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1 Markov Chains

Till now, we have been dealing mostly with random variables and random vectors. In
between we also encountered some questions on repeated trials of an experiment. In one of
the simple examples, we repeatedly tossed a fair coin and found various probabilities under
the assumption that the trials were IID. Such time-indexed sequences of random variables
belong to the class of general discrete-time stochastic processes (DTSP), or random
processes. However, they are not the only ones in the DTSP class. Let us now delve a
bit more deeper into the theory of stochastic processes, and equip ourselves to deal with
sequences which are not simply IID.

Recall the IID coin toss model, where HEAD occurs with probability p. This repeated
trials can be pictorially modeled by a state-machine as shown below.
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Figure 1: State diagram for repeated tosses of a coin

In figure, no matter what your current state is or past states were, the next toss takes
you to the state H with probability p.

While IID sequences are definitely a very useful class of sequences which can model
several processes, they are grossly insufficient in the real world. In IID trials, the probability
law governing the RV stays identically the same throughout, and any finite number of joint
events are governed by the product of their probabilities. This is clearly visualized in
Figure 1, where the performed actions at each state does not depend on the state. Real
world signals which are of interest to us have more predictable characteristics. For example,
consider a temperature reading made outside our building every hour using a digital meter.
Certainly this is not an iid process, as there is a lot of dependence between two successive
readings. More precisely, given the current reading, the probability law governing the
temperature random variable of the next reading can be different from the case where we
have no access to the current reading. Some other examples of non-IID processes are

• the charge across a capacitor at integer instants.

• the samples at the output of a digital filter.

• the number of customers waiting at a ticket reservation counter at every hour.



The theory that we are about to learn here is not a panacea to the general version of
all these problems. Still, it encompasses a large class of useful models, making it extremely
important from an engineering perspective. We will unravel the theory behind models which
admit some form of a state-variable representation as in Figure 1, however the performed
action at each state can depend on the current state. So the graph may not look the same
from different states, and there may not be any limit on the number of states, i.e. we can
consider a countable state-space. Let us first start with the definition of a discrete-time
stochastic process (DTSP). We consider discrete random variables throughout this chapter,
and will not explicitly state it every-time. The theory, however, can be extended to general
RVs.

Definition 1 A sequence of RVs Xn, n ≥ 0 is a DTSP on a countable state-space E, if
each Xn is a random variable in E.

Each possible sequence is called a trajectory or a sample-path of the processes. Thus
a DTSP can be visualized as the choice of a random path, i.e. each ω correspond to
a trajectory from the cylinder set of all possible sample-paths. A DTSP is statistically
characterized by its finite dimensional distributions, i.e. we need to specify the probability
P (⋂i∈IXi = xi) for all finite index-sets I ⊂ N. It is usual to refer to the indices in the
subscript of the process as time-instants, or steps, or transitions of the process.

Markov Chains are a particular class of DTSPs which have wide applications in
practice. The beauty of these sequences is literally captured in the expression ‘conditional
independence of past and future given the present’.

Definition 2 A DTSP Xn, n ≥ 0 on the state-space E is called a Markov Chain if

P (Xk+1 = j∣X0 = i0,X1 = i1,⋯,Xk = ik) = P (Xk+1 = j∣Xk = ik), ∀k. (1)

In other words, the probability law for Xk+1 depends only on the current state Xk, when
the latter is given. Notice that Xk+1 and Xk−1 are not always independent for a Markov
chain, they are conditionally independent given Xk.

