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1 Sum of Two Random Variables

We now consider the sum of two independent random variables, say X1 and X2, taking
values in E1 and E2 respectively. We assume throughout that the sum is well defined and
mostly limit ourselves to non-negative integer-valued random variables. However, many
statements below can be appropriately generalized to real-valued discrete random variables.

First of all, Y = X1 +X2 is indeed a random variable, which can be checked from the
basic definition of measurability from (Ω,F) to (E,P(E)), where F = F1 × F2, Fi is the
sigma-field with respect to which Xi is measurable. We also know from the linearity of
expectation that

E[Y ] = E[X1] +E[X2].

Similarly
σ2
Y = σ2

X1
+ σ2

X2
.

However, we know that the random variable Y is specified in terms of its probability
distribution function P (Y = y),∀y ∈ E. It turns out that we can find P (Y = y) in terms of
P (Xi = xi) in a straightforward fashion.

P (Y = y) =∑
x1

P (X1 = x1,X2 = y − x1)

=∑
x1

P (X1 = x1)P (X2 = y − x1)

The last equation resembles the traditional convolution operation in signals and systems.
Recall that g(x) = f(x) ∗ h(x) implies

g(x) = ∫ f(u)g(x − u)du = ∫ f(x − u)g(u)du, (1)

where the integral is replaced by a summation in the discrete case. We highlight this result
for future use.

The probability distribution of the sum of two independent discrete random
variables is the convolution of the individual distributions. We will denote this
as PY = PX1 ∗ PX2 .

Later we will see that the above formula holds true for the sum of real valued random
variables too.

Example 1 Let X1 be a RV such that P (X1 = a) = p and P (X1 = b) = 1 − p. Consider
an independent random variable X2 with P (X2 = c) = q and P (X2 = d) = 1 − q. Find the
probability distribution of Y =X1 +X2 and sketch it.



Solution: For the ease of illustration, assume that a, b, c, d are distinct numbers and
a+d ≠ b+ c. Evidently, the possible values of Y are in {a+ c, a+d, b+ c, b+d}. Furthermore,

P (Y = a + c) = P (X1 = a)P (X2 = c) = pq

P (Y = a + d) = P (X1 = a)P (X2 = d) = p(1 − q)

P (Y = b + c) = P (X1 = b)P (X2 = c) = (1 − p)q

P (Y = a + c) = P (X1 = b)P (X2 = d) = (1 − p)(1 − q)

So the convolution formula in (1) as such was not really needed, nevertheless let us illustrate
pictorially that convolution will indeed give this result.
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Notice that convolution of any function f(x) and an impulse of magnitude α at position
t0 will result is αf(x − t0), i.e. the same function scaled by the impulse magnitude and
shifted to the position of the impulse. By linearity, the convolution with two impulses can
be written as the convolution on individual impulses and then adding the results. The
resulting convolution of our example is illustrated in Figure 1.
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Figure 1: Distribution P (Y = y)
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2 Generating Functions

Writing a result as a convolution has many advantages. Foremost of these is the conjugal
relationship of convolution with multiplication in the transform domain, popularly known
as convolution-multiplication theorem. For example, Laplace Transform, Fourier Transform
etc for continuous-time functions, and the so called Z−Transform for discrete-time signals.
We do not need the deeper aspects of these theories, this you will learn in coming semesters,
but some superficial properties are enough for our purpose. This, admittedly, is a little
extra effort, but certainly very beneficial. We will focus on the Z−Transform, which is
defined for a sequence αn, n ∈ N⋃{0} as,

g(z) =∑
k

αkz
k.
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where z takes values in the complex plane. Notice that the RHS is nothing but the power
series expansion of g(z). All we are doing is to find the function g(z) with the given
‘polynomial’ coefficients, albeit of possibly unbounded degree. For those who are familiar
with digital filters, the unbounded degree case corresponds to what is known as IIR filters
(infinite impulse response). Since z takes complex values (remember the equivalent es term
in Laplace transform), we have to define expectation of a complex random variable. We
use the natural extension

E[XR + jXI] = E[XR] + jE[XI],

where XR and XI are the real and imaginary parts respectively of the given complex
variable.

