               | Yes                                                 | Yes                                   | No                                    |

 $M_i^T\Sigma M_i \geqslant 0 \Rightarrow \mathrm{rank}(M_i) \leqslant 2 (= \sigma_+(\Sigma))$ 

Controllable systems: images of  $M(rac{d}{dt})$  with  $\mathtt{m}(\mathfrak{B})=\mathrm{rank}\;M(m{\xi})$ 

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Suppose  $\mathfrak{B}$  is  $\Sigma$ -dissipative, with  $\Sigma = \Sigma^T$  nonsingular  $\mathfrak{m}(\mathfrak{B})$ : number of inputs of a system  $\sigma_+(\Sigma)$ : number of positive eigenvalues of  $\Sigma$ 

Then,  $\mathtt{m}(\mathfrak{B}) \leqslant \sigma_+(\Sigma)$ 

#### Consider

|    |   | $\boldsymbol{\Sigma}$ |     | $M_1$             | $M_2$                                 | $M_3$                                 | $oldsymbol{N}$                        |
|----|---|-----------------------|-----|-------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| [1 | 0 | 0                     | 0 ] | $\lceil 1 \rceil$ | $\begin{bmatrix} 1 & 0 \end{bmatrix}$ | $\begin{bmatrix} 1 & 0 \end{bmatrix}$ | $\begin{bmatrix} 1 & 0 \end{bmatrix}$ |
| 0  | 1 | 0                     | 0   | 0                 | $\begin{bmatrix} 0 & 1 \end{bmatrix}$ | 0 1                                   | 0 1 0                                 |
| 0  | 0 | -1                    | 0   | 0                 | 0 0                                   | 0.5 0                                 | 0 0 1                                 |
| 0  | 0 | 0                     | -1  | 0                 | $\begin{bmatrix} 0 & 0 \end{bmatrix}$ |                                       | 0 0 0                                 |
|    |   |                       |     | Yes               | Yes                                   | Yes                                   | No                                    |

 $M_i^T \Sigma M_i \ge 0 \Rightarrow \operatorname{rank}(M_i) \le 2(=\sigma_+(\Sigma))$ Controllable systems: images of  $M(\frac{d}{dt})$  with  $\mathfrak{m}(\mathfrak{B}) = \operatorname{rank} M(\xi)$ 

System  $\mathfrak{B}_1$  in variable w System  $\mathfrak{B}_2$  in variable v $\frac{d}{dt}z = Az$ w = Cz  $\frac{d}{dt}x = -A^Tx + C^Tv$ 

# $\mathfrak{B}_1, \mathfrak{B}_2$ not embeddable in controllable & orthogonal $\mathfrak{B}_1^{sup}, \mathfrak{B}_2^{sup}$ .

Too many inputs (for what  $\begin{bmatrix} 0 & I_n \\ I_n & 0 \end{bmatrix}$  allows:  $\sigma_+ = n = \sigma_-$ ) Recall that: the system in (w, v) is 'lossless' with respect to  $\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$ Storage function  $x^T z$  (unobservable from w and v).

System  $\mathfrak{B}_1$  in variable w System  $\mathfrak{B}_2$  in variable v  $\frac{d}{dt}z = Az$ w = Cz  $\frac{d}{dt}x = -A^Tx + C^Tv$ 

# $\mathfrak{B}_1, \mathfrak{B}_2$ not embeddable in controllable & orthogonal $\mathfrak{B}_1^{sup}, \mathfrak{B}_2^{sup}$ .

Too many inputs (for what  $\begin{bmatrix} 0 & I_n \\ I_n & 0 \end{bmatrix}$  allows:  $\sigma_+ = n = \sigma_-$ ) Recall that: the system in (w, v) is 'lossless' with respect to  $\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$ Storage function  $x^T z$  (unobservable from w and v).

