Indian Institute of Technology Bombay
 Dept of Electrical Engineering

Handout 5
EE 210 Signals and Systems
Homework 2
August 21, 2015
Question 1) For an odd function, i.e. $f_{o}(u)=-f_{o}(-u)$, defined for u in the range $[-\pi, \pi]$, show that

$$
\begin{equation*}
f_{\text {odd }}(u)=\sum_{m \geq 1} A_{m} \sin (m u),-\pi \leq u \leq \pi . \tag{1}
\end{equation*}
$$

Solution: We know that continuous functions admit a representation

$$
f(u)=\sum_{m \geq 1} A_{m} \sin (m u)+\sum_{m \geq 0} A_{m} \cos (m u) .
$$

An oddfunction can be written as

$$
\begin{aligned}
f(u) & =\frac{1}{2}(f(u)-f(-u)) \\
& =\frac{1}{2}\left(\sum_{m \geq 1} A_{m} \sin (m u)+\sum_{m \geq 0} A_{m} \cos (m u)-\sum_{m \geq 1}-A_{m} \sin (m u)-\sum_{m \geq 0} A_{m} \cos (m u)\right) \\
& =\sum_{m \geq 1} A_{m} \sin (m u) .
\end{aligned}
$$

Question 2) Let $f(t)=t$ for $-\frac{T}{2} \leq t \leq+\frac{T}{2}$. Find the FS expansion for $f(\cdot)$.
Solution: The FS coefficients are given by

$$
\begin{aligned}
a_{m} & =\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} t \exp \left(-j \frac{2 \pi}{T} m t\right) d t \\
& =\frac{1}{T} \frac{T}{j 2 \pi m}\left[-t \exp \left(-j \frac{2 \pi}{T} m t\right)\right]_{-\frac{T}{2}}^{\frac{T}{2}}+0 \\
& =\frac{1}{j 2 \pi m}-\left(\frac{T}{2} \exp (-j \pi m)+\frac{T}{2} \exp (j \pi m)\right) \\
& =-\frac{T}{j 2 \pi m} \cos (\pi m) \\
& =\frac{(-1)^{m} j T}{2 \pi m} .
\end{aligned}
$$

An alternate (but equivalent) way is as follows. For any odd function we can write,

$$
\begin{align*}
a_{m} & =\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} t \exp \left(-j \frac{2 \pi}{T} m t\right) d t \tag{2}\\
& =\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} t\left(\cos \left(\frac{2 \pi}{T} m t\right)-j \sin \left(\frac{2 \pi}{T} m t\right)\right) d t \tag{3}\\
& =-j \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} t \sin \left(\frac{2 \pi}{T} m t\right) d t \tag{4}\\
& =-2 j \frac{1}{T} \int_{0}^{\frac{T}{2}} t \sin \left(\frac{2 \pi}{T} m t\right) d t . \tag{5}
\end{align*}
$$

Thus, FS coefficients for an odd function boils down to evaluating $\left.\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin \left(\frac{2 \pi}{T} m t\right)\right) d t$, and multiplying the end result by $-j$. Thus

$$
\begin{aligned}
A_{m} & =-\frac{j}{T} 2 \int_{0}^{\frac{T}{2}} t \sin \left(\frac{2 \pi}{T} m t\right) d t \\
& =\frac{j}{T} 2 \frac{T}{2 \pi m}[t \cos]_{0}^{\frac{T}{2}}+0 \\
& =\frac{(-1)^{m} j T}{2 \pi m}
\end{aligned}
$$

The take home lesson is that evaluating dotproducts with respect to sine functions will give Fourier series of an odd function. For even functions, we need to take dot-products on a single interval with cosine waves.