Definition 3 A Markov Chain on E is called homogeneous if

P (Xk+1 = j∣Xk = i) = P (Xm+1 = j∣Xm = i), ∀k,m ∈ N. (2)

We will use the abbreviation HMC for a homogeneous Markov Chain. A HMC can be
specified completely by the probability law of X0, along with the values

pij = P (X1 = j∣X0 = i), ∀i, j ∈ E. (3)

To see this, apply Baye’s rule to expand the finite dimensional distributions as,

P (Xi0 = j0,⋯,Xik = jk) = P (Xi0 = j0,Xi1 = j1)∏
l≥2

P (Xil = jl∣Xi0 = j0,⋯,Xil−1 = jl−1)

= P (Xi0 = j0)P (Xi1 = j1∣Xi0 = j0)∏
l≥2

P (Xil = jl∣Xil−1 = jl−1)

= P (Xi0 = j0)∏
l≥1

P (Xil = jl∣Xil−1 = jl−1)

= P (Xi0 = j0)∏
l≥1

pjl−1 jl (4)

Thus we need to specify only the initial distribution and the probability of successive
transitions, given by (3). The entries pij are called the transition probability from
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state i to state j, and the matrix P having entries as (P)i,j = pij is known as the transition
probability matrix. The matrix representation allows the elegant representation of various
relations. To facilitate this, let ν̄n represent the array with

ν̄n(i) = P (Xn = i), i ∈ E.

By convention, we will consider arrays along the column. Thus, when the array dimension
is finite, ν̄n is nothing but a column-vector. Let ν̄Tn denote the transpose of ν̄n, which in
fact is a row-array. We can then write,

ν̄n+1(j) = P (Xn+1 = j) (5)

= ∑
i∈E

P (Xn = i)P (Xn+1 = j∣Xn = i) (6)

= ∑
i∈E

ν̄n(i)pij. (7)

In the matrix format,

ν̄Tn+1 = ν̄Tn P (8)

= ν̄Tn−1 P × P (9)

= ν̄T0 Pn+1, (10)

which re-asserts what we mentioned earlier, that the HMC is specified by an initial distri-
bution ν̄0 and the transition matrix P.

A ubiquitous first example for a Markov Chain is the so called random walk on Z.

Example 1 Consider a sequence of steps Xn, n ≥ 0 taken by a random walk on Z, where
Xn is incremented or decremented by one unit, based on independent tosses of a coin with
P (HEAD) = p. Show that Xn, n ≥ 0 is a Markov Chain. Is this a HMC?

Solution: It is easy to verify that

P (Xn+1 = j∣X0 = i0,⋯,Xn = in) = p1{j=in+1} + (1 − p)1{j=in−1} = P (Xn+1 = j∣Xn = in). (11)

Clearly, it is homogeneous since the transition probability from i to j stays the same,
irrespective of when you reach state i.

n

Evaluating the conditional probability of a DTSP to check for markovity every time
can be a mundane task. To circumvent this, there are two recurrence relations which can
make life easier for us. These relations only test for HMCs, the converse is not true, i.e.
all HMCs may not admit such relations that we prescribe.

Theorem 1 Recurrence 1: Consider the recurrence relation

Xn+1 = f(Xn, Zn+1),

where Zn, n ≥ 0 is IID independent of X0. Then Xn, n ≥ 0 is a HMC.

Proof

P (f(Xn, Zn+1) = j∣Xn = i,Xn−1 = in−1,⋯,X0 = i0)
= P (f(i,Zn+1) = j∣Xn = i,Xn−1 = in−1,⋯,X0 = i0) (12)

= P (f(i,Zn+1) = j)
= P (P (f(Xn, Zn+1) = j)∣Xn = i),
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where the second equality states that the probability in (12) is determined solely by the
law of Zn+1, which is independent of Xk,0 ≤ k ≤ n.

n

It is now easy to apply this result to the random walk in Example 1. Here the HMC
obeys

Xn+1 =Xn +Zn,

where Zn ∈ {−1,+1} with P (Zn = 1) = p. There are several other examples where this
recurrence relation readily applies.

Our second recurrence relation is more general and a very useful tool.

