
Indian Institute of Technology Bombay
Dept of Electrical Engineering

Handout 9 EE 210 Signals and Systems
Home Work 3 August 28, 2015

Question 1) Parseval’s Theorem: Show that

∫ ∣x(t)∣
2dt = ∫ ∣X(f)∣

2df. (1)

Solution: Recall that x(t)
FT
Ð⇀↽ÐX(f) will imply that x∗(t)

FT
Ð⇀↽ÐX∗(−f).

∫ x∗(t) exp(−j2πft)dt = (∫ x(t) exp(j2πft)dt)
∗
=X∗(−f)

By a change of variables

x∗(−t)
FT
Ð⇀↽ÐX∗(f).

Consider y(t) = x(t)∗x∗(−t), where the ∗-operator is for convolution and (⋅)∗ (superscript)
is for complex conjugation. We know that

y(0) = ∫ Y (f)df

= ∫ X(f)X∗(f)df

= ∫ ∣X(f)∣
2df.

Also

y(0) = ∫ x∗(−τ)x(t − τ)dτ at t = 0

= ∫ ∣x(τ)∣
2dτ.

Thus, we have proved Parseval’s theorem.
Question 2) Find

∫
R

sinc2(Tt)dt.

Solution: Using Parseval’s theorem,

∫
R

sinc2(Tt)dt = ∫
1

T

2

(rectT (t))
2dt =

1

T
.

Parseval’s theorem is thus extremely useful in converting difficult evaluations to almost
trivial ones.

Question 3) In figure, the thick line x(t) is the sum of the two dotted plots, and each
dotted line is a αsinc( 2π t) function, shifted by t0 units to each side of origin.



a) Compute the FT of this signal.
Solution: Clearly,

x(t) = αsinc(
2

π
(t − t0)) + αsinc(

2

π
(t + t0)) = αsinc(

2

π
t) ∗ (δ(t − t0) + δ(t + t0)) ,

where ∗ is for convolution. Now using convolution-multiplication theorem,

X(f) = α
π

2
rect 2

π
(f).2 cos(2πt0f)

b) Suppose now the plot is of the form,

What do you expect the FT to be.
Solution: Since the time domain waveform is multiplied by cos(2πf0t) to obtain y(t), we
have

Y (f) =X(f) ∗ (
1

2
δ(f − f0) +

1

2
δ(f + f0))

Question 4[*]) Recall the full wave rectifier that we discussed in the class. Let us design
a filter with impulse response h(t), which will convert the output of the bridge circuit to
an ideal DC.

(a) Specify a filter with bounded support, i.e. h(t) = 0 when ∣t∣ > B, for some finite value
B <∞, such that the output of the filter is a steady (ideal) DC voltage.
Solution: In class, we showed that an ideal low pass filter which cuts all frequencies greater
than or equal to double the supply frequency (fs) will do the job, i.e. H(f) = 0, ∣f ∣ > 2fs.
However, the time domain filter becomes a sinc(⋅) wavform, with unbounded support. In
particular, any filter which has bounded support in frequency is to occupy an unbounded
support in time, this is kind of an uncertainty principle. So, we need to look for filters
with unbounded support in frequency. How can a H(f) with unbounded support provide
pure DC. This is possible only if H(f) = 0 at multiples of 2fs. In this case, all the ripple
frequencies will fall at the zeros of H(f), and Xr(mfs)H(mfs) = 0,∀∣m∣ ≥ 1,m ∈ Z. This
visualization tells us that

H(f) = 2fssinc(2fsf)

will do the job. Notice that the filter is a rectangle in the time domain. At the end of the
day, we have take a rectangle which can contain an integer multiple of any of the frequencies
2mfs,m ∈ Z, ensuring that they all average out to zero, when m ≠ 0.

(b) From part (a), design a filter which additionally requires that h(t) ≥ 0,∀t and H(f) ≥
0,∀f .
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Solution: The additional requirement can be met with

H(f) = 4f 2
s sinc2(2fsf),

which corresponds to a triangle filter response in the time domain.

Question 5[*] Let us consider a half-wave recitifier, which acts like a closed switch for the
positive cycles of the supply. On the other hand, negative inputs are blocked completely.

(a) If the supply is a cosine of frequency fs Hz, give the frequency components present at
the output of the rectifier.
Solution: Consider a unit amplitude cosine waveform of fs =

1
T Hz, the output of the

rectifier xr(t) can be visualized as

xp(t) = xr(t) ∗∑
n

δ(t − nT ),

where xr(t) = cos(2πfst).rectT
2
. Clearly, by Fourier Series analysis, there will be a dc

voltage as well as ripples at multiples of fs, as xr(t) is a T -periodic waveform.

(b) Consider a 20V peak, 50Hz supply feeding the half-wave rectifier. Design an RC filter
circuit such that the variations due to ripple are limited to 20% around mean DC value.
Solution: Recall from the class that

H(f) =
1

1 + j2πfRC

is the response of our RC filter. The magnitude of the response H(f) dies down as 1
∣f ∣ .

Notice that the FS coefficients of xp(t) are 1
TXr(

m
T ) (by Poisson sum formula). Xr(f) is

nothing but the scaled superposition of two sinc waveforms, and it is evident that Xr(f)
also dies down as 1

∣f ∣ at higher frequencies, thus Xp(
m
T )H(

m
T ) dies down like 1

∣m∣2 at higher
values of the frequencies. This points are mentioned to re-affirm that the effect of ripples
at 2fs or more will be automatically subdued if we ensure that the ripple at ±fs is kept
under control. Let us take

∣H(fs)∣ =
1

√

1 + 4π2f 2
sR

2C2
= 0.01

This can be realized by a C = 1F and R ≈
1
π . Typically, it is cheaper to get lower capacitance

values and higher R, however the R here is most often dictated by the circuit internal
impedances. Note that further ripples, i.e. at m

T Hz will be attenuated by a factor of 1
m etc

by this filter. However, the filter response as well as the input frequency components starts
to decay like 1

∣m∣ at higher order ripples. Thus the cumulative effect of all these ripples at
the output remain nominal.
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