System  $\mathfrak{B}_1$  in variable w System  $\mathfrak{B}_2$  in variable v  $\frac{d}{dt}z = Az$ w = Cz  $\frac{d}{dt}x = -A^Tx + C^Tv$ 

 $\mathfrak{B}_1, \mathfrak{B}_2$  not embeddable in controllable & orthogonal  $\mathfrak{B}_1^{\sup}, \mathfrak{B}_2^{\sup}$ . Too many inputs (for what  $\begin{bmatrix} 0 & I_n \\ I_n & 0 \end{bmatrix}$  allows:  $\sigma_+ = n = \sigma_-$ ) Recall that: the system in (w, v) is 'lossless' with respect to  $\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$ Storage function  $x^T z$  (unobservable from w and v).

System  $\mathfrak{B}_1$  in variable w System  $\mathfrak{B}_2$  in variable v  $\frac{d}{dt}z = Az$ w = Cz  $\frac{d}{dt}x = -A^Tx + C^Tv$ 

 $\mathfrak{B}_1, \mathfrak{B}_2$  not embeddable in controllable & orthogonal  $\mathfrak{B}_1^{\sup}, \mathfrak{B}_2^{\sup}$ . Too many inputs (for what  $\begin{bmatrix} 0 & I_n \\ I_n & 0 \end{bmatrix}$  allows:  $\sigma_+ = n = \sigma_-$ ) Recall that: the system in (w, v) is 'lossless' with respect to  $\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$ Storage function  $x^T z$  (unobservable from w and v).

Theorem 10, Shodhan Rao, IJC, 2012 Suppose  $\mathfrak{B}$  is lossless (: $\equiv \exists$  an observable storage function) with power =  $w^T \Sigma w$ , and  $\Sigma = \begin{bmatrix} 0 & I_n \\ I_n & 0 \end{bmatrix}$ and  $\mathfrak{B}$  has *n*-inputs. Then,  $\mathfrak{B}$  is controllable.

23/28

Theorem 10, Shodhan Rao, IJC, 2012 Suppose  $\mathfrak{B}$  is lossless (: $\equiv \exists$  an observable storage function) with power =  $w^T \Sigma w$ , and  $\Sigma = \begin{bmatrix} 0 & I_n \\ I_n & 0 \end{bmatrix}$ and  $\mathfrak{B}$  has *n*-inputs. Then,  $\mathfrak{B}$  is controllable.

Theorem 10, Shodhan Rao, IJC, 2012 Suppose  $\mathfrak{B}$  is lossless (: $\equiv \exists$  an observable storage function) with power =  $w^T \Sigma w$ , and  $\Sigma = \begin{bmatrix} 0 & I_n \\ I_n & 0 \end{bmatrix}$ and  $\mathfrak{B}$  has *n*-inputs. Then,  $\mathfrak{B}$  is controllable.

#### Theorem 10, Shodhan Rao, IJC, 2012

Suppose  $\mathfrak{B}$  is lossless (: $\equiv \exists$  an observable storage function) with power =  $w^T \Sigma w$ , and  $\Sigma = \begin{bmatrix} 0 & I_n \\ I_n & 0 \end{bmatrix}$ and  $\mathfrak{B}$  has *n*-inputs. Then,  $\mathfrak{B}$  is controllable.

- Embeddability definition removes fallacious examples
- Concludes independently an observable-storage-function-based dissipativity result

### Drawbacks?

Can construct nonzero  $\mathfrak{B}$  that is both strictly  $\Sigma$ -dissipative and strictly anti  $\Sigma$ -dissipative!

#### Theorem

Suppose  $\Sigma = \Sigma^T$  is nonsingular and indefinite. Then,  $\exists$  nonzero behavior  $\mathfrak{B}$  such that

- can construct controllable  $\mathfrak{B}_+$  and  $\mathfrak{B}_-$  with  $\mathfrak{B} = \mathfrak{B}_+ \cap \mathfrak{B}_-$ ,
- $\mathfrak{B}_+$  is strictly  $\Sigma$  dissipative, and

•  $\mathfrak{B}_{-}$  is strictly  $-\Sigma$  dissipative.

