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1 Constructing Probability Spaces

We will use our axioms and set properties to paint a larger picture now, i.e. to construct
probability spaces in an unambiguous manner. The axioms and properties are kind of the
building blocks and glue, magnificent structures can be constructed by proper placement.
Here is an algorithmic view of what we are about to do.

1. Have the set of axioms ready as a toolbox.

2. Take an initial seed C of events. The seed is some set of events
for which one can unambiguously associate probability values.
Many a times this set is a very natural or intuitive choice.

3. Apply the axioms to extend the probability measure defined on
the seed to all countable unions and complements of these events.

In the above, the probability values are specified (associated) so as to truthfully model
a system we wish to examine. We do not overly worry about the statistical learning and
inference done in the past to arrive at a meaningful probability association. Again, what we
suggested above is a recipe to construct a probability space. The taste of our preparation
will depend on the ingradients used. In particular, a proper choice of the raw ingradient,
i.e. seed sets will turn out of atmost importance to get a consistent definition which is
stable over allowed operations.

The probability space construction that we describe is similar to building some shape
with LEGOs. In LEGO, one needs to be alert about a few things. Firstly, if the LEGO
has too many blocks, all the time will be spend in finding the correct pieces, can be a big
problem when the blocks are countably infinite or more. In fact, the idea of the seed set
was to tackle this. We kind of choose the blocks which appear useful in our construction
and start with those. The second problem occurs when some necessary shape cannot be
made out of the seed set, in other words, an inadequate seed. So our seed set has to be
sufficiently large to accommodate our designs, but not too large that we fail to manage it
effectively. One may feel that what we talk is more managementt than mathematics, with
lot of dangling English words. But this is the real story behind it, and mathematics plugs
the gaps and presents these in a coherent manner.

While the modern theory builds the spaces in a systematic fashion, with overheads re-
quired to avoid pit-falls, we can compare this first to a naive way of constructing probability
spaces, which is kind of classical. This naive way works well when the sample-space Ω is
finite or countable.

1.1 Naive Construction

Given a countable Ω one can in principle specify a probability for every singleton event
corresponding to some outcome. Thus one can specify

P ({ω}) = pω,∀ω ∈ Ω.



The measure P (⋅), as mentioned earlier, is determined by the statistics or prior knowledge
of the system.

Example 1 For a biased coin Ω = {H,T}, and we can specify

P (H) = p, P (T ) = 1 − p.

Clearly, we are dealing with the sigma field of F = {Ω,{H},{T},∅}, and for each event in
F , the probability is unambiguous in light of the axioms.

n

Example 2 Consider a biased die, where Ω = {1,2,3,4,5,6}. We can specify

P ({ω}) = pω, ω ∈ Ω.

This will again associate probabilities to events in the power-set.

n

One drawback of this naive association is that we may overdo things, creating unnec-
essary overheads. For example, if our interest is in just known whether the outcome of a
rolled die is even or odd, we need not specify probabilities for every event in the power-set.
Rather the four element sigma-field F = {Ω,A,Ac,∅} will do, where A = {1,3,5}. So we
have to specify only P (A). This is a good saving. Imagine when our sample-space is N ,
and our interest is to know whether the outcome is odd or not. There is immense saving,
and many a times easier to specify probability for a small set of events.

So in the modern approach, we will start with a reasonable seed of events for which a
probability measure can be associated in a natural and often intuitive way.

1.2 Modern Approach

The axiomatic approach starts with a minimal set for which probabilities can be associated,
and extends this to relevant events in a sigma-field of interest. The idea is the following.

“If the seed set C is properly chosen, then one can unambiguously con-
struct the probability space (Ω,F , P ).

The word the is used above to stress the unambiguous nature of the mentioned space.
However, this can also lead to a bit of confusion about which F we are talking about.
There are many possible choices for F , but the above procedure is about constructing a
sigma-field which contains the seed-set C. More precisely, we will construct the smallest
sigma-field containing C, denoted as σ(C), which is also known as the sigma-field generated
by C.

1.2.1 σ− field generated by a set

The previous examples show that there are possibly many σ−fields which contain an event
A. In practice, our interest may only be in certain set of events, however the axiomatic
approach forces us to work with σ−fields. If your set of interest is C, we can indeed
choose the smallest 1 σ−field which contains C. This gives us a convenient σ−field with
the minimum amount of book-keeping. We denote this σ−field as σ(C) and call this the
σ−field generated by C. What guarantees that there is such a σ−field?

