Indian Institute of Technology Bombay
 Dept of Electrical Engineering

Question 1) A string is tied from $(0,0)$ to $\left(\frac{L}{2}, 0\right)$. Now, a point at distance p from the origin is given a vertical displacement of h upward. Let $f(t), t \in\left[0, \frac{L}{2}\right]$ be the initial position of the string.
(a) Find the coefficients A_{m} such that

$$
f(t)=\sum_{m \geq 1} A_{m} \sin \left(\frac{2 \pi}{L} m t\right)
$$

(b) Find the coefficients B_{m} such that

$$
f(t)=\sum_{m \geq 0} B_{m} \cos \left(\frac{2 \pi}{L} m t\right) .
$$

(c) Find the coefficients C_{m} such that

$$
f(t)=\sum_{m \in \mathbb{Z}} C_{m} \exp \left(j \frac{4 \pi}{L} m t\right)
$$

(d) We have learnt that FS coefficients can uniquely identify a continuous function. However, there seems to be three expansions given in parts $(a),(b)$ and (c). How do you reconcile these different expansions.
(e) Which of the expansions above is useful in identifying the harmonics of a vibrating string. Write the first harmonic frequency and suggest a position p for which all the even harmonics are missing.
Hint: 'Fourier Transform+Poisson sum-formula+Convolution-multiplication" can handle Fourier Series

Question 2) Consider a signal $x(t)=\operatorname{sinc}^{2}\left(\frac{t}{T}\right)$. It is sampled at the rate of B samples per second to obtain a discrete-time signal $x[n]$. What will be the Fourier representation $X_{s}(f)$ of $x[n]$. Let us call $\hat{X}(f):=X_{s}(B f)$, the latter is also known as the DTFT (Discrete-Time Fourier Transform) of $x[n]$.
(a) Show that $\hat{X}(u)$ is a periodic waveform, and find its period.
(b) We know that locally integrable periodic functions admit Fourier series expansions. What are the FS coefficients of $\hat{X}(u)$.
(c) If $B=\frac{2}{\sqrt{2} T}$, can you get back $x(t)$ from the samples $x[n]$ (Draw $\hat{X}(f)$ and see).
(d) If $B=\frac{2 \sqrt{2}}{T}$, give two 'different' reconstruction formulae to obtain $x(t)$ from $x[n]$.

Question 3) Notice that periodic functions have a Fourier-series expansion. Suppose a T-periodic function $x(t)$ is sampled to obtain $x_{p}[n]=x\left(n \frac{T}{k}\right)$, where k is some integer greater than two. Since $x_{p}[n]$ is also periodic, we should attempt to find the FS coefficients of $x_{p}[n]$. Feel free to use the formalisms (Dirac or Impulse formalisms), to find the FS coefficients of $x_{p}[n]$.