Further, any such  $\mathfrak{B}$  is autonomous, i.e. zero number of inputs.

- Embeddability definition removes fallacious examples
- Concludes independently an observable-storage-function-based dissipativity result

### Drawbacks?

Can construct nonzero  $\mathfrak{B}$  that is both strictly  $\Sigma$ -dissipative and strictly anti  $\Sigma$ -dissipative!

#### Theorem

Suppose  $\Sigma = \Sigma^T$  is nonsingular and indefinite. Then,  $\exists$  nonzero behavior  $\mathfrak{B}$  such that

- can construct controllable  $\mathfrak{B}_+$  and  $\mathfrak{B}_-$  with  $\mathfrak{B} = \mathfrak{B}_+ \cap \mathfrak{B}_-$ ,
- $\mathfrak{B}_+$  is strictly  $\Sigma$  dissipative, and

•  $\mathfrak{B}_{-}$  is strictly  $-\Sigma$  dissipative.

Further, any such  $\mathfrak{B}$  is autonomous, i.e. zero number of inputs.

- Embeddability definition removes fallacious examples
- Concludes independently an observable-storage-function-based dissipativity result

### Drawbacks?

Can construct nonzero  $\mathfrak{B}$  that is both strictly  $\Sigma$ -dissipative and strictly anti  $\Sigma$ -dissipative!

#### Theorem

Suppose  $\Sigma = \Sigma^T$  is nonsingular and indefinite. Then,  $\exists$  nonzero behavior  $\mathfrak{B}$  such that

- can construct controllable  $\mathfrak{B}_+$  and  $\mathfrak{B}_-$  with  $\mathfrak{B} = \mathfrak{B}_+ \cap \mathfrak{B}_-$ ,
- $\mathfrak{B}_+$  is strictly  $\Sigma$  dissipative, and

•  $\mathfrak{B}_{-}$  is strictly  $-\Sigma$  dissipative.

Further, any such  $\mathfrak{B}$  is autonomous, i.e. zero number of inputs.

- Embeddability definition removes fallacious examples
- Concludes independently an observable-storage-function-based dissipativity result

Drawbacks? Can construct nonzero  $\mathfrak{B}$  that is both strictly  $\Sigma$ -dissipative and strictly anti  $\Sigma$ -dissipative!

#### Theorem

Suppose  $\Sigma = \Sigma^T$  is nonsingular and indefinite. Then,  $\exists$  nonzero behavior  $\mathfrak{B}$  such that

- can construct controllable  $\mathfrak{B}_+$  and  $\mathfrak{B}_-$  with  $\mathfrak{B} = \mathfrak{B}_+ \cap \mathfrak{B}_-$ ,
- $\mathfrak{B}_+$  is strictly  $\Sigma$  dissipative, and

•  $\mathfrak{B}_{-}$  is strictly  $-\Sigma$  dissipative.

Further, any such  $\mathfrak{B}$  is autonomous, i.e. zero number of inputs.

- Embeddability definition removes fallacious examples
- Concludes independently an observable-storage-function-based dissipativity result

Drawbacks?

Can construct nonzero  $\mathfrak{B}$  that is both

strictly  $\Sigma$ -dissipative and strictly anti  $\Sigma$ -dissipative!

#### Theorem

Suppose  $\Sigma = \Sigma^T$  is nonsingular and indefinite. Then,  $\exists$  nonzero behavior  $\mathfrak{B}$  such that

- can construct controllable  $\mathfrak{B}_+$  and  $\mathfrak{B}_-$  with  $\mathfrak{B} = \mathfrak{B}_+ \cap \mathfrak{B}_-$ ,
- $\mathfrak{B}_+$  is strictly  $\Sigma$  dissipative, and

•  $\mathfrak{B}_{-}$  is strictly  $-\Sigma$  dissipative.

