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Dissipativity, storage functions

Intuitively: a dissipative system

has no source of energy,

absorbs energy supplied,

can store (previously supplied) energy.

Power: wTΣw with Σ: real, symmetric, nonsingular matrix
Quadratic in w: the ‘manifest’ variables: e.g.: v, i in power
QΨ(w, `): quadratic in w, `, and their derivatives too
`: extra/auxiliary variables, for e.g., ‘state’

Storage function

Given a system and and a notion of power wTΣw:

storage function QΨ(w, `) :⇔
d
dt
QΨ(w, `) 6 wTΣw for all

allowed system trajectories
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RLC Circuit example

RL = RC = R and L = R2C ⇒ uncontrollable

C1RL
RC

L C2

v

+

−

i

One input, and one output
Variables w = (v, i)
Supply rate = wTΣw =

vi = 1
2

[
v
i

]T [
0 1
1 0

] [
v
i

]

Though the circuit contains no source, v(t)i(t) can be
negative at some time instants.
In any case (vi: of any sign)

d

dt
(
C1v

2
C1

2
+
Li2L
2

+
C2v

2
C2

2
) 6 vi

Rate of increase of stored energy 6 supplied power

Faster increase ⇒ source
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What is general about wTΣw?

vi: voltage × current = physical power

Fv: Force × velocity = physical power

pressure & flow-rate, etc.

γ2u2 − y2 disturbance attenuation: H∞-norm

y = φ(u), and φ is a ‘sector’ nonlinearity,
φ ∈ sector (α, β) :⇔

0 6 (y − αu)(u− y
β

) =

[
u
y

]T [ −α (α+β)
2β

(α+β)
2β

−1
β

] [
u
y

]
Popov criteria, involving dynamic notions of power

A common framework for stability results: passivity
result, small-gain theorem, circle criterion

Stability results in nonlinear dynamical systems

Lyapunov function: d
dt

storage function 6 0.

But, this talk: linear systems
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Dissipative :≡ ∃ a storage function

Define a system to be Σ-dissipative if there exists a storage
function QΨ(w, `), i.e.

d

dt
QΨ(w, `) 6 wTΣw for all allowed trajectories

w: manifest variables: power is supplied through these
variables: wTΣw

QΨ(w, `): quadratic function of (w, `) and their
derivatives too: energy stored within the system

for QΨ(w) = xTKx with K as Algebraic Riccati
Inequality (ARI) solutions

{all allowed trajectories} =: system ‘behavior’
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Behavior

P (s), Q(s), N(s) and D(s) polynomial matrices of suitable size

Consider G(s) = P (s)−1Q(s), P and Q need not be left-coprime

System behavior B := {(u, y) | y = Gu}[
Q( d

dt
) −P ( d

dt
)
] [u
y

]
= 0 (Kernel representation)

Consider G(s) = N(s)D(s)−1

B := {(u, y) | there exists an ` such that

[
u
y

]
=

[
D( d

dt
)

N( d
dt

)

]
`}

Consider state space system ẋ = Ax+Bu and y = Cx+Du

B := {(u, y) | there exists an x such that
ẋ = Ax+Bu and y = Cx+Du}

or

B := {(x, u, y) | ẋ = Ax+Bu and y = Cx+Du}
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Dissipativity: important issues

Should not energy stored within the system be
‘expressible’ in terms of manifest variables?

After all, storage function exists for energy-auditing
w.r.t. external supply.

QΨ(w) assumes ‘expressible’: ‘observable’ storage
function

Definition of dissipativity : existential

How to check if a storage function exists?
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Dissipativity: important questions

C1RL
RC

L C2

v

+

−

i

Recall the storage
function

C1v
2
C1

2
+
Li2L
2

+
C2v

2
C2

2

When L
RL
6= RC2: can express vC1 , vC2 and iL in

v, v̇, v̈, i, i̇ and ï (derivatives of the manifest variables)
L
RL

= RC2 ⇒ uncontrollable

Then: this storage function: not expressible in (v, i) and
their derivatives
Other observable storage functions?