1here small is defined by set-inclusion
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Theorem 1 There exists a unique σ(C).

Proof: Let σ1(C) and σ2(C) are two σ−fields containing C. Then, σ1(C)⋂σ2(C) is also a
σ−field. Consider a countable collection of sets Ai, i ∈ S such that Ai ∈ σ1(C)⋂σ2(C),∀i ∈
S. Clearly Ai ∈ σ1(C),∀i and Ai ∈ σ2(C),∀i. Thus ⋃Ai is in σ1(C) as well as σ2(C), as
they are sigma-fields by definition. Thus the intersection of sigma-fields is a sigma-field,
and σ(C) is the intersection of all σ−fields containing C.

n

In order to list the benefits of working with seed-sets which are natural and easy to
handle, let us consider the infinite coin toss example of a biased coin.

Example 3 Construct a meaningful probability space for the countable toss of a biased
coin. Different tosses are done independently2. It is also given that P (HEADs) = p.

Solution: Let us first recall the sample-space.

Ω = {(ω1, ω2,⋯) ∶ ωi ∈ {H,T}}.

Let us generate a seed-set. A very natural choice to look at events in the first k tosses. For
any k−length sequence (t1, t2,⋯, tk), ti ∈ {H,T},

Et
k = {(ω1, ω2,⋯) ∶ (ω1,⋯, ωk) = (t1,⋯, tk)}.

Here, the superscript t denotes that it is the set of all outcomes of Ω such that the first k
tosses equal t = (t1,⋯, tk). Let us assign a probability measure to event Ek. Clearly, from
our ‘experience’, the probability that the outcome is a sequence of all HEADs is

P (H,H,⋯,H) = pk.

For sequence t with some HEADs as well as TAILs,

P (Ek) = p
Nt

H(1 − p)N
t
T ,

where N t
H counts the number of HEADs in the sequence (t1, t2,⋯, tk) and N t

T = k −N t
H . A

concise way to represent N t
H is

N t
H =

k

∑
i=1

1{ti=H}.

For convenience let us call 1{ti=H} as di.
Does the above probability measure yield P (Ω) = 1, this is the first check that you

should do once it is clear that the measure is always non-negative. Notice that Ω = ⋃Et
k,

where the union is over all k−length sequences t. Indeed any outcome in Ω has to start
with some k−length sequence, and thus will belong to the corresponding Et

k. Observe also
that for any given k, Et

k are mutually disjoint sets.

P ( ⋃
t∈{H,T}k

Et
k) = ∑

t

P (Ek) = ∑
t

pN
t
H(1 − p)N

t
T (1)

= ∑
t

p∑
k
i=1 di(1 − p)∑

k
i=1(1−di) (2)

= ∑
t

k

∏
i=1

pdi(1 − p)1−di (3)

2rigorous idea to be introduced later

3



The above summation can be split into two sums, where the first one runs over all sequences
of length k − 1, which we denote as t− 1. The second sum is over values of tk which can be
either H or T .

∑
t

k

∏
i=1

pdi(1 − p)1−di = ∑
t−1

∑
tk

k

∏
i=1

pdi(1 − p)1−di (4)

= ∑
t−1

∑
tk

k−1

∏
i=1

pdi(1 − p)1−dipdk(1 − p)1−dk (5)

= ∑
t−1

k−1

∏
i=1

pdi(1 − p)1−di∑
tk

pdk(1 − p)1−dk (6)

There is no magic in any of the steps above. We have moved the summation to the
appropriate variables, that is it. Continuing,

∑
t

k

∏
i=1

pdi(1 − p)1−di = ∑
t−1

k−1

∏
i=1

pdi(1 − p)1−di(p1(1 − p)0 + p0(1 − p)1) (7)

= ∑
t−1

k−1

∏
i=1

pdi(1 − p)1−di(p + 1 − p) (8)

= ∑
t−1

k−1

∏
i=1

pdi(1 − p)1−di (9)

Repeating the same steps as above, the sequence length is decremented in each step, and
this shows that P (Ω) = 1.

n

This is a very useful probability measure and can model a wide variety of experiments.
Students are advised to go through this in full detail. Do not fail to notice the fact that
the above probability association did not specify probabilities for any outcome in Ω, which
is actually an infinite sequence of Heads and Tails. Nevertheless, it will turn out that our
specification for finite k has all the ingredients and recipe to answer almost all questions
related to the coin toss experiment.