Theorem 2 Recurrence 2: Consider a collection of probability laws pi(x), x ∈ E, one law
for each i ∈ E, along with the relation

Xn+1 = f(Xn, Zn+1),

where Zn+1 is independent of Xn−1,⋯,X0, Zn,⋯, Z1 given Xn. Furthermore if Zn+1 ∼ pi(⋅)
whenever Xn = i, then {Xn}, n ≥ 0 is a HMC with

pij = P (f(i,Z1) = j∣X0 = i).

Proof: Similar to the previous theorem.
n

Note: I have changed the definition slightly from the one given in class, somehow I thought
my statement implied the same conditional law, but it has to be explicitly stated, apologies
and please correct the notes.

The generality of the latter theorem comes from the fact that we only demand the
conditional independence Zn+1 from the past given Xn. The following example shows the
utility of this theorem.

Example 2 EhrenFest’s Urn Model: N balls are distributed among 2 boxes, say box A
and box B. At any step, a ball is uniformly chosen. This ball is then moved from the
incumbent box to the other. The experiment is repeated at every instant. Show that the
number of balls in Box A is a HMC and sketch its state-diagram.

Solution: Let Xn, n ≥ 0 denote the number of balls in Box A at step n. The state-diagram
is shown below. The state-space graph itself will guarantee us that the underlying process
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0 1 i−1 i i+1 N−1 N

Figure 2: EhrenFest’s Urn State-space

is a HMC, as the transition probabilities from any given state depends only on the state
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and are time-invariant. While our first recurrence relation does not fit this process well,
the second one naturally does. To see this, observe that

Xn+1 =Xn +Zn+1,

where given Xn = i, the random variable Zn has the law

Zn+1 =
⎧⎪⎪⎨⎪⎪⎩

+1 w.p 1 − i
N

−1 w.p i
N

Thus Xn, n ≥ 0 is a HMC by our second recurrence relation.
n

1.1 Irreducible Markov Chains

Irreducibility is a graph-theoretic property, which physically signifies the connectivity of a
graph. For Markov chains, irreducibility of the state-space is a slightly more general notion,
as the state-space can be countably many.

Definition 4 A HMC Xn, n ≥ 0 on a state-space E is irreducible, if there exists a trajectory
which contains states i and j, for every pair (i, j) ∈ (E ×E).

The definition implies that every state can be reached from every other state through a
sequence of steps of the chain. In terms of the transition probability, we can state that for
some n

(Pn)i,j > 0.

Thus, there exists a number n such that there is a positive probability of reaching state j
from state i in n steps. We will use the notation

pij(n)
△= P (Xn = j∣X0 = i), (13)

to denote the probability of reaching state j in n steps starting from the initial state i,
which is nothing but (Pn)i,j. This is also known as the n− step transition probability.

Using the n−step transition probabilities,

ν̄n(j) = ∑
i

pij(n)ν0(i). (14)

What will happen to ν̄n as the time progresses or n gets large. Contrary to what we may
expect, this question has a natural answer where ν̄n becomes independent of ν̄0 in the limit
of n. This leads to the notion of equilibrium or steady state which we explain in the next
section.

1.2 Stationary Distribution

The stationary distribution plays an important role in the theory of Markov chains. This is
also known as equilibrium distribution or steady-state distribution. It is natural to expect
that once you are in steady state, you stay in steady state, forever. We will define Π with
this property.
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Definition 5 For a HMC with transition matrix P, if

ΠT = ΠTP, (15)

for some non-negative vector which sums to one, then Π is called a stationary distribution
of P. The equation in (15) is known as the global balance equation.

For the time being, let us assume that a stationary distribution exists, the existence and
uniqueness will be discussed in later sections. Just like a chemical reaction inching close to
equilibrium as time goes on, a Markov chain also will get to a stationary distribution, when
run for a long enough time. The time taken to reach steady-state is known as the burn-in
time. It turns out that the steady state distribution only depends on the transition matrix,
and not on the initial distribution. We do not prove this statement, the usual proofs in
literature employ elegant coupling arguments of multiple HMCs (see P. Bremaud, Markov
Chains). Thus, no matter what the initial distribution is, in steady state the HMC will
have a distribution solely determined by P. We denote the stationary distribution by Π.