Further, any such  $\mathfrak{B}$  is autonomous, i.e. zero number of inputs.

- Embeddability definition removes fallacious examples
- Concludes independently an observable-storage-function-based dissipativity result

Drawbacks?

Can construct nonzero  $\mathfrak{B}$  that is both

strictly  $\Sigma$ -dissipative and strictly anti  $\Sigma$ -dissipative!

#### Theorem

Suppose  $\Sigma = \Sigma^T$  is nonsingular and indefinite. Then,  $\exists$  nonzero behavior  $\mathfrak{B}$  such that

- can construct controllable  $\mathfrak{B}_+$  and  $\mathfrak{B}_-$  with  $\mathfrak{B} = \mathfrak{B}_+ \cap \mathfrak{B}_-$ ,
- $\mathfrak{B}_+$  is strictly  $\Sigma$  dissipative, and

•  $\mathfrak{B}_{-}$  is strictly  $-\Sigma$  dissipative.

Further, any such  $\mathfrak{B}$  is autonomous, i.e. zero number of inputs.

### The non-strict case:

#### Theorem

Suppose  $\Sigma = \Sigma^T$  is nonsingular and indefinite. Then, can construct  $\mathfrak{B}$  such that

- there exist controllable  $\mathfrak{B}_+$  and  $\mathfrak{B}_-$  with  $\mathfrak{B} = \mathfrak{B}_+ \cap \mathfrak{B}_-$ ,
- $\mathfrak{B}_+$  is  $\Sigma$  dissipative, and
- $\mathfrak{B}_{-}$  is - $\Sigma$  dissipative.

#### Further,

any such  $\mathfrak{B}$  satisfies  $\mathfrak{m}(\mathfrak{B}) \leq \min(\sigma_{+}(\Sigma), \sigma_{-}(\Sigma))$ . In case  $\mathfrak{B}$  is uncontrollable,  $\mathfrak{m}(\mathfrak{B}) < \min(\sigma_{+}(\Sigma), \sigma_{-}(\Sigma))$  $\mathfrak{m}(\mathfrak{B}) \geq 1 \Rightarrow$  neither  $\mathfrak{B}_{+}$  nor  $\mathfrak{B}_{-}$  are strictly dissipative.

### The non-strict case:

Theorem

Suppose  $\Sigma = \Sigma^T$  is nonsingular and indefinite. Then, can construct  $\mathfrak{B}$  such that

- there exist controllable  $\mathfrak{B}_+$  and  $\mathfrak{B}_-$  with  $\mathfrak{B} = \mathfrak{B}_+ \cap \mathfrak{B}_-$ ,
- $\mathfrak{B}_+$  is  $\Sigma$  dissipative, and
- $\mathfrak{B}_{-}$  is - $\Sigma$  dissipative.

Further,

any such  $\mathfrak{B}$  satisfies  $\mathfrak{m}(\mathfrak{B}) \leq \min(\sigma_{+}(\Sigma), \sigma_{-}(\Sigma))$ . In case  $\mathfrak{B}$  is uncontrollable,  $\mathfrak{m}(\mathfrak{B}) < \min(\sigma_{+}(\Sigma), \sigma_{-}(\Sigma))$ .  $\mathfrak{m}(\mathfrak{B}) \geq 1 \Rightarrow$  neither  $\mathfrak{B}_{+}$  nor  $\mathfrak{B}_{-}$  are strictly dissipative.

### The non-strict case:

Theorem

Suppose  $\Sigma = \Sigma^T$  is nonsingular and indefinite. Then, can construct  $\mathfrak{B}$  such that

- there exist controllable  $\mathfrak{B}_+$  and  $\mathfrak{B}_-$  with  $\mathfrak{B} = \mathfrak{B}_+ \cap \mathfrak{B}_-$ ,
- $\mathfrak{B}_+$  is  $\Sigma$  dissipative, and
- $\mathfrak{B}_{-}$  is - $\Sigma$  dissipative.