Question 3) Show that every continuous even function defined on $[-\pi, \pi]$ admits an expansion,

$$
\begin{equation*}
f_{\text {even }}(u)=\sum_{m \geq 0} \hat{A}_{m} \cos (m u) \tag{6}
\end{equation*}
$$

Solution: Similar to the first question

$$
\begin{align*}
f(u) & =\frac{1}{2}(f(u)+f(-u)) \tag{7}\\
& =\frac{1}{2}\left(\sum_{m \geq 1} A_{m} \sin (m u)+\sum_{m \geq 0} A_{m} \cos (m u)+\sum_{m \geq 1}-A_{m} \sin (m u)+\sum_{m \geq 0} A_{m} \cos (m u)\right) \tag{8}\\
& =\sum_{m \geq 0} B_{m} \cos (m u) . \tag{9}
\end{align*}
$$

Question 4) A string is tied straight between two hinges at coordinates $(0,0)$ and $\left(\frac{L}{2}, 0\right)$ respectively. A point at a horizontal distance of p from origin is given a vertical displacement h initially. Let the initial position be described by the function $x(u)$. We know that the frequencies are multiples of $\frac{2 \pi}{L}$, which is called the fundamental frequency or the first harmonic. The higher harmonics are now progressively counted as second, third etc.
a) Find the coefficients A_{m} if

$$
g(u)=\sum_{m \geq 1} A_{m} \sin \left(\frac{2 \pi}{L} m u\right) .
$$

Solution: We can extend the function to the interval $\left[-\frac{L}{2}, \frac{L}{2}\right]$ by defining $g(u)=-g(-u)$, which makes it an odd function. Now, odd functions admit a sinusoidal series expansion as in Questions 1 and 2. Let a_{m} represent the FS coefficients of the odd function $g(u)$, then

$$
\begin{align*}
g(u) & =\sum_{m \in \mathbb{Z}} a_{m} \exp \left(j \frac{2 \pi}{L} m u\right) \\
& =\sum_{m \in \mathbb{Z}} a_{m}\left(\cos \left(\frac{2 \pi}{L} m u\right)+j \sin \left(\frac{2 \pi}{L} m u\right)\right) \\
& =j \sum_{m \in \mathbb{Z}} a_{m} \sin \left(\frac{2 \pi}{L} m u\right) \tag{10}\\
& =j \sum_{m \geq 1}\left(a_{m}-a_{-m}\right) \sin \left(\frac{2 \pi}{L} m u\right), \tag{11}
\end{align*}
$$

where the equality (10) is true since $f(u)$ is an odd function in $\left(-\frac{L}{2}, \frac{L}{2}\right)$ (see Question 1). The expression (11) follows since $a_{0}=\int g(u) d u=0$ for the odd function. From this, the coefficients A_{m} that we wish to evaluate are nothing but

$$
A_{m}=j\left(a_{m}-a_{-m}\right), \forall m \geq 1 .
$$

We have already explained in Question 2 that the FS coefficient for a T-periodic odd function is given by

$$
\begin{equation*}
a_{m}=-j \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} g(t) \sin \left(\frac{2 \pi}{T} m t\right) d t . \tag{12}
\end{equation*}
$$

Some students were confused by the fact a_{m} is a complex number even when $g(t)$ is a real function. This can demystified as follows. When $g(t)$ is real, we know that the Fourier Transform (Series) is symmetric, i.e. $a_{-m}=a^{*} m$. Thus

$$
A_{m}=j\left(a_{m}-a_{-m}\right)=j\left(a_{m}-a_{m}^{*}\right)=j^{2} 2 \operatorname{Imag}\left(a_{m}\right)=-2 \operatorname{Imag}\left(a_{m}\right) .
$$

From (12), we get

$$
A_{m}=2 \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} g(t) \sin \left(\frac{2 \pi}{T} m t\right) d t
$$

Take $L^{\prime}=\frac{L}{2}$.

