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1 Introduction

Some basics of probability theory are typically taught in senior high-school, and many
students are accustomed to the notion of probability. In fact, many of you might have
attempted to correctly predict the results of cricket/football matches, only to loose half
your mustache (if you have one), or perhaps some money. Weather forecast is another place
where we deal with probability theory on a regular basis. Here there is no money lost, if
not obvious, we just need to invert the predictions from our meteorology centers. This is
all good, but how come some octopus in Germany is predicting the outcomes of football
matches? divine intervention?

“God does not play dice1”

This is a popular quote from the formative years of quantum physics. It turned out that
quantum theory emerged to be more about probability than anything else. In fact, the
world around, in all scales, from the weather clouds to the fundamental atomic particles,
are continuously2 tossing their coins or dice, whose outcomes collectively determining the
physical world as we see.

2 Reality Bites

You may agree that probability is really real, what better place to start than a reality
show3. In several such shows one out of a given number of marked boxes are to be picked,
and a treasure-hunt has to be performed to get your reward. Let us have a miniature model
with three boxes as shown below. To make matters important, we have reached the studio

Figure 1: Reality Show (a variant from Starbird and Burger, The heart of mathematics.
You can click and play in certain pdf readers.)

1Einstein vs Neils Bohr
2in the literary sense
3see Starbird and Burger, The heart of mathematics



on request from ALICE, who complained over phone that she was trapped in one of the
boxes. Our job is to rescue our beloved friend ALICE. The VJ tells you that the other two
boxes contain Leopards, so try playing safe in the rescue mission. The game is fair, that
each box has the same chance of containing our ALICE, which is 1

3 . You can escape with
the prize on figuring out ALICE in one of the boxes. The procedure is as follows.

The suitor chooses one of the boxes and bets his money on it. The box remains closed.
Then, our beautiful VJ will spring to action with her seductive voice. She will announce
that all is not lost if Alice is not in the box that you have chosen. No! it is not about living
with a LEO, rather our VJ will lay bare another box for you, and we all know the outcome
there to be ferocious. Now the real game starts.

After seeing the LEO-inhabited box, you are given an option to switch from your initial
choice of the box. The question is “Will you switch or not?”. No telephone lines or ‘ask
the audience”. In fact, many of the audience shout ’SWITCH’, while several others say
’STICK’, the VJ unequivocally blabbers garbage, an exercise of building lip-muscles.

It turns out that if you switch your choice, you have more chances of winning the prize.
This is slightly surprising, or perhaps confusing. Let us look at it in the following way.
Since each box is equally favored to have the prize, we can keep our bet on the first box to
start with. Our chances do not change if any other box is picked first. So let us stick to
this scheme, i.e. whenever this game is played, we will start with Box I. Now, if ALICE is
in any of the other two boxes, you WIN by SWITCHing. Conversely, whenever ALICE is
not in the other two boxes you will loose by SWITCHing. It happens that most often, in
fact roughly a fraction 2

3 of the times, we expect the prize to be in the last two boxes, as
each of the box is equally favored.

We should be very careful NOT to state that one will win a fraction 2
3 of the times by

switching your choice. In fact, what we have is a rough estimate, or an approximate guess of
what the expected winnings are. As we go further into this course, we will rigorously state
the quantitative and qualitative properties of ‘the probability of winning’. To convince
you, Figure 2 shows the results of computer simulations where the fraction-of-wins-by-
switching vs the number-of-trials is shown. The two curves correspond to different runs of
the experiment. Each time we restart the experiment, we get a possibly new curve, but it
can be visualized that the success percentage tends to 2

3 with the number of trials in a run.
We will make this statement mathematically rigorous later in the course.

3 Birth Day Problems

This is another interesting example on probability computation. Keep in mind that we
have not introduced the notion of probability. In fact, the following discussion relies on
your past familiarity on probability theory to convey ideas. Our question is

Of N people sitting in a room, what is the chance that there is a pair
who shares the same birthday?

To demystify, we are looking at people who celebrate their birthday on the same day
every year. For simplicity, let us ignore the leap years, and assume there are 365 possible
birthdays up for grabs. In order that the above problem makes sense, we need to also
state that each day in any year is favored equally as a birthday4. In lieu of our fairness

4I apologize if there is confusion about this, the term not favored is to account for fairness, or lack of
partiality, which is vital for our answers. In many western countries, a large number of kids are actually
born around the new-year, and our results will not apply then
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Figure 2: Computer Simulation showing Winning Fraction for 2 different runs

assumption, on picking a person, the chance that his birthday happens to be on January 1
is 1

365 , the same being true for any other day.

Example 1 How many birthday combinations are possible for N people?

Solution: Consider two people, the first person can be born in any of the 365 days, and
so be the second person. Thus a total of 365.365 = 3652 birthday pairs are possible. For
N people, we can have any of 365N choices.

n

Example 2 If 100 people are in a room, what is the chance that nobody has(had) his/her
birthday today.

