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Question 1) For an odd function, i.e. fo(u) = −fo(−u), defined for u in the range [−π,π],
show that

fodd(u) = ∑
m≥1

Am sin(mu) , −π ≤ u ≤ π. (1)

Solution: We know that continuous functions admit a representation

f(u) = ∑
m≥1

Am sin(mu) + ∑
m≥0

Am cos(mu).

An oddfunction can be written as

f(u) = 1

2
(f(u) − f(−u))

= 1

2
(∑
m≥1

Am sin(mu) + ∑
m≥0

Am cos(mu) − ∑
m≥1

−Am sin(mu) − ∑
m≥0

Am cos(mu))

= ∑
m≥1

Am sin(mu).

Question 2) Let f(t) = t for −T2 ≤ t ≤ +T2 . Find the FS expansion for f(⋅).
Solution: The FS coefficients are given by

am = 1

T ∫
T
2

−
T
2

t exp(−j 2π

T
mt)dt

= 1

T

T

j2πm
[−t exp(−j 2π

T
mt)]

T
2

−
T
2

+ 0

= 1

j2πm
− (T

2
exp(−jπm) + T

2
exp(jπm))

= − T

j2πm
cos(πm)

= (−1)mjT
2πm

.

An alternate (but equivalent) way is as follows. For any odd function we can write,

am = 1
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T
mt)dt (2)

= 1
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−
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T
mt) − j sin(2π
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= −j 1
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T
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0
t sin(2π

T
mt)dt. (5)



Thus, FS coefficients for an odd function boils down to evaluating 1
T ∫

T
2

−
T
2

f(t) sin(2π
T mt))dt,

and multiplying the end result by −j. Thus

Am = − j
T

2∫
T
2

0
t sin(2π

T
mt)dt

= j

T
2
T

2πm
[t cos]

T
2
0 + 0

= (−1)mjT
2πm

.

The take home lesson is that evaluating dotproducts with respect to sine functions will give
Fourier series of an odd function. For even functions, we need to take dot-products on a
single interval with cosine waves.

Question 3) Show that every continuous even function defined on [−π,π] admits an
expansion,

feven(u) = ∑
m≥0

Âm cos(mu) (6)

Solution: Similar to the first question

f(u) = 1

2
(f(u) + f(−u)) (7)

= 1

2
(∑
m≥1

Am sin(mu) + ∑
m≥0

Am cos(mu) + ∑
m≥1

−Am sin(mu) + ∑
m≥0

Am cos(mu)) (8)

= ∑
m≥0

Bm cos(mu). (9)

Question 4) A string is tied straight between two hinges at coordinates (0,0) and (L2 ,0)
respectively. A point at a horizontal distance of p from origin is given a vertical displacement
h initially. Let the initial position be described by the function x(u). We know that the
frequencies are multiples of 2π

L , which is called the fundamental frequency or the first
harmonic. The higher harmonics are now progressively counted as second, third etc.
a) Find the coefficients Am if

g(u) = ∑
m≥1

Am sin(2π

L
mu).

Solution: We can extend the function to the interval [−L2 , L2 ] by defining g(u) = −g(−u),
which makes it an odd function. Now, odd functions admit a sinusoidal series expansion as
in Questions 1 and 2. Let am represent the FS coefficients of the odd function g(u), then

g(u) = ∑
m∈Z

am exp(j 2π

L
mu)

= ∑
m∈Z

am (cos(2π

L
mu) + j sin(2π

L
mu))

= j ∑
m∈Z

am sin(2π

L
mu) (10)

= j ∑
m≥1

(am − a−m) sin(2π

L
mu), (11)
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where the equality (10) is true since f(u) is an odd function in (−L2 , L2 ) (see Question 1).
The expression (11) follows since a0 = ∫ g(u)du = 0 for the odd function. From this, the
coefficients Am that we wish to evaluate are nothing but

Am = j(am − a−m),∀m ≥ 1.

We have already explained in Question 2 that the FS coefficient for a T−periodic odd
function is given by

am = −j 1

T ∫
T
2

−
T
2

g(t) sin(2π

T
mt)dt. (12)

Some students were confused by the fact am is a complex number even when g(t) is a real
function. This can demystified as follows. When g(t) is real, we know that the Fourier
Transform (Series) is symmetric, i.e. a−m = a∗m. Thus

Am = j(am − a−m) = j(am − a∗m) = j22Imag(am) = −2Imag(am).

From (12), we get

Am = 2
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T
mt)dt.
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2 .
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p
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L
mp) + 4

L

L2

(2πm)2
h

L′ − p sin(2π
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p
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1
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L
mp).

(b) Find the coefficients Bm such that

g(t) = ∑
m≥0

Bm cos(2π

L
mt).

Solution: While we can continue in the same fashion as above, let us do it by a different
approach. Let us evaluate the Fourier Transform of g(u) defined for (0, L′), call it G(f).
Then,

G(f) = h

(2πf)2 [exp(−j2πfp) − exp(−j2πfL′)
L′ − p − 1 − exp(−j2πfp)

p
] .
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Notice that the Fourier Transform of g(−t) is G(−f). Furthermore, we can construct an
even function by ge(t) = g(t) + g(−t) and the Fourier Transform of ge(t) is G(f) +G(−f).
However

Ge(f) = G(f) +G∗(f) = 2.Real (G(f)) .
Imagine repeating the waveform ge(t) over the entire real axis to obtain gp(t). This is like
tiling over the x−axis with non-overlapping replicas of ge(t), see the Figure below.

