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Question 1) For an odd function, i.e. f,(u)=-f,(-u), defined for u in the range [-m, 7],
show that

Joaa(u) = Z Apsin(mu), —-T <u <. (1)

m>1

Solution: We know that continuous functions admit a representation

f(u) =Y Ay sin(mu) + Y Ay, cos(mu).

m>1 m>0

An oddfunction can be written as
F) = 5 (F() = F(-)
= —( Y Apsin(mu) + Y Ay, cos(mu) = Y =Aysin(mu) = Y. Ay, cos(mu))

m>1 m>0 m>1 m>0

= > Ay sin(mu).

m>1

Question 2) Let f(t) =t for -2 <t <+L. Find the FS expansion for f(-).
Solution: The FS coefficients are given by
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An alternate (but equivalent) way is as follows. For any odd function we can write,
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The take home lesson is that evaluating dotproducts with respect to sine functions will give
Fourier series of an odd function. For even functions, we need to take dot-products on a
single interval with cosine waves.

Question 3) Show that every continuous even function defined on [-m, 7] admits an
expansion,

feven(u) = " Ay, cos(mu) (6)

m>0

Solution: Similar to the first question

F) =5 (F) + F(-w) -
= % ( 21 A sin(mu) + Z:O A, cos(mu) + 21 —-A,, sin(mu) + Z:o An cos(mu)) (8)
= Zo By, cos(mu). ()

Question 4) A string is tied straight between two hinges at coordinates (0,0) and (%,0)
respectively. A point at a horizontal distance of p from origin is given a vertical displacement
h initially. Let the initial position be described by the function x(u). We know that the
frequencies are multiples of 27”, which is called the fundamental frequency or the first
harmonic. The higher harmonics are now progressively counted as second, third etc.

a) Find the coefficients A,, if

g(u) = > A, sin(%rmu).

m>1

L L

Solution: We can extend the function to the interval [-%, %] by defining g(u) = —g(-u),

which makes it an odd function. Now, odd functions admit a sinusoidal series expansion as
in Questions 1 and 2. Let a,, represent the FS coefficients of the odd function g(u), then
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where the equality (10) is true since f(u) is an odd function in (-£,%) (see Question 1).

The expression (11) follows since ag = [ g(u)du = 0 for the odd function. From this, the
coefficients A,,, that we wish to evaluate are nothing but
Ay = j(am - a—m)a Vm > 1.

We have already explained in Question 2 that the FS coefficient for a T—periodic odd
function is given by

=—j= / g(1) sm(—mt)dt (12)

Some students were confused by the fact a,, is a complex number even when g(t) is a real
function. This can demystified as follows. When ¢(t) is real, we know that the Fourier
Transform (Series) is symmetric, i.e. a,, = a*m. Thus

A = j(am —a_p) = j(am — al,) = 7*2Imag(a,,) = —2Imag(a,,).
From (12), we get
1 3 2
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(b) Find the coefficients B,, such that

g(t)= > By cos(—mt)
m>0
Solution: While we can continue in the same fashion as above, let us do it by a different
approach. Let us evaluate the Fourier Transform of g(u) defined for (0, L’), call it G(f).
Then,

G(/f) = exp(—j2m fp) —exp(—j2rfL’) 1- eXp(—j27Tfp)] .

(27 f)2[ L'~-p p



Notice that the Fourier Transform of g(-t) is G(-f). Furthermore, we can construct an
even function by g.(t) = g(t) + g(-t) and the Fourier Transform of g.(t) is G(f) + G(-f).
However

Ge(f) =G(f)+G*(f) = 2.Real (G(f)) .

Imagine repeating the waveform g.(¢) over the entire real axis to obtain g,(¢). This is like
tiling over the z—axis with non-overlapping replicas of g.(t), see the Figure below.
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Figure 1: g,(t) obtained as periodic repetition of ¢.(t) (thick portion)

Now, the Poisson sum-formula will say that the F'S coefficients of g, () is nothing but

Ay = %Ge(%) = %ReaI(G(%))
2 h cos(2mEp) —cos(2n L") 1-cos(2m%p)
ZE(ZW%)Ql L'-p - P ]
2 h cos(2rp) = (=1)™ 1 -cos(2m%p)
:z(QW%P[ L'-p - D :|

The coefficients required in the question can now be found as B,, = a,, + a_,, for m >0 and
BO = Qagp.
Previous Question: Now that we introduced this technique, it can as well solve the previous

question (part (a)).
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Figure 2: g,(t) obtained as periodic repetition of go4q(t) (thick portion)
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The FS coefficients there are nothing but j2(Im(G(%)). Clearly,

h 2 1 1
Im(G(@) :——sin(lmp) (—+ )
L fm P -
We can now find A,, in the previous question as

A= (i7im(G(D) -7 (6-2))
4 h .27 (1 1 )
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We obtained the same formula by alternate means earlier. Figure illustrates the FS recon-
stuction.

