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Outline

Control: block diagram approach

open-loop, feedback

Causality, linearity

Transfer function models: frequency domain approach

State space models

Poles, zeros

Stability

Feedback controller design: P, PD, PID
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open-loop systems: causality

Consider the system G

Input u affects output y

Input and output are functions of time t

Output y(t0) depends on values of u(t) only for t 6 t0:

causality

Physical systems are causal: non-anticipating

Output now cannot depend on future input
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Linear systems

Scaling of input u results in output scaled by same amount

Input trajectory u suppose gives output y, then 2u gives 2y

If u1 and u2 give outputs y1 and y2 then

u1 + u2 gives output y1 + y2

Systems in nature are linear at least for small deviations

(Loosely speaking) ‘nonlinearities are like dominant second-order
effects’

When first order effect is zero, then nonlinearity cannot be
ignored

An intuition gathered from (simplified) linear model helps
analyzing nonlinear systems
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Why control?

We want tracking: output should ‘track’ a given profile, give
input suitably

Regulation: temperature regulation, market/exchange rate
regulation

Policy ≡ control

Automatic control: input is given as some law based on output
value

For temperature control: heat/cold fluid input depends on
thermostat reading
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feedback

Concern of ‘over-correction’: can cause instability

Time-delays in the system: input’s influence on output visible
only after some time

Physical systems are governed by differential equations
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Differential equation, transfer function

Consider function u(t) and y(t), and suppose

u = 7y and u +
d

dt
u = 7y − d

dt
y

In one case, y = 1
7u. In other case?

‘dynamic’ relation

In fact, suppose input u is zero. Then d
dty = 7y: unstable

If initial value of y(0) is 3, then y(t) = 3e7t

We take ‘Laplace transform’ of above differential equation and

u(t)→ U(s) and y(t)→ Y (s) gives, d
dt → s

Y (s)
U(s) = s+1

7−s

For the system with input u and output y, the ‘transfer function’ is
s+1
7−s .
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Transfer function

Only for linear, time-invariant differential systems:

Time-invariant: the input and output variables can depend on
time, but

the laws relating input and output (and their derivatives) do not
depend on time explicitly

Same experiment is repeated/carried-out tomorrow, same results

‘Differential’: systems governed by differential equations: G(s)

Transfer function G(z): discrete time systems: difference
equations

Today: transfer function G(s): continuous time LTI systems
(Convention: G(s): continuous time, s→ d

dt
G(z): discrete time, z → ‘forward shift map’: non-causal

Belur, CC group, EE Control: feedback/open-loop 8/27



Transfer function

Only for linear, time-invariant differential systems:

Time-invariant: the input and output variables can depend on
time, but
the laws relating input and output (and their derivatives) do not
depend on time explicitly

Same experiment is repeated/carried-out tomorrow, same results

‘Differential’: systems governed by differential equations: G(s)

Transfer function G(z): discrete time systems: difference
equations

Today: transfer function G(s): continuous time LTI systems
(Convention: G(s): continuous time, s→ d

dt
G(z): discrete time, z → ‘forward shift map’: non-causal

Belur, CC group, EE Control: feedback/open-loop 8/27



Why automatic control?

Automatic-control ≡ feedback control

With open-loop: even if system is ‘unstable’, can control output
y by suitably choosing input u provided

System transfer function is known accurately, and
‘Initial condition’ (meaning y and some number of derivatives)
are known precisely

If not known precisely, then cannot guarantee good control of
output y

In practice, parameters are not known precisely: we want
‘robustness’

Robust design ≡ We design for ‘nominal’ values,
but same design works for ‘nearby’ other values also
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Open-loop control

Predecide what input u? will achieve required output y?.

No need to ‘sense’ actual output y (no sensors required)

Not reasonable in practice. Traffic light timings require
re-adjustment

Not possible if system is unstable

Often sub-optimal
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Stability

Various (related) notions:

Output y goes to zero, when input u goes to zero

Output y remains bounded, when input u is bounded

Output y is bounded, when input is ‘identically’ zero (for any
initial condition)

Output y goes to zero, when input is identically zero (for any
initial condition)

Stability conclusion can change depending on input/output
classification of variables
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Feedback control

Examples:

Automatic temperature regulation (in spite of disturbances:
external heat)

Servo-motor control: remove off-set

Traffic light control, based on actual vehicle flow data (rather
than preset-timings)

More generally, queue management: internet routers

Market-regulation (inflation, exchange rate), using bank’s
‘cash-reserve-ratio’, interest-rate

Satellite control, robotics
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Why feedback control?