Observe that we did abuse the language in using ‘the’ stationary distribution, since it
is not clear apriori whether there are multiple stationary distributions. Indeed there are
many HMCs with multiple stationary distributions. Nevertheless, the important class of
’irreducible HMCs’ have a unique stationary distribution whenever it exists(see P. Bremaud,
Markov Chains). We will also learn more on the physical meaning of stationary distribution
by relating it to the so called invariants of a chain. Before we progress to these aspects, it
is instructive to compute the stationary distribution for some example chains to gain more
insight. The computations typically involve solving the global balance equations, which
can be enumerated as

Π(j) = ∑
i∈E

Π(i)pij (16)

Notice that (15) is not a set of independent equations. Indeed for the vector 1̄ will all ones,

ΠT 1̄ = ΠTP × 1̄ = ΠT 1̄, (17)

since P is a stochastic matrix, i.e. the entries are non-negative and each row adds to unity.
Clearly one of the global balance equations is redundant. However, we can use the fact
that ∑i∈E Π(i) = 1, to solve Π unambiguously for irreducible HMCs. Keep this in mind
while solving the set of equations.

Example 3 Find the stationary distribution of the two-state chain as shown below.

1 − α 1 − βH T

α

β

Figure 3: Two State HMC
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Solution: Observe that the two-state chain signifies a physical process where there are
two biased coins. If your current state is HEAD, a biased coin of probability α is used to
determine your transition to TAILs. On the other hand, if the current state is TAILs, we
will employ a biased coin of probability β for the transitions. Denoting HEADS by 0 and
TAILs by 1, let us write the global balance equations.

Π(0) = Π(0)(1 − α) +Π(1)β
Π(1) = Π(0)α +Π(1)(1 − β).

Clearly, summing the two equations will give us a redundant equation. However, substi-
tuting Π(0) +Π(1) = 1 in the first equation will imply

Π(0) = Π(0)(1 − α) + (1 −Π(0))β.

Thus,

Π(0) = β

α + β
and Π(1) = β

α + β
.

An alternate method is to solve for the left eigen-vectors of the matrix

P = [1 − α α
β 1 − β] , (18)

corresponding to the eigen-value 1. Remember to compute the left eigen-vector. Right
eigen-vectors may not correspond to the stationary distribution. Right multiply P with the
vector [12

1
2] and see for yourself.

n

Example 4 Compute the stationary distribution for the Ehrenfest’s urn model.

Solution: This shows another useful technique to solve the global balance equations. In
here, we start with one state, say state 0 and express Π(i), i ≠ 0 in terms of Π(0). In the
end, choose Π(0) such that Π is a probability distribution. Let us start by writing

Π(0) = Π(1) 1

N
.

Thus,

Π(1) = NΠ(0).

Now

Π(1) = Π(0) +Π(2) 2

N
.

From this

Π(2) = N
2

(Π(1) −Π(0))

= N(N − 1)
1 × 2

Π(0)

= (N
2
)Π(0).

7



Continuing this recursion

Π(k) = (N
k
)Π(0),1 ≤ k ≤ N.

Since Π is a probability distribution,

1 =
N

∑
i=1

Π(i)

=
N

∑
i=1

(N
i
)Π(0)

= 2N Π(0).

Finally,

Π(i) =
(N
i
)

2N
. (19)

n

Let us now pursue our original goal of understanding the stationary distributions. We
will relate them to a more general property of the HMC, known as ‘invariants’.

2 Invariants

We will discuss mostly about irreducible HMCs in this discussion. This allows us to use the
word ‘the stationary distribution’, whenever it exists. The term invariant is a generalization
of the stationary distribution, i.e. an invariant x obeys

xT = xTP.

We did not insist here on x being a probability distribution. The invariants are closely
related to the return-times of a HMC to any state, and has a intuitive frequency interpre-
tation. The return-time to state i is the number of transitions of the chain between two
consecutive visits to state i. In other words, it is the length of the trajectory between two
successive visits to any state.