Exercise 1 Induct the argument in the previous example to show that indeed P (Ω) = 1.

The above example underlines the enormous ease that the concept of seed-sets will
provide, if chosen wisely. That a wise choice of the starting see is important will be
exemplified in the next subsection. Recall that our job is to construct a probability measure
valid for every event of σ(C). If the collection C is not adequate enough we may not be
able to unambiguously specify P (A) for all A ∈ σ(C).

2 Uniqueness of Measure

So far our strategy was to associate probabilities to a sensible set C and then extend it
using the axioms. How do we know that our starting seed-set C will not lead to any
ambiguity. For example, a probability measure defined on C need not uniquely specify a
probability measure on σ(C). In that case, our strategy of extension from the seed-set
fails. More precisely, there can be multiple probability measures on σ(C) which will give
identical probability association for elements in C. Let us illustrate it by a popular example
(Fristedt and Gray, A Modern Approach to Probability, Birkauser 1997).
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Example 4 Let Ω = {a, b, c, d}. Consider C = {C1,C2} where C1 = {a, b} and C2 = {b, c}.
It can be easily verified that σ(C) = PΩ, the power-set. Associate probabilities to C and
check whether there is a unique extension to σ(C).

Solution: Consider a probability Q̂ defined on Q̂(Ω) such that Q̂({b}) = Q̂({d}) = 1
2 .

Certainly this is a valid association, and will yield

Q̂(C1) = Q̂(C2) =
1

2
.

Now consider an alternate probability measure Q(⋅) defined on Ω such that Q({a}) =

Q({c}) = 1
2 . Using this,

Q(C1) = Q(C2) =
1

2
.

Thus both Q̂ and Q defined on PΩ has identical restriction to the set C. Conversely,
associating C1 as well as C2 with an identical probability of 1

2 is not enough and can yield
ambiguous probabilities for events in σ(C). As an example

Q({a, c}) = 1 and Q̂({a, c}) = 0.

n

The whole purpose of our axiomatic upbringing was to avoid these kind of ambiguities.
Loosing it because of a bad choice of the seed-set C is like breaking the pot after filling
it. Fortunately, the uniqueness of measure theorem along with an extension tells us a
simple, but powerful way to avoid these paradoxes.

Theorem 2 (Extension of Uniqueness of Measure) A probability association defined on C
has a unique extension to σ(C), if C is closed under pairwise intersections and comple-
ments.

While the uniqueness of measure theorem does not need complements, the exis-
tence of an extension requires the presence of complementation.

For your reference, I am pasting the so called Extension Theorem from measure theory
below. Recall that C is a field, if it is closed under pairwise intersections and complemen-
tation.

Theorem 3 Let C be a field of subsets of a space Ω and Q a non-negative countably
additive function defined on C such that Q(Ω) = 1. Then there exists a unique probability
measure P defined on σ(C) such that P (A) = Q(A) for every A ∈ C.

The theorem as such does not state the necessity of the mentioned conditions. In
particular, it can be relaxed in several ways. In the class, we stated that it is sufficient for
C to be a semi-algebra.

Definition 1 A collection of sets C defined on Ω is a semi-algebra, if

• C is closed w.r.t. pairwise intersections.

• For every A ∈ C, the complement Ac is a finite union of disjoint events in C.

• C contains Ω.
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It is perhaps true that many students felt the requirement of C being a field is very
restrictive. Recall that we only demanded the probability measure to be specified for a field
C. This does not mean we have to enumerate for every element in C. There are known
ways of starting from a manageable level of seedsets and then extending the probability
measure to C. In the upcoming example in next section, you will realize that choosing
a good C for many cases of interest to us is not as complicated as it may sound. After
specifying the probability on C, one then extends it to σ(C). Please take any standard
book on real analysis, our objective was to tell you the essence of the approach, than being
exhaustive (S. Resnick, A Probability Path, Birkhauser, has accessible explanations).

3 Uniform on the Square

Let us consider the real interval in R2, which is an exciting space for many applications.
The uniform choice on Ω = [0,1]2 may seem trivial, but you have to go through it in a step
by step fashion, clearly understanding each step. This procedure is insisted because certain
key features of this problem are immensely useful in building more complex systems.

Example 5 Consider a square placed on the non-negative quadrant with one corner at the
origin. If a point is uniformly chosen, compute the probability that the chosen point (x, y)
satisfies x + y ≤ 1.