Feedback control is required for

To achieve stability: closed-loop-stability

To make y track u even better

Have less steady state error (limt→∞ y(t)− u(t))

Faster transients: output y ‘tracks’ u fast

Optimization: least energy spent in input u, least ‘total’
deviation of output y
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Step input and step response
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Desired step-response

Stability: output settles to some value

Ideally, output value = input value (at steady state, at least)

Output responds ‘quickly’ to input (not ‘sluggishly’)

Basic principle:

Compare output value with desired value =: error e(t)

Feed error back: large-error : more corrective signal c(t)

Make corrective signal ‘proportional’ to error: P-controller
c(t) = ke(t): design k

c = kP e + kD
d
dte: PD-controller, good for quickening

c = kP e + kD
d
dte + kI

∫
e: PID-controller

(kI for making steady state error = 0

All this: at this point: thumb-rules: can cause instability

Top priority: stability of the closed loop
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High gain feedback

To make output-error zero ‘quickly’: use high gain

High-gain can result in instability: especially for delayed systems

Designing kP , kD and kI values requires intuition and transfer
function knowledge
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Transfer function G(s)

SISO ≡ Single input, single output

G(s) = n(s)
d(s) = s+1

7−s

Roots of denominator d(s) ≡ poles of the system/transfer
function

Roots of numerator n(s) ≡ zeros of the system

DC gain: put s = 0, and evaluate G

Poles, zeros and DC gain give transfer function (SISO)
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Stability

For stability, poles should be on the left-half-complex plane

All roots of the denominator should have real part negative

Real-part zero: ‘marginal’ stability

Real part of some pole: instability
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Transfer function

Usually ‘proper’ transfer function: numerator degree 6
denominator degree

More poles than zeros

‘Smoothening’ : ‘relative degree’ : den-degree − num-degree

If input is discontinuous, output gets ‘smoothened’ if relative
degree is high

G(s) = 1
2 : an integrator: output is the integral of the input

G(s) = s: differentiator: not non-causal (for continuous time):
tachometer
(Misconception is that improper transfer functions are
non-causal)
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Complex plane
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Transfer function

G(s) indicates ‘amount of pure scaling’ for exponential inputs

If input u(t) = e−2t, then output y(t) = G(−2)e−2t

If input u(t) = sin 3t, then output
y(t) = |G(3j)| sin(3t + ∠(G(3j)))

Output has phase-lag (or lead) for sinusoidal inputs: lag =
∠G(3j)

Amplification of sinusoidal input = |G(3j)|
‘Frequency domain analysis’
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Bode plot

Magnitude plot: plot |G(jω)| versus frequency ω: both in log-scales

Similarly phase-plot

Frequency domain analysis
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Instability

If open-loop is unstable, then closed loop can be made stable
using feedback

Sometimes using just P-controller: constant gain feedback

Sometimes, derivatives and integrals of output: dynamic
controller

Further control objectives: optimal control: time-optimality,
fuel-optimality, etc.
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Inner and outer loop

In many applications: a fast inner-loop and a slow outer-loop is
designed separately
For example: optimal trajectory tracking: satellite launch vehicle
trajectory to space
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Trade-offs
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Controller implementation

Controllers are of-late implemented digitally. (Earlier analog
controllers)

Controllers are designed using more sophisticated packages:
Scilab, Matlab

Plants (systems to be controlled) often MIMO: intuition less
helpful

Packages come with their limitations (properness, etc.)

Real time adaptability

Computational intensity: distributed control
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Trade-offs: theoretical and practical

Noise added at separate points in the loop: cannot achieve
disturbance attenuation due to both noises

Output regulation versus input energy usage

Time-optimality versus input energy usage

Accurate system parameter knowledge versus robustness

Controller being robust and controller having to be implemented
accurately
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