Indian Institute of Technology Bombay
 Dept of Electrical Engineering

Handout 5
EE 210 Signals and Systems
Homework 2
August 21, 2015
Question 1) For an odd function, i.e. $f_{o}(u)=-f_{o}(-u)$, for u in the range $[-\pi, \pi]$, show that

$$
\begin{equation*}
f_{\text {odd }}(u)=\sum_{m \geq 1} A_{m} \sin (m u),-\pi \leq u \leq \pi . \tag{1}
\end{equation*}
$$

Question 2) Let $f(t)=t$ for $-\frac{T}{2} \leq t \leq+\frac{T}{2}$. Find the FS expansion for $f(\cdot)$.
Question 3) Show that every continuous even function defined on $[-\pi, \pi]$ admits an expansion,

$$
\begin{equation*}
f_{\text {even }}(u)=\sum_{m \geq 0} \hat{A}_{m} \cos (m u) \tag{2}
\end{equation*}
$$

Question 4) A string is tied straight between two hinges at coordinates (0,0) and ($L, 0$) respectively. A point at a horizontal distance of p from origin is given a vertical displacement h initially. Let the initial position be described by the function $f(u)$. We know that the frequencies are multiples of $\frac{2 \pi}{L}$, which is called the fundamental frequency or the first harmonic. The higher harmonics are now progressively counted as second, third etc.
a) Find the coefficients A_{m} if

$$
f(u)=\sum_{m \geq 1} A_{m} \sin \left(\frac{2 \pi}{L} m u\right) .
$$

b) Can you expand

$$
f(u)=\sum_{m \geq 0} B_{m} \cos \left(\frac{2 \pi}{L} m u\right) .
$$

In this case, find B_{m}.
c) For what value of p are the even harmonics missing.
d) Is there a position p such that the odd harmonics are missing.

Question 5) Find the Fourier Series expansion for

$$
\begin{equation*}
f(t)=\sin (\theta+2 \pi f t) \text { where } \theta \in \mathbb{R} \tag{3}
\end{equation*}
$$

Are the F.S. coefficients continuous in θ ?

Question 6) Consider a T-periodic signal $x(t)$ shown in figure. This is known as the rectangular train, where the non-zero amplitude is unity.

a) Find the Fourier Series coefficients of this signal.
b) Can you find a system $h(t)$ such that $y(t)=x(t) * h(t)$ is the following signal,

c) Can you find the FS coefficients of $y(t)$ by using parts (a) -(b), and without explicitly performing an additional integration.
d) Consider the following $2 T$-periodic rectangle train $s(t)$ of height 2 units.

Find the FS coefficients of $y(t) s(t)$, where the multiplication is point-wise for every t.
e) Plot the FS coefficients for parts (c) and (d), assuming $T=10$.

Question 7) Find the Fourier Transform of the following signal $y(t)$.