Solution: Surely this is a joke, we are asking for a point being in the diagonal half of the
square, what else other than 1

2 could the probability be. Sure, but are there Bertrand’s
paradoxes? Since any point will never be taken, saying a point to be uniformly taken itself
can be ambiguous. Let us walk the steps than taking the elevator. The sample-space is

Ω = {(x, y) ∈ R2 ∶ 0 ≤ x ≤ 1; 0 ≤ y ≤ 1}.

What events can you choose for a seed set? Since we are dealing with R2, it is natural
to look for two-dimensional sets, perhaps the simplest. Seriously, it is not a circle, or an
ellipse, or a corrugated cloud. It indeed is a rectangle, For any rectangle Rabcd of diagonal
coordinates (a, c) and (b, d) with d ≥ c, we can associate a probability in a very sensible
fashion.

P (Rabcd) = (b − a)(d − c).

If the area of the sample-space is not unity, the above probability can be divided by the
total area covered by Ω. Now let T be the bottom triangle obtained by diagonally cutting
the square from top-left to right-bottom. Our event of interest is whether the outcome
is in T or not. To compute P (T ), we have to express T as a countable sum of events of
the form Rabcd. There is nothing holy about this, we know how to handle rectangles, their
unions and intersections, very very well. In fact, in this case, we can write T as a union of
mutually disjoint rectangles. The idea is to divide T first into a square and two identical
triangles as shown in Figure 1. The new square will have half the area of the triangle, and
each small triangle will have half the area of the square.

We will recurse this procedure to divide every remaining triangle in the picture, with
the larger triangles broken first. The procedure will allow the rectangles to approximate
the square, see figure below for the 4th stage (in blue, more precisely, when each triangle
present after this stage has already undergone 4 divisions, or it is the 4th generation child
triangles) and the 6th stage(red) of triangle division.
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S1

T11

T12

Figure 1: Dividing the triangle to a square S1 and two smaller triangles (T11 and T12)

Figure 2: Approximating a triangle by squares

Thus, the triangle is a union of a countable number of rectangles. By the second
probability axiom,

P (T ) = lim
n→∞

1

2n

2n−1

∑
i=1

i

2n
(10)

=
1

2
. (11)

While we have summed the rectangles generated by the staircase waveform shown in Fig-
ure 2, one can alternately sum over appropriate squares contained inside the triangle.

4 Continuity of Measure

Our last example showed how to construct a triangle by countable union of rectangles.
The strategy there was to consider non-overlapping rectangles and add the corresponding
well-defined probabilities. In fact, at each stage of our division strategy, a new stair-
case waveform (see last figure in lecture notes 4b) which approximates the triangle better
is generated. As the enclosure made by the the stair-case and the quadrants tends to a
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triangle, the probability measure of the stair-case tends progressively to that of the triangle.
For those who have done analysis, this is in fact similar to the notion of continuity. We
will write An ↑ A to denote the limit of a sequence of sets where An−1 ⊆ An,∀n. Often, we
term such a sequence as monotone.

Property 1 (Continuity of Measure) Let (Ω,F , P ) be a probability space. If An ↑ A,An ∈

F ,∀n then P (An) ↑ P (A).

Proof: Before proving, notice that the above property can be rephrased as “the measure
P (⋅) is continuous for monotone sequences An”. The proof uses the idea that we had for
the last example, write An as a union of disjoint sets. Since the sequence is monotone, ∀n

A1 ⊆ A2 ⊆ ... ⊆ An.

Let Bi = Ai ∖Ai−1, then An = ⋃
n
i=1Bi. We have,

lim
n↑∞

P (An) = lim
n↑∞

P (
n

⋃
i=1

Bi)

= lim
n↑∞

n

∑
i=1

P (Bi) (axiom II)

=
∞

∑
i=1

P (Bi) = P (
∞

⋃
i=1

Bi)

= P (lim
n↑∞

An) = P (A).

5 Some Extra Lessons

So far, our strategy of choosing simple seed-sets have given us rich dividends. The proba-
bility measure that we specify for the seed-set C can be extended (by axioms) to countable
unions and complements of the events in C, see Figure 3.