$$
\begin{aligned}
A_{m}= & \frac{4}{L} \int_{0}^{\frac{L}{2}} g(t) \sin \left(\frac{2 \pi}{L} m t\right) d t \\
= & \frac{4}{L} \int_{0}^{p} \frac{h}{p} t \sin \left(\frac{2 \pi}{L} m t\right) d t+\frac{4}{L} \int_{0}^{p} h \frac{L^{\prime}-t}{L^{\prime}-p} \sin \left(\frac{2 \pi}{L} m t\right) d t \\
= & \frac{4}{L} \frac{L}{2 \pi m}\left[-\frac{h}{p} t \cos \left(\frac{2 \pi}{L} m t\right)\right]_{0}^{p}-\frac{4}{L} \frac{L^{2}}{(2 \pi m)^{2}}\left[-\frac{h}{p} \sin \left(\frac{2 \pi}{L} m t\right)\right]_{0}^{p} \\
& +\frac{4}{L} \frac{L}{2 \pi m}\left[-h \frac{L^{\prime}-t}{L^{\prime}-p} \cos \left(\frac{2 \pi}{L} m t\right)\right]_{p}^{L^{\prime}}-\frac{4}{L} \frac{L^{2}}{(2 \pi m)^{2}}\left[h \frac{1}{L^{\prime}-p} \sin \left(\frac{2 \pi}{L} m t\right)\right]_{p}^{L^{\prime}} \\
= & -\frac{4}{L} \frac{L}{2 \pi m} h \cos \left(\frac{2 \pi}{L} m p\right)+\frac{4}{L} \frac{L^{2}}{(2 \pi m)^{2}} \frac{h}{p} \sin \left(\frac{2 \pi}{L} m p\right) \\
& +\frac{4}{L} \frac{L}{2 \pi m} h \cos \left(\frac{2 \pi}{L} m p\right)+\frac{4}{L} \frac{L^{2}}{(2 \pi m)^{2}} \frac{h}{L^{\prime}-p} \sin \left(\frac{2 \pi}{L} m p\right) \\
= & \frac{4}{L} \frac{1}{\left(\frac{2 \pi}{L} m\right)^{2}} \sin \left(\frac{2 \pi}{L} m p\right)\left(\frac{h}{p}+\frac{h}{L^{\prime}-p}\right) \\
= & \frac{2 h}{\left(\frac{2 \pi}{L} m\right)^{2}} \frac{1}{p\left(L^{\prime}-p\right)} \sin \left(\frac{2 \pi}{L} m p\right) .
\end{aligned}
$$

(b) Find the coefficients B_{m} such that

$$
g(t)=\sum_{m \geq 0} B_{m} \cos \left(\frac{2 \pi}{L} m t\right) .
$$

Solution: While we can continue in the same fashion as above, let us do it by a different approach. Let us evaluate the Fourier Transform of $g(u)$ defined for $\left(0, L^{\prime}\right)$, call it $G(f)$. Then,

$$
G(f)=\frac{h}{(2 \pi f)^{2}}\left[\frac{\exp (-j 2 \pi f p)-\exp \left(-j 2 \pi f L^{\prime}\right)}{L^{\prime}-p}-\frac{1-\exp (-j 2 \pi f p)}{p}\right] .
$$

Notice that the Fourier Transform of $g(-t)$ is $G(-f)$. Furthermore, we can construct an even function by $g_{e}(t)=g(t)+g(-t)$ and the Fourier Transform of $g_{e}(t)$ is $G(f)+G(-f)$. However

$$
G_{e}(f)=G(f)+G^{*}(f)=2 \cdot \operatorname{Real}(G(f))
$$

Imagine repeating the waveform $g_{e}(t)$ over the entire real axis to obtain $g_{p}(t)$. This is like tiling over the x-axis with non-overlapping replicas of $g_{e}(t)$, see the Figure below.