Will the storage function be ‘state functions’: xTKx, for
some constant matrix K?
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Controllable systems

For controllable 1D systems: key equivalence
(Willems & Trentelman: 1998)

System is
Σ-dissipative

⇔

∫
Rw

TΣw dt > 0 for all
compactly supported

system trajectories

Behavior := all allowed system trajectories: ( C∞ )

Controllable ⇔ compactly supported trajectories: dense

Compact support: start from rest, end at rest:
(no ‘initial/final energy’ issues)

Controllability ⇒ there exist observable storage
functions

Some extensions to controllable nD systems:
Pillai & Willems, 2002:
no guaranteed observability (of storage function).
This talk: only 1D systems
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RLC circuit example

Consider again: RL = RC = R and L = R2C
(uncontrollable).
We expect system is dissipative.

C1RL
RC

L C2

v

+

−

i

One input, and one output
Variables w = (v, i)
Supply rate = wTΣw =

vi = 1
2

[
v
i

]T [
0 1
1 0

] [
v
i

]

σ+(Σ) = 1 and σ−(Σ) = 1.
σ+(Σ) and σ−(Σ): # positive and negative eigenvalues of Σ

Karikalan, Belur, Athalye & Abdulrazak Uncontrollable dissipative systems 11/28



Storage functions, LMI, Algebraic Riccati Inequality

QΣ(w) = wTΣw, Σ =

Im 0 0
0 Iq 0
0 0 −Ir

, Jq,r =

[
Iq 0
0 −Ir

]
d
dt
x = Ax+Bu, y = Cx+Du, with (C,A) observable,

(A,B) possibly uncontrollable and w = (u, y)

Well-known result

∃ a real symmetric solution K to the LMI[
(KA+ATK − CTJq,rC) (KB − CTJq,rD)

(KB − CTJq,rD)T −(Im +DTJq,rD)

]
6 0

Then, xTKx is a storage function (⇒ dissipativity)

m : number of inputs, q + r: number of outputs (= p)
σ+(Σ) = m + q and σ−(Σ) = r.
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Riccati Equation and Hamiltonian

Schur complement of this LMI1

Algebraic Riccati inequality

KÃ+ Ã∗K +KD̃K − C̃ 6 0,

Define the Hamiltonian matrix H :=

[
Ã D̃

C̃ −Ã∗

]
ARE solutions K ⇔ an n-dimensional H-invariant

subspaces is a ‘graph’ subspace: image

[
I
K

]
Controllability of (Ã, D̃): simplifies results

‘Mixed’-sign: C̃ is not sign-definite
(unlike LQ, H∞-norm)

Mixed-sign ARE: H∞-control

1(Im + DT Jq,rD) > 0 and Ã := (A−B(Im + DT Jq,rD)−1DT Jq,rC),

D̃ := B(Im + DT Jq,rD)−1BT and C̃ = CT (Jq,r + DDT )−1C.
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KÃ+ Ã∗K +KD̃K − C̃ 6 0,

Define the Hamiltonian matrix H :=

[
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]
ARE solutions K ⇔ an n-dimensional H-invariant

subspaces is a ‘graph’ subspace: image

[
I
K

]
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Ã D̃

C̃ −Ã∗
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Controllability of (Ã, D̃): simplifies results

‘Mixed’-sign: C̃ is not sign-definite
(unlike LQ, H∞-norm)

Mixed-sign ARE: H∞-control
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Main result

Suppose behavior B satisfies:

1 uncontrollable poles are unmixed, i.e. no two of them
add to zero

2 The feed-through term D satisfies (Im +DTJq,rD) > 0
(Controllable part of B is strictly dissipative ‘at infinity’)

Define Bcont as the controllable part of B.

Then, B is Σ-dissipative ⇔ Bcont is Σ-dissipative.

