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1 Axiomatic Probability

We have learned some paradoxes associated with traditional probability theory, in partic-
ular the so called Bertrand’s paradox. The problem there was an inaccurate or incomplete
specification of what the term random means. In fact, formulating a random experiment
needs to be more constructive, clearly outlining the way probabilities of various events are
generated. It is here that the axiomatic framework or modern framework1 takes over.
The modern notion defines a probability space, sometimes referred to as probability trin-
ity. Much like the Indian trinity of srushti(brahma), sthithi(vishnu), samhara(maheshwara)
or western father, son, holy soul, the probability space is about how outcomes, events and
probabilities are constructed unambiguously. Indeed a ‘probabilistic universe’ in action.
However, do no read further into this mythological connection, our trinity has more cre-
ation, maintenance and lending out, its Mumbai after all.

We will define a few axioms on events and their probability assignment, and further use
this to construct suitable probability spaces.

2 Probability Space (Ω,F , P )

The probability space has three constituents, Ω, F and P .

1. The first entity Ω (borrowed from classical probability) denotes the sample-space,
where each outcome of the experiment is a sample-point.

2. The second entity F , also known as event-space, is a class of subsets of Ω, having
certain extra qualifications than its classical counterpart. In particular, the event-
space F is a σ−field (pronounced as sigma field).

3. The third entity is the probability measure, which associates a value in [0,1] for any
event A ∈ F .

In fact, the three entities appear pretty much the way they were introduced in classical
probability. However, we will refine our definitions and list a set of axioms that governs
the construction of the last two entities. We already had several examples about the first
entity. So let us start with the second one, the so called event-space F .

3 Event-Space F

Given several events, event-management is a necessity (imagine Olympics or Techfest).
Event-management allows us to do operations on events in F . Since events themselves are
subsets of Ω, the permitted operations are the well-known set operations. In order to do
event-management, the space F should be stable with respect to set operations. The word
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Figure 1: A familiar linear systems view of stability

stable here is very important. It emphasizes that if you perform permissible operations on
event(s) in F , what results is an event (possibly different) in F , see Figure 1.

Now this resembles very much of a say in cricket, “what happens in a cricket-field
stays there”. In fact a cricket-field provides a level-playing ground for various actions and
events to occur, and ideally no event boils out of the field, that is the ground, stadium and
participants2. The word ‘field’ applies to a more general context than a cricket field, feel
free to think about a cricket field and the above proverb.

Those who are used to set-theory may guess immediately that the property stable is
similar in spirit to ‘a class of subsets being closed with respect to usual set-operations’.
However, there are subtle differences between the terms closed and stable, at least in the
conventional use of the first. Conventional set operations on event(s) are

1. Complement, denoted as Ac or Ā.

2. Union: A1⋃A2.

3. Intersection: A1⋂A2.

4. Set difference: A1 ∖A2, which is A1⋂Ac
2.

5. Symmetric difference: A1 △A2 which is (A1 ∖A2)⋃(A2 ∖A1).

3.1 Stability and Complements

Events of interests in an experiment are usually associated with a YES/NO question. For
example, has A happened?, or is it HEAD?. An event A has not happened will mean that
the event Ac has happened. Thus, ‘has A not happened’ can be asked equivalently in terms
of Ac happening. As a result, we want both parties to be members of F for it to be stable.

A stable class needs to be closed under complementing, i.e.

A ∈ F ⇒ Ac ∈ F .

3.2 Stability and Unions

A class F is closed under set-unions if the union of any two elements in the class will give
rise to another element in the class. By repetition, we can say that if Ai ∈ F ,1 ≤ i ≤ n, then

n

⋃
i=1

Ai ∈ F .

In other words, F is closed under finite unions.

Definition 1 A collection of subsets which includes Ω and closed with respect to (i)complements
and (ii) finite unions is known as a field or an algebra.

1attributed to A. N. Kolmogorov, the Russian mathematician
2let us forget the idiot box and sidduisms
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On the other hand, if F is stable, then it needs to be closed under countable unions, i.e.

∞

⋃
i=1

Ai ∈ F .

Thus countable unions cannot result in anything outside the event-space, pointing to the
stability or robustness of our space. The rest of the set-operations can be written in terms
of unions and complements, and thus the definition of stability can be clearly stated in the
first two operations.

Notice that stability with respect to countably infinite unions is an extremely important
property, which is necessary in many circumstances. We provide a simple example to
differentiate between finite and infinite (countable) unions.

Example 1 Let Ω = [0,1) and consider intervals in R of the form Ai = [0 + 1
i+2 ,1), i ∈ N.

For any finite n, we know that ⋃i≤nAi = [ 1
n+2 ,1), which is closed on the left. However,

⋃i≥2Ai = (0,1), which is open at the left, and thus not included in the set of subintervals
of the form [a, b). For our purposes, we demand that the field be stable with respect to
countably infinite unions too.

So far we have used the terminology stable to convey a more intuitive notion familiar from
our electrical engineering background. We will now give a proper definition to the event
space that we are interested and drop the word ‘stable’ from further usage.

Definition 2 A collection of subsets which includes Ω and closed with respect to (i)complements
and (ii) countable unions is known as a sigma- field or a sigma-algebra.