0 L
2

0 p

h

Figure 1: gp(t) obtained as periodic repetition of ge(t) (thick portion)

Now, the Poisson sum-formula will say that the FS coefficients of gp(t) is nothing but

am = 1

L
Ge(

m

L
) = 2

L
Real(G(m

L
))

= 2

L

h

(2πmL )2 [
cos(2πmL p) − cos(2πmLL′)

L′ − p −
1 − cos(2πmL p)

p
]

= 2

L

h

(2πmL )2 [
cos(2πmL p) − (−1)m

L′ − p −
1 − cos(2πmL p)

p
]

The coefficients required in the question can now be found as Bm = am +a−m for m > 0 and
B0 = a0.
Previous Question: Now that we introduced this technique, it can as well solve the previous
question (part (a)).

0 L
2

0 p

h

Figure 2: gp(t) obtained as periodic repetition of godd(t) (thick portion)

The FS coefficients there are nothing but j 2
L(Im(G(mL )). Clearly,

Im(G(m
L

) = − h

(2π
Lm)2 sin(2π

L
mp) (1

p
+ 1

L′ − p) .

We can now find Am in the previous question as

Am = j (j 2

L
Im(G(m

L
)) − j 2

L
Im(G(−m

L
)))

= 4

L

h

(2π
Lm)2 sin(2π

L
mp) (1

p
+ 1

L′ − p) .
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We obtained the same formula by alternate means earlier. Figure illustrates the FS recon-
stuction.

(c) Find the coefficients Cm such that

g(t) = ∑
m∈Z

Cm exp(j 4π

L
mt).

Solution: Can be done similar to the last two parts.

0 L
2

p

h

Figure 3: gp(t) obtained as periodic repetition of g(t) (thick portion)

(d) We have learnt that FS coefficients can uniquely identify a continuous function. How-
ever, there seems to be three expansions given in parts (a), (b) and (c). How do you
reconcile these different expansions.
Solution: Certainly the three expansions correspond to three different functions in −L2 , L2 .
In particular, (a) is an odd function, (b) is an even function and (c) is not even or odd.
However, all these reconstructions agree on the same values in the interval [0, L2 ], which
was our interest.

(e) Which of the expansions above is useful in identifying the harmonics of a vibrating
string. Write the first harmonic frequency and suggest a position p for which all the even
harmonics are missing.
Hint: ‘Fourier Transform+Poisson sum-formula+Convolution-multiplication” can handle
Fourier Series

Solution: Certainly part (a) meets the boundary conditions of the vibrating string (see
derivation in class). Thus, the even harmonics can be suppressed by choosing

p = L
4
.

Question 5) Find the Fourier Series expansion for

f(t) = sin(θ + 2πf0t) where θ ∈ R. (13)

Are the F.S. coefficients continuous in θ?
Solution: Now that we are familiar with the Fourier Transform, we can do it easily. Notice
that

f(t) = 1

j2
exp(jθ) exp(j2πf0t) −

1

j2
exp(−jθ) exp(−j2πf0t)

Clearly the fundamental frequency is f0, and the FS coefficients are

a1 =
1

j2
exp(jθ); a−1 = −

1

j2
exp(−jθ)
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Clearly, the coefficients are continuous in θ.

Question 6) Consider a T -periodic signal x(t) shown in figure. This is known as the
rectangular train, where the non-zero amplitude is unity.

+T4−T4 0

x(t)

a) Find the Fourier Series coefficients of this signal.
Solution: Since rectτ(t) has τsinc(fτ) as the Fourier transform, a periodic repetition of
the rectangle waveform will have a sampled and scaled sinc waveform in frequency domain.
With τ = T

2 the FS coefficients are

am = 1

T

T

2
sinc(m

T

T

2
) = 1

2
sinc(m

2
).

b) Can you find a system h(t) such that y(t) = x(t) ∗ h(t) is the following signal,

1

+T2−T2 0

y(t)

Soution: h(t) = 2
T rectT

2
(t) will do.

c) Can you find the FS coefficients of y(t) by using parts (a) –(b), and without explicitly
performing an additional integration.
Solution: By convolution-multiplication theorem. Note that we are convolving x(t) with
2
T rectT

2
(t) to obtain y(t). Thus FS coefficients of y(t) are

am = 1

2
sinc2(m

2
).

d) Consider the following 2T -periodic rectangle train s(t) of height 2 units.

+T2−T2 0

s(t)

Find the FS coefficients of y(t)s(t), where the multiplication is point-wise for every t.
Solution: The waveform y(t)s(t) can also be obtained in the following way. Consider the
pulse train xp(t) shown in Figure 4.
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xp(t)

−T4 T
4

Figure 4: Rectangular train xp(t)

Notice that the difference between x(t) and xp(t) is only in the time period, i.e. the
latter is 2T periodic, while the former is T−periodic. Furthermore, notice that

y(t).s(t) = xp(t) ∗ 2
2

T
rectT

2
(t),

where the factor 2 comes because of the height of s(t). The FS coefficients of y(t)s(t) can
now be easily identified as

am = 2.
1

2T

T

2
sinc( m

2T

T

2
).sinc( m

2T

T

2
)

= 1

2
sinc2(m

4
).

e) Plot the FS coefficients for parts (c) and (d), assuming T = 10.
Solution: to appear soon.

Question 7) Find the Fourier Transform of the following signal y(t).

t−τ +τ

y(t)

A

−A

Solution: The shown waveform is a product of a cosine waveform with a triangle waveform.
This will results in a Fourier transform of the form,

Y (f) = A
2

sinc2(f − f0) +
A

2
sinc2(f + f0),

where f0 is the frequency of the cosine waveform.
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