C C̃

countable unions
complements

Figure 3: Extension of C by Axioms may not be enough

However, the second entity of our space needs to be a sigma-field for the robustness of
construction. Will countable unions and complements of C generate a sigma-field? While
this works when Ω has finite cardinality, it turns out to be insufficient in general. So we
have to add more objects to obtain a sigma field. Unfortunately, there is no constructive
procedure to add the missing objects, we kind of fill it to the extend possible by known
manipulations and leave the rest.

In any case, it is natural to consider the minimal sigma-field, denoted as σ(C), also
termed as the σ−field generated by C. Why take extra load? To our advantage, it can be
shown that there is a unique minimal sigma-field for any set C.
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Proposition 1 For any collection of subsets C, there exists a unique sigma field σ(C)

such that if G is any sigma-field containing C, then σ(C) ⊆ G.

We have already proved the proposition in Lecture Notes 3. Thus,

σ(C) = ⋂
t∈Θ

σt(C),

where Θ indexes all sigma-fields σt(C) having C inside it.

6 Borel Fields

Borel Fields are the minimal sigma-fields containing all generalized rectangles in Rn. Recall
the previous example, where Ω was a square in R2. There we took the sub-rectangles and
associated a probability to each and every rectangle. The measure then was extended to
triangles, the same can be done for hexagons, circles or any other sensible shapes.

Let us first consider R. A natural choice of seed-set in R are open sub-intervals of the
form (a, b) ∶ a < b. We know that a sub-interval (a, b) is also an open-set. The sigma
field which contains all the open sets are known as Borel Field, denoted as B(R). While
open-sets is a stable notion than open sub-intervals in general topological spaces, open
sub-intervals of the form (a, b) are much more easy to visualize and manipulate in Rn. In
fact, for Cartesian coordinates, the generated sigma-fields by both notions can be shown
as the same, i.e.

σ( open sets ) = σ({(a, b),−∞ < a ≤ b < ∞}).

We do not list a complete proof here, rather use a well known result that an open set Ao

can be expressed as a countable union of disjoint open sub-intervals.

Ao = ⋃
i≥1

Ai,

where Ai⋃Aj = ∅, j ≠ i and Ai = (ai, bi). Thus any open-set has to be present in σ ((a, b))
and consequently

σ ((a, b)) ⊇ B(R).

But any open-subinterval is an open-set and hence

σ ((a, b)) ⊆ B(R).

The last two equations show that σ ((a, b)) = B(R), which is the desired result.
Similarly, we denote by B(Rn) the Borel field generated by open sub-intervals in B(Rn).

Why we take open-sets, is B(R) different from the ones generated by closed rectangles?
The answer is NO, we will explain this in the following examples.

Example 6 Show σ(C) = B(R), when Ω = R and C = {(a, b],−∞ ≤ a ≤ b < ∞}.

Solution: We already know that B(R) = σ ((a, b)). We will show that each open sub-
interval can be generated by allowed operations on closed sub-intervals and vice-versa. For
any open sub-interval (a, b)

∞

⋃
i=n∗

[a +
1

n
, b] = (a, b],
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where n∗ > 1
b−a ensures that each set in the countable union is contained in (a, b]. Thus

σ(C) ⊆ B(R). On the other hand,

⋂
i≥1

(a −
1

n
, b] = [a, b],

showing B(R ⊆ σ(C) as well. Putting these together

σ(C) = B(R).

n

Example 7 Show σ(C) = B(R), when Ω = R and C = {[a, b], a ≤ b}.

Solution: This is identical to the previous example. For any semi-open interval (a, b]

∞

⋃
i=n∗

(a, b −
1

n
] = (a, b),

where n∗ > 1
b−a ensures that each set in the countable union is contained in (a, b]. Thus, in

light of the previous example, σ(C) ⊆ B(R). On the other hand,

⋂
i≥1

(a −
1

n
, b] = [a, b],

showing B(R ⊆ σ(C)) as well. Putting these together

σ(C) = B(R).

n

We now show another very important example, that this will be part of our daily staple
of probability in future.

Example 8 Show σ(C) = B(R), when Ω = R and C = {(−∞, x], x ∈ R}.

Solution: We will show one side of the proof and leave the remaining as an exercise.
Observe that

(a, b] = (−∞, b]⋂(−∞, a]c,

where the complement used in the equation gives a semi-infinite open interval, i.e. (−∞, a]c =
(a,+∞). Thus

σ(C) ⊇ B(R).

See exercise below for completing the proof. n

Exercise 2 Given C = {(−∞, x], x ∈ R}, show that σ(C) ⊆ B(R).
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