Figure 1: $g_{p}(t)$ obtained as periodic repetition of $g_{e}(t)$ (thick portion)

Now, the Poisson sum-formula will say that the FS coefficients of $g_{p}(t)$ is nothing but

$$
\begin{aligned}
a_{m} & =\frac{1}{L} G_{e}\left(\frac{m}{L}\right)=\frac{2}{L} \operatorname{Real}\left(G\left(\frac{m}{L}\right)\right) \\
& =\frac{2}{L} \frac{h}{\left(2 \pi \frac{m}{L}\right)^{2}}\left[\frac{\cos \left(2 \pi \frac{m}{L} p\right)-\cos \left(2 \pi \frac{m}{L} L^{\prime}\right)}{L^{\prime}-p}-\frac{1-\cos \left(2 \pi \frac{m}{L} p\right)}{p}\right] \\
& =\frac{2}{L} \frac{h}{\left(2 \pi \frac{m}{L}\right)^{2}}\left[\frac{\cos \left(2 \pi \frac{m}{L} p\right)-(-1)^{m}}{L^{\prime}-p}-\frac{1-\cos \left(2 \pi \frac{m}{L} p\right)}{p}\right]
\end{aligned}
$$

The coefficients required in the question can now be found as $B_{m}=a_{m}+a_{-m}$ for $m>0$ and $B_{0}=a_{0}$.
Previous Question: Now that we introduced this technique, it can as well solve the previous question (part (a)).

Figure 2: $g_{p}(t)$ obtained as periodic repetition of $g_{\text {odd }}(t)$ (thick portion)

The FS coefficients there are nothing but $j \frac{2}{L}\left(\operatorname{Im}\left(G\left(\frac{m}{L}\right)\right)\right.$. Clearly,

$$
\operatorname{Im}\left(G\left(\frac{m}{L}\right)=-\frac{h}{\left(\frac{2 \pi}{L} m\right)^{2}} \sin \left(\frac{2 \pi}{L} m p\right)\left(\frac{1}{p}+\frac{1}{L^{\prime}-p}\right)\right.
$$

We can now find A_{m} in the previous question as

$$
\begin{aligned}
A_{m} & =j\left(j \frac{2}{L} \operatorname{Im}\left(G\left(\frac{m}{L}\right)\right)-j \frac{2}{L} \operatorname{Im}\left(G\left(-\frac{m}{L}\right)\right)\right) \\
& =\frac{4}{L} \frac{h}{\left(\frac{2 \pi}{L} m\right)^{2}} \sin \left(\frac{2 \pi}{L} m p\right)\left(\frac{1}{p}+\frac{1}{L^{\prime}-p}\right) .
\end{aligned}
$$

We obtained the same formula by alternate means earlier. Figure illustrates the FS reconstuction.
(c) Find the coefficients C_{m} such that

$$
g(t)=\sum_{m \in \mathbb{Z}} C_{m} \exp \left(j \frac{4 \pi}{L} m t\right)
$$

Solution: Can be done similar to the last two parts.

Figure 3: $g_{p}(t)$ obtained as periodic repetition of $g(t)$ (thick portion)
(d) We have learnt that FS coefficients can uniquely identify a continuous function. However, there seems to be three expansions given in parts $(a),(b)$ and (c). How do you reconcile these different expansions.
Solution: Certainly the three expansions correspond to three different functions in $-\frac{L}{2}, \frac{L}{2}$. In particular, (a) is an odd function, (b) is an even function and (c) is not even or odd. However, all these reconstructions agree on the same values in the interval [$0, \frac{L}{2}$], which was our interest.
(e) Which of the expansions above is useful in identifying the harmonics of a vibrating string. Write the first harmonic frequency and suggest a position p for which all the even harmonics are missing.
Hint: 'Fourier Transform+Poisson sum-formula+Convolution-multiplication" can handle Fourier Series

Solution: Certainly part (a) meets the boundary conditions of the vibrating string (see derivation in class). Thus, the even harmonics can be suppressed by choosing

$$
p=\frac{L}{4} .
$$

Question 5) Find the Fourier Series expansion for

$$
\begin{equation*}
f(t)=\sin \left(\theta+2 \pi f_{0} t\right) \text { where } \theta \in \mathbb{R} \tag{13}
\end{equation*}
$$