Definition 1 The generating function gX(z) of a non-negative integer valued random vari-
able X is defined as

gX(z) = E[zX] =∑
k≥0

P (X = k)zk.

The generating function, also denoted as GF, completely specifies the probability distribu-
tion. This is clear by noticing that once we expand gX(z) as power series, the coefficient
of the kth term is indeed P (X = k). So if gX(z) is all about obtaining P (X = k), why take
the extra trouble to define it? It turns out that gX(z) is computationally more useful than
the distribution function when it comes to sums of independent random variables.

Theorem 1 Consider independent random variables X and Y . Then

gX+Y (z) = gX(z)gY (z)

Solution: Notice that this is re-stating the convolution-multiplication theorem.

gX+Y (z) = EzX+Y

= EzXzY

= EzXEzY

= gX(z)gY (z),

where the third inequality used the fact that X and Y are independent. Keep in mind that
the statement in general may not be true without assuming independence.

n

Thus it is simple to compute the generating function of independent sums, and from
this we can easily obtain the distribution of the sum. We claim without proving that we
can invert the generating function to obtain the distribution. While the matter of exact
inversion can be a bit subtle in general (as in the case of Inverse Fourier Transform), let
us not worry about this, pathological cases are seldom encountered. We are not going to
deal with elaborate inversion formulas or mechanisms, but use our knowledge on a case by
case basis, i.e. we know the generating functions of several widely used discrete random
variables, and we will simply identify the distribution of X by observing gX(z).

Example 2 Find the GF of a Binomial(n, p) random variable.

Solution:

g(z) =
n

∑
k=0
P (X = k)zk

=
n

∑
k=0

(
n

k
)(pz)k(1 − p)n−k

= (1 − p + pz)n
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Example 3 Find the GF of a Poisson random variable of parameter λ.

We know that for a Poisson(λ)

P (X = k) = e−λk
λk

k!
, k ≥ 0

g(z) =∑ e−λ
(λz)k

k!
= eλ(z−1)

Example 4 What is the distribution of X1 +X2 if X1 and X2 are independent, and X1 ∼

Binomial(n1, p), X2 ∼ Binomial(n2, p)

Solution: The easiest way is to find the GF of X1 +X2.

gX1+X2(z) = gX1(z)gX2(z)

= (1 − p + pz)n1(1 − p + pz)n2

= (1 − p + pz)n1+n2

Thus the GF of X1 +X2 corresponds to Binomial(n1 + n2, p). Observe that this does not
hold if the second parameter p was not identical. Equivalently, identical coins were used in
the generation of X1 and X2 (independently).

n

Example 5 What is the distribution of X1 +X2 if X1 and X2 are independent, and X1 ∼

Poisson(λ1), and X2 ∼ Poisson(λ2).

Solution: Unlike the previous question, here the random variables can have totally differ-
ent parameters. Proceeding as above,

gX1+X2(z) = gX1(z)gX2(z)

= eλ1(z−1)eλ2(z−1)

= e(λ1+λ2)(z−1),

which corresponds to a Poisson process of parameter λ1 + λ2.
n

Repeating the above argument, we have the following theorem.

Theorem 2 The sum of k independent Poisson RVs of respective parameters λi,1 ≤ i ≤ k
is Poisson distributed with parameter ∑

k
i=1 λi.

Another advantage of having the GF is that we can evaluate quantities like the mean
and variance directly, without recourse to finding the probability distribution.

Theorem 3 Given a GF gX(z) which is twice differentiable,

E[X] = g′(1)
E[X2] = g′′(1) + g′(1)

Solution: The differentiability assumption is technical, and there are techniques to avoid
it. The proof is simple.

n
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3 Conditional Expectation

We have already learned about expectations with respect to a distribution function. For a
function of two random variables,

E[g(X,Y )] =∑
x,y

g(x, y)P (X = x,Y = y).

