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1 Chebyshev’s Inequality

Proposition 1

P (∣X −EX ∣ ≥ ε) ≤
σ2
X

ε2

The proof is a straightforward application of Markov’s inequality. This inequality is highly
useful in giving an engineering meaning to statistical quantities like probability and expec-
tation. This is achieved by the so called weak law of large numbers or WLLN. We will
give the following version of WLLN.

Proposition 2 For IID random variables X1,⋯,Xn, let EX1 = µ,V ar(X1) = σ2 and Sn ∶=
1
n ∑

n
i=1Xi. Then

P (∣Sn − µ∣ ≥ ε) → 0,∀ε > 0.

Proof: We know from Chebyshev’s inequality that

P (∣Sn − µ∣ ≥ ε) ≤
E(Sn − µ)2

ε2

= 1

n2ε2

n

∑
i=1
σ2

= σ2

nε2
→ 0.

Thus, we now have a good justification for our well known frequency interpretation. In
particular, for a sequence of IID Ui, i ≥ 1, and by taking Xi = 1{Ui∈A}, the WLLN will
suggest that the empirical average of 1

n ∑i≤nXi is close to

EX1 = P (A),∀A.

In particular, by taking a macroscopical n−dimensional view, we can say that the total
probability of all such sequences Ui,1 ≤ i ≤ n which will have ∣∑n

i=1Xi −nP (A)∣ > nε can be
made small enough by increasing n.

2 Sum of Two Random Variables

We now consider the sum of two independent random variables, say X1 and X2, taking
values in E1 and E2 respectively. We assume throughout that the sum is well defined and
mostly limit ourselves to non-negative integer-valued random variables. However, many
statements below can be appropriately generalized to real-valued discrete random variables.

First of all, Y = X1 +X2 is indeed a random variable, which can be checked from the
basic definition of measurability from (Ω,F) to (E,P(E)), where F = F1 × F2, Fi is the



sigma-field with respect to which Xi is measurable. We also know from the linearity of
expectation that

E[Y ] = E[X1] +E[X2].
Similarly

σ2
Y = σ2

X1
+ σ2

X2
.

However, we know that the random variable Y is specified in terms of its probability
distribution function P (Y = y),∀y ∈ E. It turns out that we can find P (Y = y) in terms of
P (Xi = xi) in a straightforward fashion.

P (Y = y) = ∑
x1

P (X1 = x1,X2 = y − x1)

= ∑
x1

P (X1 = x1)P (X2 = y − x1)

The last equation resembles the traditional convolution operation in signals and systems.
Recall that g(x) = f(x) ∗ h(x) implies

g(x) = ∫ f(u)g(x − u)du = ∫ f(x − u)g(u)du, (1)

where the integral is replaced by a summation in the discrete case. We highlight this result
for future use.

The probability distribution of the sum of two independent discrete random
variables is the convolution of the individual distributions. We will denote this
as PY = PX1 ∗ PX2 .

Later we will see that the above formula holds true for the sum of real valued random
variables too.

Example 1 Let X1 be a RV such that P (X1 = a) = p and P (X1 = b) = 1 − p. Consider
an independent random variable X2 with P (X2 = c) = q and P (X2 = d) = 1 − q. Find the
probability distribution of Y =X1 +X2 and sketch it.

Solution: For the ease of illustration, assume that a, b, c, d are distinct numbers and
a+d ≠ b+ c. Evidently, the possible values of Y are in {a+ c, a+d, b+ c, b+d}. Furthermore,

P (Y = a + c) = P (X1 = a)P (X2 = c) = pq
P (Y = a + d) = P (X1 = a)P (X2 = d) = p(1 − q)
P (Y = b + c) = P (X1 = b)P (X2 = c) = (1 − p)q
P (Y = a + c) = P (X1 = b)P (X2 = d) = (1 − p)(1 − q)

So the convolution formula in (1) as such was not really needed, nevertheless let us illustrate
pictorially that convolution will indeed give this result.
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Notice that convolution of any function f(x) and an impulse of magnitude α at position
t0 will result is αf(x − t0), i.e. the same function scaled by the impulse magnitude and
shifted to the position of the impulse. By linearity, the convolution with two impulses can
be written as the convolution on individual impulses and then adding the results. The
resulting convolution of our example is illustrated in Figure 1.

a + c

pq

b + c

(1 − p)q

a + d

p(1 − q)

b + d

(1 − p)(1 − q)

Figure 1: Distribution P (Y = y)

n

3 Generating Functions

Writing a result as a convolution has many advantages. Foremost of these is the conjugal
relationship of convolution with multiplication in the transform domain, popularly known
as convolution-multiplication theorem. For example, Laplace Transform, Fourier Transform
etc for continuous-time functions, and the so called Z−Transform for discrete-time signals.
We do not need the deeper aspects of these theories, this you will learn in coming semesters,
but some superficial properties are enough for our purpose. This, admittedly, is a little
extra effort, but certainly very beneficial. We will focus on the Z−Transform, which is
defined for a sequence αn, n ∈ N⋃{0} as,

g(z) = ∑
k

αkz
k.

where z takes values in the complex plane. If you do not know Z−transform, think of
g(z) as polynomial and z as a real variable for the time being (feel free to then ignore any
discussion on complex variables below). The only places where this view may not work
is while inverting the transform. Notice that the RHS is nothing but the power series
expansion of g(z). All we are doing is to find the function g(z) with the given ‘polynomial’
coefficients, albeit of possibly unbounded degree. For those who are familiar with digital
filters, the unbounded degree case corresponds to what is known as IIR filters (infinite
impulse response). Since z takes complex values (remember the equivalent es term in
Laplace transform), we have to define expectation of a complex random variable. We use
the natural extension

E[XR + jXI] = E[XR] + jE[XI],

where XR and XI are the real and imaginary parts respectively of the given complex
variable. Consider two sequences αi, i ≥ 1 and βi, i ≥ 1. The convolution of these sequences
is given by

xn = ∑
m≥0

αmβn−m = ∑
m≥0

βmαn−m.