First: Lyapunov equation solvability (autonomous part)

After all, Lyapunov functions: storage functions for
autonomous systems

Second: (Im +DTJq,rD) > 0 :
strictness of energy absorption for feed-through term
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Proof techniques

Hamiltonian matrix has jR eigenvalues
(unlike controllable/observable LQ)

Used results on Indefinite Linear Algebra:
Gohberg-Lancaster-Rodman

∃ an observable storage function, state function: xTKx

For uncontrollable part:
expectedly the Lyapunov equation solvability condition

Karikalan, Belur, Athalye & Abdulrazak Uncontrollable dissipative systems 15/28



Proof techniques

Hamiltonian matrix has jR eigenvalues
(unlike controllable/observable LQ)

Used results on Indefinite Linear Algebra:
Gohberg-Lancaster-Rodman

∃ an observable storage function, state function: xTKx

For uncontrollable part:
expectedly the Lyapunov equation solvability condition

Karikalan, Belur, Athalye & Abdulrazak Uncontrollable dissipative systems 15/28



Proof techniques

Hamiltonian matrix has jR eigenvalues
(unlike controllable/observable LQ)

Used results on Indefinite Linear Algebra:
Gohberg-Lancaster-Rodman

∃ an observable storage function, state function: xTKx

For uncontrollable part:
expectedly the Lyapunov equation solvability condition

Karikalan, Belur, Athalye & Abdulrazak Uncontrollable dissipative systems 15/28



Proof techniques

Hamiltonian matrix has jR eigenvalues
(unlike controllable/observable LQ)

Used results on Indefinite Linear Algebra:
Gohberg-Lancaster-Rodman

∃ an observable storage function, state function: xTKx

For uncontrollable part:
expectedly the Lyapunov equation solvability condition

Karikalan, Belur, Athalye & Abdulrazak Uncontrollable dissipative systems 15/28



Proof techniques

Hamiltonian matrix has jR eigenvalues
(unlike controllable/observable LQ)

Used results on Indefinite Linear Algebra:
Gohberg-Lancaster-Rodman

∃ an observable storage function, state function: xTKx

For uncontrollable part:
expectedly the Lyapunov equation solvability condition

Karikalan, Belur, Athalye & Abdulrazak Uncontrollable dissipative systems 15/28



Unobservable inevitable?

Suppose some uncontrollable poles are on the imaginary axis
(i.e. periodic solutions).
Then, unobservability of the ARE solution K is inevitable

Autonomous behavior Baut

Consider d
dt
x = Ax, w = Cx, with σ(A) ∩ iR 6= ∅

and power = −wTw.
Suppose ∃ a storage function xTKx satisfying

d

dt
xTKx 6 QΣ(w) for all w ∈ Baut.

Then every λ ∈ σ(A) ∩ iR is unobservable.
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Some non-autonomous B too

Need unobservable variables in storage function.

More precisely, for periodic uncontrollable trajectories,
∃ storage functions ⇒ unobservable.

B with a ‘static’ controllable part

Consider d
dt
x = Ax, w2 = Cx+Dw1 with (C,A) observable.

Assume (Im +DTJq,rD) > 0 and σ(A) ⊂ iR.
Then, 6 ∃ a symmetric solution to the corresponding ARE.
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Allow unobservability ⇒ ‘fallacious(?)’ possibilities

Can unobservable variables cause a problem?
Every autonomous system is orthogonal to C∞(R,Rn)
Willems (CDC-2004):

B1 : any autonomous system B2 : full = C∞(R,Rn)

System B1 in variable w System B2 in variable v
d
dt
z = Az
w = Cz

d
dt
x = −ATx+ CT v

Storage function xT z (unobservable from w and v).
B1 and B2 are ‘orthogonal’2

Consider S = 1
2

[
0 I
I 0

]
. We get 1

2

[
w
v

]T
S

[
w
v

]
= wT v.

The system B1 ×B2 is S-lossless.

2For controllable behaviors B1 and B2, call them orthogonal if
∫
R wT vdt = 0

for all w ∈ B1 and v ∈ B2 of compact support.
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Third definition?

Recall
Controllable systems:

dissipativity defined without storage function∫
Rw

TΣwdt > 0 ∀ compactly supported w: (‘denseness’)

dissipative ⇔ ∃ observable storage function

Uncontrollable systems:

Compactly supported trajectories definition

Dissipative :≡ Observable storage function exists

Dissipative :≡ Any (unobservable?) storage function
exists

Unobservable storage function: not ok
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Embeddability in some controllable dissipative behavior

Consider a controllable behavior B, and power wTΣw:
The dissipation inequality:

d

dt
QΨ(w) 6 wTΣw for all w ∈ B

Every sub-behavior of B is also Σ-dissipative.