Without loss of generality, we will take state 0 as our starting state, i.e. X0 = 0 for our
HMC. If you do not like this, take any other starting state and rename it as state zero.
Let T0 = inf{n ≥ 1 ∶ Xn = 0} denote the number of steps it takes for the HMC to return
to state 0. Clearly T0 is a function of Xn, n ≥ 0 and a random variable. We are interested
in the expected time it takes for the first return to state 0, from the same initial state.
We will denote this by E0[T0], where the subscript of the expectation denotes the starting
state. In a similar way, we will denote by P0(A), the conditional probability of event A,
given that the HMC is initially at state 0.

All this talk about return times is to show that the stationary distribution is connected
to the return times to a state. Consider a function defined for every i ∈ E as

xi = E0[∑
n≥1

1{Xn=i}1{n≤T0}]. (20)

As mentioned earlier, the subscript 0 indicates that the initial state is X0 = 0, and T0 is the
time/number-of-steps for the chain to return to zero. Thus xi is the expected number of
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times the state i is visited, in between two consecutive visits to zero. Clearly x0 = 1, as the
state zero is visited only while returning to it, by our definition. In order to understand
(20) better, let us compute the sum ∑i∈E xi.

∑
i∈E

xi = ∑
i∈E

E0[∑
n≥1

1{Xn=i}1{n≤T0}]

= E0[∑
n≥1

1{n≤T0}∑
i∈E

1{Xn=i}]

= E0[∑
n≥1

1{n≤T0}]

= E0[T0]. (21)

Thus ∑i xi is the expected duration of the return-time to zero. This makes sense, since
we are adding the expected hits in each state between two successive visits to zero, so the
cumulant better be equal to the average length (steps) for returning to state 0.

Consider the column array x̄ with the ith entry as xi, i ∈ E. Then we have the following
theorem, which is one of the important results on Markov chains.

Theorem 3 The x̄ defined in (20) is an invariant to P, i.e.

x̄T = x̄TP.

Proof: It is clear that x0 = 1. For xi, i ≠ 0 we have, By moving the expectation operator
inside the summation in (20),

xi = ∑
n≥1

E0[1{Xn=i}1{n≤T0}]

= ∑
n≥1

P0(X1 ≠ 0,⋯,Xn−1 ≠ 0,Xn = i)

= ∑
n≥1

P0 ({Xj ≠ 0,1 ≤ j ≤ n − 1}⋂{Xn = i}) , (22)

where the probability on the RHS considers those outcomes where starting from state 0

1. the chain has not hit zero till n − 1, i.e. T0 > n − 1.

2. at step n the chain is at state i.

Please note that in our indexing {j ∶ 1 ≤ j ≤ 0} = ∅, i.e. we will ignore those terms where
the index is zero in the above definitions, for consistency. For economy of space let us
denote the RHS of (22) as,

p̂0i(n) = P0 ({Xj ≠ 0,1 ≤ j ≤ n − 1}⋂{Xn = i}) , i ≠ 0. (23)

i.e. starting with state 0, the probability of reaching state i in the nth step, without having
hit the state 0 in steps 1 ≤ k ≤ n − 1. Clearly, from (22),

xi = ∑
n≥1

p̂0i(n),∀i ≠ 0. (24)

Using (20) – (22), we can write for all i ∈ E,

xi = ∑
n≥1

P0 ({Xj ≠ 0,1 ≤ j ≤ n − 1}⋂{Xn = i})

= P0(X1 = i) + ∑
n≥2

P0(X1 ≠ 0,⋯,Xn−1 ≠ 0,Xn = i)