3



Let gx(z) represent the Z− transform of xn. Then

∑
n≥0

xnz
n = ∑

n≥0
∑
m≥0

αmβn−mz
n (2)

= ∑
m≥0

αm∑
n≥0

βn−mz
n (3)

= ∑
m≥0

αmz
m∑
n≥0

βn−mz
n−m (4)

= ∑
m≥0

αmz
mgβ(z) (5)

= gβ(z)gα(z), (6)

which is the convolution-multiplication theorem. Note that we have considered well-
behaved functions which allow the interchange of the summations.

Definition 1 The generating function gX(z) of a non-negative integer valued random vari-
able X is defined as

gX(z) = E[zX] = ∑
k≥0

P (X = k)zk.

The generating function, also denoted as GF, completely specifies the probability distribu-
tion. This is clear by noticing that once we expand gX(z) as power series, the coefficient
of the kth term is indeed P (X = k). So if gX(z) is all about obtaining P (X = k), why take
the extra trouble to define it? It turns out that gX(z) is computationally more useful than
the distribution function when it comes to sums of independent random variables.

Theorem 1 Consider independent random variables X and Y . Then

gX+Y (z) = gX(z)gY (z)

Solution: Notice that this is re-stating the convolution-multiplication theorem.

gX+Y (z) = EzX+Y

= EzXzY

= EzXEzY

= gX(z)gY (z),

where the third inequality used the fact that X and Y are independent. Keep in mind that
the statement in general may not be true without assuming independence.

n

Thus it is simple to compute the generating function of independent sums, and from
this we can easily obtain the distribution of the sum. We claim without proving that we
can invert the generating function to obtain the distribution. While the matter of exact
inversion can be a bit subtle in general (as in the case of Inverse Fourier Transform), let
us not worry about this, pathological cases are seldom encountered. We are not going to
deal with elaborate inversion formulas or mechanisms, but use our knowledge on a case by
case basis, i.e. we know the generating functions of several widely used discrete random
variables, and we will simply identify the distribution of X by observing gX(z).

Example 2 Find the GF of a Binomial(n, p) random variable.
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Solution:

g(z) =
n

∑
k=0

P (X = k)zk

=
n

∑
k=0

(n
k
)(pz)k(1 − p)n−k

= (1 − p + pz)n

Example 3 Find the GF of a Poisson random variable of parameter λ.

We know that for a Poisson(λ)

P (X = k) = e−λkλ
k

k!
, k ≥ 0

g(z) = ∑ e−λ
(λz)k
k!

= eλ(z−1)

Example 4 What is the distribution of X1 +X2 if X1 and X2 are independent, and X1 ∼
Binomial(n1, p), X2 ∼ Binomial(n2, p)

Solution: The easiest way is to find the GF of X1 +X2.

gX1+X2(z) = gX1(z)gX2(z)
= (1 − p + pz)n1(1 − p + pz)n2

= (1 − p + pz)n1+n2

Thus the GF of X1 +X2 corresponds to Binomial(n1 + n2, p). Observe that this does not
hold if the second parameter p was not identical. Equivalently, identical coins were used in
the generation of X1 and X2 (independently).

n

Example 5 What is the distribution of X1 +X2 if X1 and X2 are independent, and X1 ∼
Poisson(λ1), and X2 ∼ Poisson(λ2).

Solution: Unlike the previous question, here the random variables can have totally differ-
ent parameters. Proceeding as above,

gX1+X2(z) = gX1(z)gX2(z)
= eλ1(z−1)eλ2(z−1)

= e(λ1+λ2)(z−1),

which corresponds to a Poisson process of parameter λ1 + λ2.
n

Repeating the above argument, we have the following theorem.

Theorem 2 The sum of k independent Poisson RVs of respective parameters λi,1 ≤ i ≤ k
is Poisson distributed with parameter ∑k

i=1 λi.
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Another advantage of having the GF is that we can evaluate quantities like the mean
and variance directly, without recourse to finding the probability distribution.

Theorem 3 Given a GF gX(z) which is twice differentiable,

E[X] = g′X(1)
E[X2] = g′′X(1) + g′X(1)

Solution: The differentiability assumption is technical, and there are generalizations. The
proof is simple.

n

4 Random Sums and Wald’s Identity

Consider a sequence of IID random variables Xi, i ≥ 1. We know how to calculate the
moments of the sum Y = ∑n

i=1Xi, for any given n. However, there are cases where the
number of random variables to be summed itself is chosen in a random fashion. Consider

Y =
T

∑
i=1
Xi,

where T is a random number independent of Xi, i ≥ 1. In order to compute the mean of Y ,
a famous formula known as Wald’s identity comes to our rescue.

Theorem 4 Consider random variables Xi, each having the same mean E[X].

E[Y ] = E[X]E[T ].

Instead of giving a direct proof, let us go ahead and compute the GF of Y .

EzY = Ez∑T
i=1Xi

= ∑
k≥0

Ez∑k
i=1Xi 1{k=T}

= ∑
k≥0

Ez∑k
i=1Xi E1{T=k}

= ∑
k≥0

Ez∑k
i=1Xi P (T = k)

= ∑
k≥0

P (T = k) [gX(z)]k

= gT (gX(z)).

We also know that

EY = g′Y (1)
= g′T (gX(1)) g′X(1)
= g′T (1) g′X(1)
= ET EX.

This last equation is known as the Wald’s Identity, which also has some further generaliza-
tions.
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