It is possible to extend this definition to compute expectation with respect to conditional
probabilities. Recall that for every Y = y, such that P (Y = y) > 0, P (X ∣Y = y) is a
probability distribution function. In particular,

∑
x∈E1

P (X ∣Y = y) = 1.

Definition 2 Let X and Y takes values in E1 and E2 respectively. Let the function g ∶
E1 × E2 → R, be either non-negative or E∣g(X,Y )∣ ≤ ∞. Then for all y ∈ E2 such that
P (Y = y) > 0, the conditional expectation given Y = y, is defined as

E[g(X,Y )∣Y = y] = ∑
x∈E1

g(x, y)P (X = x∣Y = y)

The conditional expectation E[g(X,Y )∣Y = y] is a function of y, let us call it ψ(y). Con-
sidering Y as a random variable, ψ(Y ) is a random variable as it is function of Y .

Definition 3 The conditional expectation defined as

ψ(Y ) = E[g(X,Y )∣Y ],

is a random variable.

In order to avoid the confusion in cases where P (Y = y) = 0, let us make the
convention that zero multiplied by anything is zero. i.e. if we observe a zero in
a product, let us not care whether the rest of the product is well-defined or not.

The properties of expectation like linearity and monotonicity hold for conditional ex-
pectation also.

Example 6 Let X1 and X2 be identical binomial random variables of size N and parameter
p. Find the conditional expectation E[X1∣X1 +X2].

Solution: Notice the form E[X1∣Y ] where Y = f(X1,X2). Thus, what we obtain as
conditional expectation will be a random variable in terms of Y .

E[X1∣X1 +X2 = n] =
n

∑
i=0
iP (X1 = i∣X1 +X2 = n)

=
n

∑
i=0
i
P (X1 = i)P (X2 = n − i)

P
(X1 +X2 = n)

=
n

∑
i=0
i
(
n
i
)(

n
n−i)

(
2N
n
)

=
n

2
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Since this is true for any n that Y can take, we deduce that

E[X1∣X1 +X2] =
X1 +X2

2
.

n

We have defined ψ(Y ) = E[g(X,Y )∣Y ] to emphasize that it is a random variable. Now
we can think of taking its expectation with respect to the distribution of Y . When there
are multiple expectations involved, it is instructive to add a subscript to the expectation,
denoting which variable is being integrated. For example ψ(Y ) = Ex[g(X,Y )∣Y ], saying
that the summation is over x ∈ E1. We now show a very important result.

Theorem 4

EyEx[g(X,Y )∣Y = y] = Ex,yg(X,Y )

Proof: Using the expression Eψ(Y ) = ∑ψ(y)P (Y = y),

EyEx[g(X,Y )∣Y = y] = ∑
y∈E2

P (Y = y)E[g(X,Y )∣Y = y]

= ∑
y∈E2

P (Y = y) ∑
x∈E1

g(x, y)P (X = x∣Y = y)

=∑
x,y

P (X = x,Y = y)g(x, y)

= Eg(X,Y ).

This result is very useful, and leads to a famous identity called Wald’s identity.

4 Random Sums and Wald’s Identity

Consider n random variables X1,⋯,Xn. We know how to calculate the moments of the
sum Y = ∑

n
i=1Xi. However, there are cases where the number of random variables to be

summed itself is chosen in a random fashion. Consider

Y =
T

∑
i=1
Xi,

where T is a random number independent of X1,⋯,Xn. In order to compute the mean of
Y , a famous formula known as Wald’s identity comes to our rescue.

Theorem 5 Consider random variables Xi, each having the same mean E[X].

E[Y ] = E[X]E[T ].

Proof: From the previous section,

E[Y ] = EtEy[Y ∣T ].

Thus,

E[Y ] = EtT E[X]

= E[T ]E[X].
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