= P0i + ∑
n≥2

∑
j≠0

p̂0j(n − 1)Pji. (25)
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This last step needs some explanation. The first term on the RHS is clear, as the probability
of reaching state i from state 0 in one step is indeed given by the transition probability.
The second term used the ‘first-step analysis’ that we already learned, which is a form of
Baye’s rule for the underlying HMC. In particular, reaching state i at step n will imply
that the chain was at some state j at time n − 1 and the next step took it to state i. We
are okay to jump to any intermediate step other than state 0. With the initial state at 0,
the probability of reaching j at step n − 1 without hitting zero in steps {1,2,⋯, n − 2} is
indeed p0j(n − 1), see (23). The last factor in the second term of (25) is the probability of
jumping from j to i in the nth step. We can now simplify things. Since x0 = 1,

xi = x0P0i + ∑
n≥2

∑
j≠0

p̂0j(n − 1)Pji (26)

= x0P0i +∑
j≠0

Pji∑
n≥2

p̂0j(n − 1)

= x0P0i +∑
j≠0

Pji ∑
m≥1

p̂0j(m)

= x0P0i +∑
j≠0

Pjixj. (27)

The last equation follows from (24). Collecting all such equations, we get

xT = xTP.

2.1 Invariants and Stationary Distribution

Clearly the invariant of an HMC throws a lot of light on the stationary distribution Π.
For an irreducible HMC, we can show that if there is a probability vector Π such that
ΠT = ΠTP, then it is unique. A proof of concept to this idea is given as an exercise in
the next subsection. This will allow us to refer Π as ‘the stationary distribution’ of an
irreducible HMC, as there is only one possible. We should add that this does not rule
out the possibility of having no Π which obeys the global balance equations. In fact, the
discussion below allows a quick way to deduce the cases where a stationary distribution
readily exists, and this will include all the examples and models we considered so far in the
lass.

Using the concept of invariants, whenever ∑i xi is finite, we can define

Π(i) = xi

∑i∈E xi
.

This definition ensures that

ΠTP = xT

∑i∈E xi
P = xT

∑i∈E xi
= ΠT .

Recall that we considered state 0 as the initial state. Thus

Π(0) = x0

∑i xi
= 1

E0[T0]
.

Exercise 1 Since 0 is an arbitrary state, deduce that

Π(i) = 1

Ei[Ti]
,

where Ei[Ti] is the expected time to return to state i, starting from state i.
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Let us now give a condition for the distribution Π to exist, this turns out simple. Whenever
Ei[Ti] is finite, we can find Π(i) for all i. For an irreducible chain, it is sufficient to check
whether E0[T0] is finite.

Exercise 2 Show that for any irreducible HMC with transition matrix P on a finite state-
space, there exists a Π such that ΠT = ΠTP.

Exercise 3 We defined earlier νn(i) = P (Xn = i) for an HMC Xn, n ≥ 0. Suppose ν0(i) =
Π(i),∀i ∈ E. Find νn(i) for n ≥ 1.

So far we have worked under the assumption that a stationary distribution exists. It is now
clear that whenever E0[T0] < ∞, we will have a stationary distribution for the irreducible
HMC. A HMC with E0[T0] < ∞ is known as positive recurrent. Positive recurrence is
synonymous with the word ‘stability’, and is a central notion in the theory of HMCs. All
the HMCs that we considered so far belongs to the positive recurrent category. However
there are HMCs which are not positive recurrent, a symmetric random walk is an example
of a so called null-recurrent chain. For lack of time, we do not cover the details.

2.2 Periodicity

The stationary distribution is also commonly known as the equilibrium distribution. Let
us point out a subtle difference between these two terminologies. It turns out that a
probability vector Π obeying the global balance equations should be more aptly called the
equilibrium distribution, as it talks about the balance of equations. Consider the two-state
HMC given below.

0 1

1

1

Figure 4: Cyclic Chain

Clearly this is an irreducible HMC, and we can find the equilibrium distribution Π =
[12 ,

1
2]T . However, the initial state completely determines the trajectory of the chain. This

happens due to the cyclic nature of the transitions. For an HMC let, Ni = {n1, n2,⋯} ⊂ N
denote the collection of instants such that for each n ∈ Ni, there exists a trajectory starting
from state i which reaches state i at step n. The GCD of all n ∈ Ni is the period of the
state i. A irreducible HMC is called aperiodic if the period of each state is 1.