Further,

any such  $\mathfrak{B}$  satisfies  $\mathfrak{m}(\mathfrak{B}) \leq \min(\sigma_{+}(\Sigma), \sigma_{-}(\Sigma))$ . In case  $\mathfrak{B}$  is uncontrollable,  $\mathfrak{m}(\mathfrak{B}) < \min(\sigma_{+}(\Sigma), \sigma_{-}(\Sigma))$ .  $\mathfrak{m}(\mathfrak{B}) \geq 1 \Rightarrow$  neither  $\mathfrak{B}_{+}$  nor  $\mathfrak{B}_{-}$  are strictly dissipative.

### The non-strict case:

Theorem

Suppose  $\Sigma = \Sigma^T$  is nonsingular and indefinite. Then, can construct  $\mathfrak{B}$  such that

- there exist controllable  $\mathfrak{B}_+$  and  $\mathfrak{B}_-$  with  $\mathfrak{B} = \mathfrak{B}_+ \cap \mathfrak{B}_-$ ,
- $\mathfrak{B}_+$  is  $\Sigma$  dissipative, and
- $\mathfrak{B}_{-}$  is - $\Sigma$  dissipative.

Further,

any such  $\mathfrak{B}$  satisfies  $\mathfrak{m}(\mathfrak{B}) \leq \min(\sigma_{+}(\Sigma), \sigma_{-}(\Sigma))$ . In case  $\mathfrak{B}$  is uncontrollable,  $\mathfrak{m}(\mathfrak{B}) < \min(\sigma_{+}(\Sigma), \sigma_{-}(\Sigma))$ .  $\mathfrak{m}(\mathfrak{B}) \geq 1 \Rightarrow$  neither  $\mathfrak{B}_{+}$  nor  $\mathfrak{B}_{-}$  are strictly dissipative.

(Uncontrollable) RLC circuit revisited

Suppose (for the last time)  $R_L = R_C = R$  and  $L = R^2 C$ .



System has a (different) observable storage function. However, cannot embed this in a controllable dissipative system

26/28

・ロト ・ 同ト ・ ヨト ・ ヨト

(Uncontrollable) RLC circuit revisited

Suppose (for the last time)  $R_L = R_C = R$  and  $L = R^2 C$ .



System has a (different) observable storage function. However, cannot embed this in a controllable dissipative system

$$w = (v,i) ext{ and power } = vi, ext{ then } \Sigma = rac{1}{2} egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$$

• Are there physical systems where number of inputs < positive signature? Yes

- Consider a one-port network: v = 0, i = 0: 'Nullator' Both open and short: controllable, 'passive'
- Studied extensively by Carlin, Tellegen in 1960s
- Cannot be realized using just RLC components (Carlin, 1964, IEEE Circuit Theory)
- Need active elements (linked to norators, op-amps)

$$w = (v, i) ext{ and power } = vi, ext{ then } \Sigma = rac{1}{2} egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$$

## • Are there physical systems where number of inputs < positive signature? Yes

- Consider a one-port network: v = 0, i = 0: 'Nullator'
- Studied extensively by Carlin, Tellegen in 1960s
- Cannot be realized using just RLC components
- Need active elements (linked to norators, op-amps)

・ロト ・四ト ・ヨト ・ヨ

$$w = (v,i) ext{ and power } = vi, ext{ then } \Sigma = rac{1}{2} egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$$

### • Are there physical systems where number of inputs < positive signature? Yes

- Consider a one-port network: v = 0, i = 0: 'Nullator' Both open and short: controllable, 'passive'
- Studied extensively by Carlin, Tellegen in 1960s
- Cannot be realized using just RLC components (Carlin, 1964, IEEE Circuit Theory)
- Need active elements (linked to norators, op-amps)