Solution: If we replace ‘birthday’ by ‘breakfast’ the answer is obvious. As for birthday,
take the first person, the chance that he/she was born some other day is 364

365 , which is same
as 1 − 1

365 . In particular, there are 364 other possible days, as opposed to today. Now
take the second person, his/her chance of being born some other day is also 364

365 . Now, put
them together and assume that none of them have their birthday today. So each birthday
can take any one of the 364 values, and the total possible pairs is 364 × 364. Using the
previous example, the chance of two persons not having their birthday can be evaluated as
364×364
365×365 = 3642

3652 . The argument extends to N users, thus the chance that none of N persons

having their birthday today is 364N

365N
. For 100 people, this evaluates to approximately 0.76.

Conversely, the chance of at least one person having his/her birthday today is about 0.24.
n

Example 3 If two persons who do not share their birthdays are chosen, how many birthday
combinations are possible.
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Solution: We can arrange all possible birthday combinations on a two dimensional matrix
of size 365 × 365. Any element in the diagonal corresponds to identical birthdays, and
should not be counted. So the total different birthday combinations are 3652 − 365, i.e.
total entries minus the number of diagonal entries, which is same as 365.364. n

Example 4 How many ways N birthdays can be chosen, if no birthdays are shared?

Solution: The answer is an extension of the previous problem. The first person’s birthday
can be any one of the 365 values. Given the first birthday, the second one can be any of
the remaining 364. Now the third can have any from 363 possibilities, and so on. Thus
the number of ways are 365 × 364 × 363×,⋯,×(365 −N + 1). The notation ,⋯, will be used
frequently to concisely write a string of characters. n

We are now in a position to answer our birthday problem. In fact, it is easy to find the
the complement, i.e. the chance of N different birthdays is

365 × 364 × 363×,⋯,×(365 −N + 1)
365N

.

From what we learn later, subtracting the above value from one will give the answer that
we seek.

4 Numbers and Counting

Most of what you learned as probability(in earlier classes) are actually related to a branch
of mathematics called ENUMERATIVE COMBINATORICS, on which several beautiful
books are available. A minimal revision is done here, we need to move beyond this primary
concepts as early as possible. Consider the decimal number system, where the elements are
0,1,⋯,9. We can form 10 numbers of 1 digit. How about 2 digits? 00,01,⋯,99 will give us
100, or 102 numbers. The principle: the first digit can take each of the 10 values, and for
each first digit the second one can take 10 values, leading to 100 numbers. This property
extends beyond the decimal system. Imagine a number system with elements 0,1,2,3.
With 2 digits we can form 16 numbers and with 10 digits we can form 410 = 1048576
numbers.

Example 5 How many numbers are possible if the first digit is decimal and the second one
is from 0,1,2,3,4?

Certainly our philosophy of counting should work. Consider a 5 × 10 matrix, where the
entry in position (i, j) of the matrix is 10.i + j, where 0 ≤ i ≤ 9 and 0 ≤ j ≤ 4. This will
include all the permitted numbers and hence 10.5 = 50 numbers are possible. n

Exercise 1 Suppose you have 5 different number systems, let us call it S1, S2, S2, S4 and
S5. Let ni denote the number of elements in the system Si. You are supposed to form 5
‘digit’ numbers, with position i employing elements from system Si. How many different
numbers are possible.

Exercise 2 Consider the decimal system with elements 0,⋯,9, and the hexa-decimal sys-
tem with elements 0,⋯,9,A,⋯F . Furthermore, imagine a ‘chinese’ numbering system with
20 pictures representing various digits, we will call it ca, cb,⋯, ct. You are required to form
2 digit numbers. The first digit can use any one of the number systems. For example, you
can decide it to be the chinese system. The second digit can be taken from the remaining
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two systems, i.e. you can pick elements from both the remaining systems for the second
digit. Notice that ca1, caF etc are valid numbers here. Under these constraints, maximize
the total number of possible 2 digit numbers.

n

We need to add one more trick to our bag to do some counting-magic. Let us first
generalize Example 4, and say that N elements can be arranged in N ! ways if no element
repeats. What if we are only interested in the first M < N elements? The first M elements
can now be placed in N !

(N−M)! ways, i.e. any arrangement of the last N −M does not count,
once we take the first M digits. Suppose, in addition, that we are interested only in the
values that we picked and not their positions, i.e. we will not count again if the same
elements are permuted or re-arranged. Thus, for each choice of the first M values we will
have M ! re-arrangements which will NOT get counted. Since the first M digits can be
taken in N !

(N−M)! ways, the total number of ways different elements can be picked up (sans

permutation) is
N !

M !(N −M)! = (
N

M
),

where the RHS is a short hand notation, which expands to N choose M , i.e. ways of
choosing M elements from N , where the position does not matter. For brevity, we will
crop out the statement ’position-does-not-matter’ and simply say choose M elements from
N .
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