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1 Properties of Probability

Based on the three probability axioms, we can derive many properties of the probability
measure.

Many of you are already familiar with an alternate notation for intersection of sets,
widely written as a simple product form, i.e. A B and AB mean the same, whenever A
and B are clear from the context. Let us start by proving a general law for sets, which will
turn out to be useful later.

(Ua)na-Ucns )

The proof of this is very simple, but is listed here to refresh your ideas. Denote A; N B by
A; for convenience. Then, for any element z,
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xe(UAi)ﬂBéxeLJAi and x € B
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<z e A, for some i and z € B
< z € (A;[)B) for some i

< 1 € A, for some i
= T € UAZ
i=1
Property 1 If Bc A, then P(B) < P(A).

Proof: We should use the probability axioms to obtain this property, particularly Axiom II,
which deals with mutually disjoint sets. Can we write A as the union of mutually disjoint
sets, at the same involving the subset B.
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Figure 1: A= BUAB¢ when Bc A

Indeed one can, as shown in Figure 1. Using the fact that B c A,

A=B|J(A\ B) = B JAB®



Applying axiom II,

P(A) = P(B|JAB®)
= P(B) + P(AB")
> P(B).

where the last step follows from axiom I, i.e. P(-) >0. |

Using Venn diagrams as above is a good method to verify set properties when there
are a small number of participants. As the operations involve many sets, a very useful
technique is to use mathematical induction, which we illustrate by the next two properties.

Property 2
P(A|JB)=P(A)+P(B)-P(AB) (2)

Proof: Notice that any set A can be partitioned as A = ABJ AB¢, where B is any other
set. Furthermore, the partitions are mutually disjoint, thus

P(A)=P(AB°) + P(AB).
We can also partitioning A B into three disjoint parts in a convenient way to write
A|JB=AB‘| JBA°| JAB. (3)
Applying axiom II

P(AJB) = P(AB®) + P(BA®) + P(AB)
= P(AB®) + P(BA®) + P(AB) + P(AB) - P(AB)
= P(A)+ P(B) - P(AB),

where the last equation used (3). [ |
We now extend this to any number of sets. Instead of learning the analytic details first,
let us look at an example. This is popularly known as the ‘coincidences problem.

Example 1 There were M boys M girls in the senior secondary graduating batch in a
school. Suppose the school pairs each boy with a girl to do lab experiments. They graduated,
many boys went to IITs, girls to Medical Schools etc. After 10years they re-assembled for
the alumni meet at the school. M tables numbered 1,---, M, each with a pair of chairs, were
arranged for the function. The ladies went first and each lady occupied a table. If the gents
now walk in at a random order and occupy the first vacant seat, what is the probability that
at least one of the table has an actual pair from the school days.

There are many variants to this problem, the above one may appear silly, but it should
help you get interested. Without loss of generality, let us associate the table number with
the lady sitting there. We will do a counting argument as all combinations are equally
likely. Clearly there are M! ways of men seatings. Let A;,1 <7 < M be the event that there
is a match at table i. The quantity of interest is P(U A4;).

Suppose the first table got an actual pair, the rest of the men can now sit in (M - 1)!
ways.

(M-1)! 1



We also know that

P(A1UA2) ZP(Al)-FP(AQ)—P(Al,Ag)
11 (M-2)
MM M
1 1
MM MM-1)

We can generalize this ides, we will add all those options where we can ensure that the "
table has a pair. The trouble is that we are doing some double countings!. As an example,
imagine a case where the first two tables have matching pairs, this will be counted in the
(M -1)! combinations with the first matching, as well as for the (M —1)! matchings in the
second table, we should only be counting it once. A pair of matching at the first two tables
will have (M - 2)! combinations for others. However, in this last event, we will double
counting all the cases where there were three or more matchings. More specifically any
sequence with the first three tables matching will be counted into two separate pairs, and
we will have to deduct one of those. If you have any doubt, just run through the question
with two tables as we illustrated above. Putting it all together,

P(UAi):i(M(M—l)!—(Aj)(M—z)n(]‘;)(M—g)!—---) (@)
=§ 1)J+1(j)—(MA;ﬁ>! (5)
ﬁ D (

Notice that the right hand side quickly tends to 1-e~! » 0.62 with M. Let us now generalize
the idea in the example to arbitrary sets.
We introduce some notation first. When we write

Z P(AllAw)aAlk)

1<i1<ig<<tp<n

the sum is over all possible k—tuples out of the given n sets. In particular, there are (Z)
terms in the above summation. Think that there are n balls and you are picking k from
them. Each different pick corresponds to a term in the above summation. For example,
when k = 2 this corresponds to summation over all possible pairs. Those who like to think
in terms of matrices, here is a simple illustration for n =5 and k = 2.