・ロト ・四ト ・ヨト ・ヨ

$$w = (v, i)$$
 and power  $= vi$ , then  $\Sigma = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ 

- Are there physical systems where number of inputs < positive signature? Yes
- Consider a one-port network: v = 0, i = 0: 'Nullator' Both open and short: controllable, 'passive'
- Studied extensively by Carlin, Tellegen in 1960s
- Cannot be realized using just RLC components (Carlin, 1964, IEEE Circuit Theory)
- Need active elements (linked to norators, op-amps)

$$w = (v, i)$$
 and power  $= vi$ , then  $\Sigma = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ 

- Are there physical systems where number of inputs < positive signature? Yes
- Consider a one-port network: v = 0, i = 0: 'Nullator' Both open and short: controllable, 'passive'
- Studied extensively by Carlin, Tellegen in 1960s
- Cannot be realized using just RLC components (Carlin, 1964, IEEE Circuit Theory)
- Need active elements (linked to norators, op-amps)

$$w = (v, i)$$
 and power  $= vi$ , then  $\Sigma = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ 

- Are there physical systems where number of inputs < positive signature? Yes
- Consider a one-port network: v = 0, i = 0: 'Nullator' Both open and short: controllable, 'passive'
- Studied extensively by Carlin, Tellegen in 1960s
- Cannot be realized using just RLC components (Carlin, 1964, IEEE Circuit Theory)
- Need active elements (linked to norators, op-amps)

$$w = (v, i)$$
 and power  $= vi$ , then  $\Sigma = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ 

- Are there physical systems where number of inputs < positive signature? Yes
- Consider a one-port network: v = 0, i = 0: 'Nullator' Both open and short: controllable, 'passive'
- Studied extensively by Carlin, Tellegen in 1960s
- Cannot be realized using just RLC components (Carlin, 1964, IEEE Circuit Theory)
- Need active elements (linked to norators, op-amps)
# system inputs = positive signature of supply rate For example,

$$w = (v, i)$$
 and power  $= vi$ , then  $\Sigma = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ 

- Are there physical systems where number of inputs < positive signature? Yes
- Consider a one-port network: v = 0, i = 0: 'Nullator' Both open and short: controllable, 'passive'
- Studied extensively by Carlin, Tellegen in 1960s
- Cannot be realized using just RLC components (Carlin, 1964, IEEE Circuit Theory)
- Need active elements (linked to norators, op-amps)

《日》 《御》 《문》 《문》 - 臣

- New ARE solvability results (used Indefinite Linear Algebra)
- Showed unobservable storage function inevitable for 'lossless' (periodic) systems
- Embeddability definition
  - rules out fallacious examples,
  - yields an observable-storage-function-based result,
  - causes new fallacies!
  - admits the nullator as passive

# • But nullator is not realizable using passive elements Questions? Thank you

- New ARE solvability results (used Indefinite Linear Algebra)
- Showed unobservable storage function inevitable for 'lossless' (periodic) systems
- Embeddability definition
  - rules out fallacious examples,
  - yields an observable-storage-function-based result,
  - causes new fallacies!
  - admits the nullator as passive
- But nullator is not realizable using passive elements Questions? Thank you

- New ARE solvability results (used Indefinite Linear Algebra)
- Showed unobservable storage function inevitable for 'lossless' (periodic) systems
- Embeddability definition
  - rules out fallacious examples,
  - yields an observable-storage-function-based result,
  - causes new fallacies!
  - admits the nullator as passive
- But nullator is not realizable using passive elements

**Questions**?

Thank you

- New ARE solvability results (used Indefinite Linear Algebra)
- Showed unobservable storage function inevitable for 'lossless' (periodic) systems
- Embeddability definition
  - rules out fallacious examples,
  - yields an observable-storage-function-based result,
  - causes new fallacies!
  - admits the nullator as passive
- But nullator is not realizable using passive elements Questions? Thank you