From now onward, the meaning of ‘F is a σ-field’ should be clear, and we may, at times,
will simply say F , that it is a σ−field will be clear from the context.

3.3 Event-Axioms

We will summarize the natural desired properties of the event-space as event-axioms. While
this is rephrasing some of the statements in the previous sub-section, their importance
warrants a repetition.

1. Axiom-I: Ω ∈ F .

2. Axiom-II: A ∈ F ⇒ Ac ∈ F .

3. Axiom-III: For any arbitrary countable index set T ,

Ai ∈ F ,∀i ∈ T ⇒ ⋃
i∈T

Ai ∈ F .

In literature you may find a different set of axioms defining the event-space. This should
not be causing confusion, as the whole space can be constructed based on either of the
axioms. For example, many text-books replace axiom-I by ∅ ∈ F . This is certainly true in
the light of axioms I and II above, as Ω ∈ F and ∅ = Ωc ∈ F (∅ will be called the null-set or
emptyset). To emphasize again, the set T contains arbitrary indices, but countable. Thus
T can be the set of all even numbers, or the collection of primes (is this countably infinite?)
or finite sets as in T = {i ∈ N ∶ 10 ≤ i ≤ 10000}, so on and so forth.
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3.4 De Morgan’s Laws

Let us start with a simple exercise.

Exercise 1 Simplify the expressions below.
(i)A⋃∅, (ii)A⋂∅, (iii) A⋃A, (iv) A⋂A, (v) A⋃(B ∖A), (vi) A⋂(B ∖A).

Familiarity with most of these operations will be assumed in this course3. A set of laws,
though familiar, we will devote some time are the De Morgan’s laws.

Law I:
(A⋃B)

c
= Ac

⋂Bc

Law II:
(A⋂B)

c
= Ac

⋃Bc

We are in fact interested in the extension of these laws to operations over arbitrary
countable set of indexes.
Extension Laws:

(⋃
i∈T

Ai)

c

= ⋂
i∈T

Ac
i (1)

(⋂
i∈T

Ai)

c

= ⋃
i∈T

Ac
i (2)

Proof:

x ∈ (⋃
i∈T

Ai)

c

⇔ x ∉ Ai,∀i ∈ T

⇔ x ∈ Ac
i ,∀i ∈ T

⇔ x ∈ ⋂
i∈T

Ac
i .

n

Exercise 2 Prove the second extension stated above.

3.5 Examples of σ−fields

1. Trivial σ−field : {Ω,∅}.

2. Gross σ−field : P(Ω), the power-set of Ω. This is the most useful σ-field when Ω is
finite or countable. However, keeping track of the events in P(Ω) for real-valued Ω
can turn to be a mundane, if not impossible, task(this is even true when Ω = N).

3. A non-trivial example: {Ω,A,Ac,∅}

4. Borel σ-field : B, this is the single most important σ−field when Ω is a real interval
or rectangle (higher dimensional) in Cartesian coordinates.

Exercise 3 Verify that the third example is indeed a σ−field.

3otherwise it is time that you grab the set-theory books
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3.6 Recipe for Finite Sigma Fields

There are indeed many sigma fields containing a class of events, let us say, E. The clarity
of understanding can be helped by constructing a recipe by which one can construct sigma-
fields. More precisely, what we construct are more aptly fields, finite sets which are closed
with respect to complements and unions. For example, we have already constructed a field
of size 4 above. Let us construct a field of size 8 now.

Example 2 Let A and B are disjoint subsets of Ω and consider C = (A⋃B)
c
. Let us

enumerate a 3-bit binary numbering system, and choose the subset in F using these bits as
shown below.

0 0 0 - ∅

0 0 1 - A
0 1 0 - B
0 1 1 - A⋃B

1 0 0 - C
1 0 1 - A⋃C
1 1 0 - B⋃C
1 1 1 - Ω

It is easy to verify that this is a sigma-field and one is free to choose the disjoint sets A
and B at convenience.

Exercise 4 Construct a sigma-field which has 16 events in it.

3.7 Mutually Exclusive Events

The events A1,⋯,An are mutually exclusive (or pairwise disjoint 4) if at most one of
them is true. i.e. no two share a common outcome of the experiment.

Ai happened ⇒ Aj, j ≠ i did NOT happen.

4 Probability Axioms

In addition to the three event axioms that we had described, we will also outline a set of
axioms on the third entity of the probability space, namely the probability measure P (⋅).
Axiom-I:

For any event A, P (A) ≥ 0.

Axiom-II:

For any countable index set T , and a collection Ai, i ∈ T of mutually
exclusive events,

P (⋃
i∈T

Ai) = ∑
i∈T

P (Ai).

Axiom-III:

The sample-space Ω ∈ F is certain, i.e. P (Ω) = 1.

We will include some discussion on countable sets and reals in the coming lec-
ture notes. To be frank, there is not much need to know anything more than
the distinction between countable and uncountable, throughout the course,
once we are proficient enough to avoid any pit-falls. So feel free to concentrate
on the rest of the aspects if this countable discussion is not appealing to you

4pairwise disjoint is a stronger notion than disjoint. The latter means the intersection of the given sets
is ∅, whereas the former says that the intersection of any two sets is ∅.
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