Exercise 4 Show that if Pii > 0 for some i ∈ E, then an irreducible HMC is also aperiodic.

A well known result on Markov chains is that no matter what the initial distribution is,
an aperiodic irreducible HMC will end up in a stationary distribution as n goes to infinity.
In other words, for an irreducible aperiodic HMC with the stationary distribution Π, we
have

lim
n↑∞

νn(i) = Π(i).
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This is a soft point where many students demanded a proof. Rather than working out
an epsilon-delta proof by analysis, the next subsection relies on the concept of entropy
in information theory. This has considerably more intuitive appeal, and also allows us to
visualize the connections to the equilibrium.

2.3 Stationary Distribution: Existence and Uniqueness

We should start with a warning that this is not a complete proof of a limiting statement in
the last section. Rather we will formalize some steps using the ideas borrowed from infor-
mation theory, which will help you understand the uniqueness of the stationary distribution
and why any initial distribution converges to a stationary distribution.

Exercise 5 The entropy of a distribution P (x) is given by

H(X) = ∑
x∈E

P (x) log
1

P (x)
.

Using loge(x) ≤ x − 1, show that H(X) ≥ 0.

Exercise 6 The relative entropy between two distributions P (x) and Q(x) are given by

D(P ∣∣Q) = ∑
x∈E

P (x) log
P (x)
Q(x)

,

where we assumed that Q(x) = 0 whenever P (x) = 0, and multiplying by zero always results
in zero. Show that D(P ∣∣Q) ≥ 0, and that equality occurs only when P (x) = Q(x) for all
x ∈ E.

Let us now consider an HMC with transition matrix P. Consider two distributions P (⋅)
and Q(⋅) on E. If we start the chain with initial distribution P (⋅), let P (xn, xn+1) be
the joint distribution of states at times (n,n + 1). Let µn(x) denote P (Xn = x) when we
start with the initial distribution P (x). Similarly, let Q(xn, xn+1) be the joint distribution
of states at times (n,n + 1) if we start with the initial distribution Q(⋅). Let us denote
νn(x) ∶= P (Xn = x) when we start with the initial distribution Q(x).

The following exercise will convince you that that the relative entropy between νn(x)
and µn(x) will decrease as n goes to infinity

Exercise 7 Show that

D(P (xn, xn+1)∣∣Q(xn, xn+1)) =D(µn(x)∣∣νn(x)).

Furthermore, by another application of Baye’s rule, and the fact that the relative entropy
is non-negative, show that

D(P (xn, xn+1)∣∣Q(xn, xn+1)) ≥D(µn+1(x)∣∣νn+1(x)).

The above exercise makes it clear that

D(µn+1(x)∣∣νn+1(x)) ≤D(µn(x)∣∣νn(x)).

Thus if you take ν0(x) = Q(x) = Π(x), for any stationary distribution Π, the relative
entropy between Π and µn can only decrease. This will give you an idea why an HMC
should eventually end up in a stationary distribution. What we have not proved is that
the decrease is relative entropy is sufficiently large in each step to reach convergence as n
gets large. Please look the references given for Markov Chains for further details.
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3 Reversibility

In the class, we studied the global balance equations. There are also a set of conditions
known as local balance equations, which helps to find the stationary distribution in an
easier manner. However, this technique will only apply to the so called ‘reversible’ chains.
Notice that not all chains are reversible though. Nevertheless, it is a good idea to try the
local balance before you proceed to apply the global balance. The local balance condition
for an irreducible chain is

Π(i)pij = Π(j)pji,∀i, j ∈ E.

Example 5 Show that the local balance implies the global balance equations, and thus any
solution to Π above is the stationary distribution to the irreducible chain.