A, Ay, Ay Ay AS]
A0 1 1 1 1
A, 0 0 1 1 1
A; 0 0 0 1 1
A, 0 0 0 0 1
A4, 0 0 0 0 0

In here, where ever you find an entry 1, take the intersection of the corresponding row-head?
and column-head and accumulate the probabilities. Once we understand this notation, we
can write an important property, also known as inclusion-exclusion formula.

first entry in that row



Property 3

PUA) =2 P(A)- 3> P(A4)

1<i<j<n

+ > P(AAAR) + o+ (-1 P(A Ay, Ay)(7)

1<i<j<k<n
Proof: Notice that we can concisely write this as,

P(QAi):i(—l)j“ S P(Ay Ay,

1<ig<-<ij<n
Expand a few terms and see for yourself that this is true. For example, n = 3 will give
P(Al UAQUAg) = P(Al) + P(AQ) + P(Ag) — P(AB) - P(AC) - P(BC) + P(ABC),

a result which can be derived by repeatedly applying (2). While large n looks a little
messy, we can tackle this with the principle of induction?. The principle is simple, suppose
a property which is true for a given n can be shown to hold for n + 1. Then, essentially we
are done by demonstrating the said property for the minimum possible value of n. Here, the
base case is n = 2, which was already shown in (2). So assume that the inclusion-exclusion
theorem is true for some n > 2. Denoting A; N A,.1 as A, and inducting,

P )= P A )
- P(Q1 A+ P(Apy) - P(Q A ) (9)
_ p(q A+ P(Ap) —P(QAZ-) (10)
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DILCORDYCIEND) P(Ail,---,Aij)+P(An+1)—P(Olfli) (11)

= 7>2 1<ig<e-<ij<n

S P+ Y)Y P(Ail,-u,Aij)—P(QAi) (12)

=1 7>2 1<ip<<ij<n

Notice that the first term on the RHS is part of the desired term. Let us look the sum of
the last two terms, say terms /1 and I11.

II+1IT=5(-1)"" 3 P(Ay, A+ >.(-1)7 > P(Ay, - A;) (13)
722 1<ig<-<ij<n J=1 1<iy<-<ij<n

While summing over 7, the first term of /1 will have j = 2, while that of I/ will have j =1,
we can combine these terms to obtain

- Y P(A,AL)- Y. P(A)=- Y P(A,AL)- Y P(AiAu) (14)

1<ii<ig<n 1<i1<n 1<iy<ig<n 1<i1<n

== Z P(AilAi2)7 (15)

1<i1<ia<n+1

where the last summation runs up to n + 1. This gives the second term in the desired
expression. Similarly, combining term by term we will get each of the parts in the formula.
After pairwise combining, one entry remains, which is

(_1)7’LP(A17 T An+1) = (_1)n+2P(A17 T An+1)7
thus verifying that the formula (7) is true for n + 1. [ |

2which dates back to the BCs: perhaps the Greeks used it first
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Exercise 1 Verify the inclusion-exclusion formula for terms containing 3—tuples (i.e. the
third term in the expansion (7)).

Example 2 Show that P(U%, A;) <Yy P(A;).

Solution: While this can be shown based on the principles above, an easier way is to use
axiom-1I. In particular,

n n-1
JAi=A | JATA | JATASAs ..U (ﬂ AfAn) .
i=1 i=1

By applying axiom II, it is clear that

PUJA) < P(A) + P(ASAy) + P(ASASAS) + ..+ P([) AZA,)

i=1 i=1

< iP(Ai)

Exercise 2 Can you extend the formula in Example 2 to countable unions?

2 Constructing Probability Spaces

We will use our axioms and set properties to paint a larger picture now, i.e. to construct
probability spaces in an unambiguous manner. The axioms and properties are kind of the
building blocks and glue, magnificent structures can be constructed by proper placement.
Here is an algorithmic view of what we are about to do.

1. Have the set of axioms ready as a toolbox.

2. Take an initial seed C of events. The seed is some set of events
for which one can unambiguously associate probability values.
Many a times this set is a very natural or intuitive choice.

3. Apply the axioms to extend the probability measure defined on
the seed to all countable unions and complements of these events.

In the above, the probability values are specified (associated) so as to truthfully model
a system we wish to examine. We do not overly worry about the statistical learning and
inference done in the past to arrive at a meaningful probability association. Again, what we
suggested above is a recipe to construct a probability space. The taste of our preparation
will depend on the ingradients used. In particular, a proper choice of the raw ingradient,
i.e. seed sets will turn out of atmost importance to get a consistent definition which is
stable over allowed operations.

The probability space construction that we describe is similar to building some shape
with LEGOs. In LEGO, one needs to be alert about a few things. Firstly, if the LEGO
has too many blocks, all the time will be spend in finding the correct pieces, can be a big
problem when the blocks are countably infinite or more. In fact, the idea of the seed set
was to tackle this. We kind of choose the blocks which appear useful in our construction



and start with those. The second problem occurs when some necessary shape cannot be
made out of the seed set, in other words, an inadequate seed. So our seed set has to be
sufficiently large to accommodate our designs, but not too large that we fail to manage it
effectively. One may feel that what we talk is more management than mathematics, with
lot of dangling English words. But this is the real story behind it, and mathematics plugs
the gaps and presents these in a coherent manner.