Controllable B1, B2 are orthogonal ⇒ their (respective)
sub-behaviors also orthogonal (even if uncontrollable)

Embeddability definition

A behavior B is called Σ-dissipative if

there exists Bsup such that

B ⊆ Bsup Bsup is Σ-dissipative Bsup is controllable
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Dissipativity ⇒ not too many inputs

Suppose B is Σ-dissipative, with Σ = ΣT nonsingular
m(B): number of inputs of a system
σ+(Σ): number of positive eigenvalues of Σ

Then, m(B) 6 σ+(Σ)

Consider

Σ M1 M2 M3 N
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




1
0
0
0




1 0
0 1
0 0
0 0




1 0
0 1

0.5 0
0 0




1 0 0
0 1 0
0 0 1
0 0 0


Yes Yes Yes No

MT
i ΣMi > 0 ⇒ rank(Mi) 6 2(= σ+(Σ))

Controllable systems: images of M( d
dt

) with m(B) = rank M(ξ)
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Then, m(B) 6 σ+(Σ)

Consider

Σ M1 M2 M3 N
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




1
0
0
0




1 0
0 1
0 0
0 0




1 0
0 1

0.5 0
0 0




1 0 0
0 1 0
0 0 1
0 0 0


Yes Yes Yes No

MT
i ΣMi > 0 ⇒ rank(Mi) 6 2(= σ+(Σ))

Controllable systems: images of M( d
dt

) with m(B) = rank M(ξ)
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‘Fallacious example’ resolved

Recall B1 and B2:

System B1 in variable w System B2 in variable v
d
dt
z = Az
w = Cz

d
dt
x = −ATx+ CT v

B1, B2 not embeddable in
controllable & orthogonal Bsup

1 , Bsup
2 .

Too many inputs (for what

[
0 In
In 0

]
allows: σ+ = n = σ−)

Recall that:

the system in (w, v) is ‘lossless’ with respect to

[
0 I
I 0

]
Storage function xT z (unobservable from w and v).
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Independent result for observable storage function

An independent result that deduces:
enough inputs, uncontrollable ⇒ cannot be lossless (w.r.t.
observable storage function).

Theorem 10, Shodhan Rao, IJC, 2012

Suppose B is lossless (:≡ ∃ an observable storage function)

with power = wTΣw, and Σ =

[
0 In
In 0

]
and B has n-inputs. Then, B is controllable.
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Embeddability: pros/cons

Embeddability definition removes fallacious examples

Concludes independently an
observable-storage-function-based dissipativity result

Drawbacks?
Can construct nonzero B that is both
strictly Σ-dissipative and strictly anti Σ-dissipative!

Theorem

Suppose Σ = ΣT is nonsingular and indefinite.
Then, ∃ nonzero behavior B such that

can construct controllable B+ and B− with B = B+ ∩B−,

B+ is strictly Σ dissipative, and

B− is strictly −Σ dissipative.

Further, any such B is autonomous, i.e. zero number of inputs.

Karikalan, Belur, Athalye & Abdulrazak Uncontrollable dissipative systems 24/28



Embeddability: pros/cons

Embeddability definition removes fallacious examples

Concludes independently an
observable-storage-function-based dissipativity result

Drawbacks?
Can construct nonzero B that is both
strictly Σ-dissipative and strictly anti Σ-dissipative!

Theorem

Suppose Σ = ΣT is nonsingular and indefinite.
Then, ∃ nonzero behavior B such that

can construct controllable B+ and B− with B = B+ ∩B−,

B+ is strictly Σ dissipative, and

B− is strictly −Σ dissipative.

Further, any such B is autonomous, i.e. zero number of inputs.

Karikalan, Belur, Athalye & Abdulrazak Uncontrollable dissipative systems 24/28



Embeddability: pros/cons

Embeddability definition removes fallacious examples

Concludes independently an
observable-storage-function-based dissipativity result

Drawbacks?
Can construct nonzero B that is both
strictly Σ-dissipative and strictly anti Σ-dissipative!

Theorem

Suppose Σ = ΣT is nonsingular and indefinite.
Then, ∃ nonzero behavior B such that

can construct controllable B+ and B− with B = B+ ∩B−,

B+ is strictly Σ dissipative, and

B− is strictly −Σ dissipative.