Solution:

∑
i∈E

Π(i)pij = ∑
i∈E

Π(j)pji

= Π(j)∑
i∈E

pji

= Π(j),

which is nothing but the global balance equation. Thus the local balance is a stronger
condition.

Example 6 Solve the stationary distribution for the two-state chain and also the Ehren-
fest’s urn model using the local balance equations.

Solution: For the two state chain

Π(0)α = Π(1)β

Since Π(0) +Π(1) = 1,

Π(0) +Π(0)α
β
= 1.

Thus

Π(0) = β

α + β
and Π(1) = α

α + β
.

Now for the urn model,

Π(i + 1)i + 1

N
= Π(i)(1 − i

N
).

Thus

Π(i + 1) = N − i
i + 1

Π(i) = ( N

i + 1
)Π(0),

and the result follows from this.
A physical/intuitive interpretation of reversibility is as follows. Consider an irreducible

HMC with the stationary distribution Π as the initial distribution. Now, run the chain
forward, let us say for n steps to obtain X0,⋯,Xn. Imagine that you repeat the same
experiment and obtain another sequence Y0,⋯, Yn. Suppose a third party takes the Yn
sequence and writes it in the reverse order to obtain Ui,0 ≤ i ≤ n. Now you are shown
one of the two sequences X1,⋯,Xn or U1,⋯, Un, and asked to identify whether it is the
reversed one or not. If the chain is reversible, the best thing that you can do is to toss a
fair coin, and answer without even looking at the sequence. The statistical properties for
the forward and reverse runs are identical in reversible HMCs.
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4 Random walk on a Graph

Consider an irreducible graph with a finite number of nodes and a given edge-set. Consider
a random walk on this graph, where from each vertex, one of the neighbors is uniformly
chosen. Clearly the state of this walk is a HMC, let us find the stationary distribution of
this process.
Note: Though this is known as random walk on a graph, it is different from conventional
random walks.

We can first check whether the local balance equations can be solved.

Π(i) 1

di
= Π(j) 1

dj

or

Π(i) = di
dj

Π(j)

Summing over i

∑
i∈E

Π(i) = 1 = Π(j)
dj

∑
i∈E

di.

Thus

Π(j) =
dj

∑i∈E di
,

gives the stationary distribution of the walk on the graph.

Exercise 8 Random Horse in a checkerboard: Consider a horse in the chess game, which
is placed at the bottom left square. Assume that the horse takes a random walk, with each
position to which it can jump is taken with equal probability. Find the expected time before
it gets back to the initial position.

Exercise 9 Consider the undirected graph with 9 nodes depicted below, with edges as shown
by the naked links. Consider a symmetric random walk on this graph, where at each node,
one of the available links is uniformly chosen to determine the next position.

BA

(a) Starting from node B (see Figure), find the expected number of times node A is visited
before returning to node B.
(b) Starting from the node B, find the expected number of steps to reach node A.
Hint: Use the following hints only after trying your ideas, that too at your own risk. For
part (a), the definition and concept of an invariant can be helpful. For part (b), a first step
analysis for the expected time is perhaps useful.
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5 Epilogue

The topic of Markov chains can be a course in itself. There are two courses in the depart-
ment which delves much more deeper in to the theory and applications (Markov Chains
and Queues, Advanced Probability). The idea of touching the topics was to not only to
introduce stochastic processes, but also to illustrate the possible applications of Markov
chains.

I request the reader to forgive me for not covering further details of some fundamental
concepts. For example, we need much more machinery to show the convergence to equi-
llibrium, clearly out of the scope for a first level course. This coverage is also guilty of
leaving out the topic of recurrence and stability of HMCs, or the related ergodic theory.
In these notes, I have attempted to address some of the questions raised in the class. We
will use one of the saturdays to illustrate a particular application of the properties related
to the stationary distribution, to analyse a random access protocol called ALOHA used in
wireless networks.

Feel free to mail any questions that you have.
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