Are the F.S. coefficients continuous in θ ?
Solution: Now that we are familiar with the Fourier Transform, we can do it easily. Notice that

$$
f(t)=\frac{1}{j 2} \exp (j \theta) \exp \left(j 2 \pi f_{0} t\right)-\frac{1}{j 2} \exp (-j \theta) \exp \left(-j 2 \pi f_{0} t\right)
$$

Clearly the fundamental frequency is f_{0}, and the FS coefficients are

$$
a_{1}=\frac{1}{j 2} \exp (j \theta) ; a_{-1}=-\frac{1}{j 2} \exp (-j \theta)
$$

Clearly, the coefficients are continuous in θ.
Question 6) Consider a T-periodic signal $x(t)$ shown in figure. This is known as the rectangular train, where the non-zero amplitude is unity.

a) Find the Fourier Series coefficients of this signal.

Solution: Since $\operatorname{rect}_{\tau}(t)$ has $\tau \operatorname{sinc}(f \tau)$ as the Fourier transform, a periodic repetition of the rectangle waveform will have a sampled and scaled sinc waveform in frequency domain. With $\tau=\frac{T}{2}$ the FS coefficients are

$$
a_{m}=\frac{1}{T} \frac{T}{2} \operatorname{sinc}\left(\frac{m}{T} \frac{T}{2}\right)=\frac{1}{2} \operatorname{sinc}\left(\frac{m}{2}\right) .
$$

b) Can you find a system $h(t)$ such that $y(t)=x(t) * h(t)$ is the following signal,

Soution: $h(t)=\frac{2}{T} \operatorname{rect}_{\frac{T}{2}}(t)$ will do.
c) Can you find the FS coefficients of $y(t)$ by using parts (a) -(b), and without explicitly performing an additional integration.
Solution: By convolution-multiplication theorem. Note that we are convolving $x(t)$ with $\frac{2}{T} \operatorname{rect}_{\frac{T}{2}}(t)$ to obtain $y(t)$. Thus FS coefficients of $y(t)$ are

$$
a_{m}=\frac{1}{2} \operatorname{sinc}^{2}\left(\frac{m}{2}\right) .
$$

d) Consider the following $2 T$-periodic rectangle train $s(t)$ of height 2 units.

Find the FS coefficients of $y(t) s(t)$, where the multiplication is point-wise for every t.
Solution: The waveform $y(t) s(t)$ can also be obtained in the following way. Consider the pulse train $x_{p}(t)$ shown in Figure 4.

Figure 4: Rectangular train $x_{p}(t)$
Notice that the difference between $x(t)$ and $x_{p}(t)$ is only in the time period, i.e. the latter is $2 T$ periodic, while the former is T-periodic. Furthermore, notice that

$$
y(t) . s(t)=x_{p}(t) * 2 \frac{2}{T} r e c t_{\frac{T}{2}}(t),
$$

where the factor 2 comes because of the height of $s(t)$. The FS coefficients of $y(t) s(t)$ can now be easily identified as

$$
\begin{aligned}
a_{m} & =2 \cdot \frac{1}{2 T} \frac{T}{2} \operatorname{sinc}\left(\frac{m}{2 T} \frac{T}{2}\right) \cdot \operatorname{sinc}\left(\frac{m}{2 T} \frac{T}{2}\right) \\
& =\frac{1}{2} \operatorname{sinc}^{2}\left(\frac{m}{4}\right) .
\end{aligned}
$$

e) Plot the FS coefficients for parts (c) and (d), assuming $T=10$.

Solution: to appear soon.
Question 7) Find the Fourier Transform of the following signal $y(t)$.

Solution: The shown waveform is a product of a cosine waveform with a triangle waveform. This will results in a Fourier transform of the form,

$$
Y(f)=\frac{A}{2} \operatorname{sinc}^{2}\left(f-f_{0}\right)+\frac{A}{2} \operatorname{sinc}^{2}\left(f+f_{0}\right),
$$

where f_{0} is the frequency of the cosine waveform.