Further, any such B is autonomous, i.e. zero number of inputs.

Karikalan, Belur, Athalye & Abdulrazak Uncontrollable dissipative systems 24/28



Embeddability: pros/cons

Embeddability definition removes fallacious examples

Concludes independently an
observable-storage-function-based dissipativity result

Drawbacks?
Can construct nonzero B that is both
strictly Σ-dissipative and strictly anti Σ-dissipative!

Theorem

Suppose Σ = ΣT is nonsingular and indefinite.
Then, ∃ nonzero behavior B such that

can construct controllable B+ and B− with B = B+ ∩B−,

B+ is strictly Σ dissipative, and

B− is strictly −Σ dissipative.

Further, any such B is autonomous, i.e. zero number of inputs.

Karikalan, Belur, Athalye & Abdulrazak Uncontrollable dissipative systems 24/28



Embeddability: pros/cons

Embeddability definition removes fallacious examples

Concludes independently an
observable-storage-function-based dissipativity result

Drawbacks?
Can construct nonzero B that is both
strictly Σ-dissipative and strictly anti Σ-dissipative!

Theorem

Suppose Σ = ΣT is nonsingular and indefinite.
Then, ∃ nonzero behavior B such that

can construct controllable B+ and B− with B = B+ ∩B−,

B+ is strictly Σ dissipative, and

B− is strictly −Σ dissipative.

Further, any such B is autonomous, i.e. zero number of inputs.

Karikalan, Belur, Athalye & Abdulrazak Uncontrollable dissipative systems 24/28



Embeddability: pros/cons

Embeddability definition removes fallacious examples

Concludes independently an
observable-storage-function-based dissipativity result

Drawbacks?
Can construct nonzero B that is both
strictly Σ-dissipative and strictly anti Σ-dissipative!

Theorem

Suppose Σ = ΣT is nonsingular and indefinite.
Then, ∃ nonzero behavior B such that

can construct controllable B+ and B− with B = B+ ∩B−,

B+ is strictly Σ dissipative, and

B− is strictly −Σ dissipative.

Further, any such B is autonomous, i.e. zero number of inputs.

Karikalan, Belur, Athalye & Abdulrazak Uncontrollable dissipative systems 24/28



Embeddability: another drawback

The non-strict case:

Theorem

Suppose Σ = ΣT is nonsingular and indefinite. Then, can construct
B such that

there exist controllable B+ and B− with B = B+ ∩B−,

B+ is Σ dissipative, and

B− is -Σ dissipative.

Further,
any such B satisfies m(B) 6 min(σ+(Σ), σ−(Σ)).
In case B is uncontrollable, m(B) < min(σ+(Σ), σ−(Σ)).
m(B) > 1 ⇒ neither B+ nor B− are strictly dissipative.
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(Uncontrollable) RLC circuit revisited

Suppose (for the last time) RL = RC = R and L = R2C.

C1RL
RC

L C2

v

+

−

i
# inputs = # outputs = 1
σ+(Σ) = σ−(Σ) = 1
Variables w = (v, i)
Supply rate = wTΣw =

vi = 1
2

[
v
i

]T [
0 1
1 0

] [
v
i

]

System has a (different) observable storage function.
However,
cannot embed this in a controllable dissipative system
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Maximum input cardinality

# system inputs = positive signature of supply rate
For example,

w = (v, i) and power = vi, then Σ = 1
2

[
0 1
1 0

]
Are there physical systems where

number of inputs < positive signature? Yes

Consider a one-port network: v = 0, i = 0: ‘Nullator’
Both open and short: controllable, ‘passive’

Studied extensively by Carlin, Tellegen in 1960s

Cannot be realized using just RLC components
(Carlin, 1964, IEEE Circuit Theory)

Need active elements (linked to norators, op-amps)
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Conclusions

For (A,B) uncontrollable

New ARE solvability results (used Indefinite Linear
Algebra)

Showed unobservable storage function inevitable for
‘lossless’ (periodic) systems

Embeddability definition

rules out fallacious examples,
yields an observable-storage-function-based result,
causes new fallacies!
admits the nullator as passive

But nullator is not realizable using passive elements

Questions? Thank you
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