(c) Find the coefficients C,, such that

9(1) = 3, Cuuexp(jme).

meZ

Solution: Can be done similar to the last two parts.
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Figure 3: g,(t) obtained as periodic repetition of ¢g(¢) (thick portion)

(d) We have learnt that FS coefficients can uniquely identify a continuous function. How-
ever, there seems to be three expansions given in parts (a),(b) and (¢). How do you
reconcile these different expansions.

Solution: Certainly the three expansions correspond to three different functions in —%, %
In particular, (a) is an odd function, (b) is an even function and (c) is not even or odd.
However, all these reconstructions agree on the same values in the interval [0, %], which

was our interest.

(e) Which of the expansions above is useful in identifying the harmonics of a vibrating
string. Write the first harmonic frequency and suggest a position p for which all the even
harmonics are missing.

Hint: ‘Fourier Transform+Poisson sum-formula+Convolution-multiplication” can handle
Fourier Series

Solution: Certainly part (a) meets the boundary conditions of the vibrating string (see
derivation in class). Thus, the even harmonics can be suppressed by choosing

pzz

Question 5) Find the Fourier Series expansion for
f(t) =sin(f + 27 fot) where 0 € R. (13)

Are the F.S. coefficients continuous in 67
Solution: Now that we are familiar with the Fourier Transform, we can do it easily. Notice
that

F(8) = = exp(j8) exp(j2m fot) — — exp(—j6) exp(—j2r fot)
J2 Jj2

Clearly the fundamental frequency is fy, and the FS coefficients are

1 , 1 .
ar = —exp(jb); a_y = —— exp(-3j0)
J2 J2



Clearly, the coefficients are continuous in 6.

Question 6) Consider a T-periodic signal z(t) shown in figure. This is known as the
rectangular train, where the non-zero amplitude is unity.
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a) Find the Fourier Series coefficients of this signal.

Solution: Since rect,(t) has 7sinc(f7) as the Fourier transform, a periodic repetition of
the rectangle waveform will have a sampled and scaled sinc waveform in frequency domain.
With 7 = £ the FS coefficients are

b) Can you find a system h(t) such that y(t) = z(t) * h(t) is the following signal,

y(t)
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Soution: h(t) = %rect%(t) will do.
c) Can you find the FS coefficients of y(t) by using parts (a) —(b), and without explicitly

performing an additional integration.
Solution: By convolution-multiplication theorem. Note that we are convolving x(t) with
%rect%(t) to obtain y(t). Thus FS coefficients of y(t) are

1
A = EsinCQ(%).

d) Consider the following 27-periodic rectangle train s(t) of height 2 units.

s(t)
|
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Find the FS coefficients of y(t)s(t), where the multiplication is point-wise for every ¢.
Solution: The waveform y(¢)s(t) can also be obtained in the following way. Consider the

pulse train z,(¢) shown in Figure 4.
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Figure 4: Rectangular train x,(t)

Notice that the difference between x(¢) and z,(¢) is only in the time period, i.e. the
latter is 27 periodic, while the former is T—periodic. Furthermore, notice that

2
y(t).s(t) =x,(t) * Q?Tect% (1),

where the factor 2 comes because of the height of s(t). The FS coefficients of y(¢)s(t) can
now be easily identified as

5 17T . (mT) ) (mT)
Ay = 2.— —sinc(——).sinc(——
2T 2 27 2 2T 2
1
:§sin02(%).

e) Plot the FS coefficients for parts (¢) and (d), assuming 7" = 10.
Solution: to appear soon.

Question 7) Find the Fourier Transform of the following signal y(t).

y(t)
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Solution: The shown waveform is a product of a cosine waveform with a triangle waveform.
This will results in a Fourier transform of the form,

Y(f) = Dsine®(f - fo) + Ssine(f + fo).

where fj is the frequency of the cosine waveform.





