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1 Measurable Spaces

Recall the definition of a probability space (Ω,F , P ). A slightly more general notion is that
of a measurable space, which comprises of the first two entities, i.e. a sample-space and
an associated sigma-field. We can define maps or functions between a pair of measurable
spaces, similar to the familiar functions (like x2, sin(x), log(x) etc) which operate on the
domain arguments to output values in their range. Let (Ω1,F1) and (Ω2,F2) be two
measurable spaces. A function is an association of every element ω1 ∈ Ω1 to some element
of ω2 ∈ Ω2. We will denote this as

f ∶ Ω1 → Ω2,

where f(⋅) is the function with domain Ω1 and range contained in Ω2.
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Figure 1: f ∶ Ω1 → F2

The key notion on functions that we need is known as measurability with respect to
the domain and range spaces. Unlike the function, which specified between Ω1 and Ω2,
‘measurability’ also depends on the associated sigma-fields F1 and F2 that we consider.
Measurability is defined in terms of the inverse map or inverse image of a function.

Definition 1 The set function f−1(⋅) given by

f−1(B) = {ω ∈ Ω1 ∶ f(ω) ∈ B}

is defined as the inverse image of the function f ∶ Ω1 → Ω2.

Thus the inverse images take sets as inputs and outputs another set. Contrast this with
the forward map f(⋅), whose arguments are elements in Ω1 and range-space is in Ω2. Let
us now define measurability of a function with respect to the sigma-fields (F1,F2).

Definition 2 We call a function f ∶ Ω1 → Ω2 as (Ω1,F1) − (Ω2,F2) measurable, if ∀B ∈
F2, f−1(B) ∈ F1.

In other words, the inverse image of the set B ∈ F2 should belong to the sigma-field F1. The
advantage of this definition will get more clear, however, let us be absolutely sure about
measurability by doing a few examples.



Example 1 Let Ω1 = {a, b, c, d} and Ω2 = {1,2,3,4,5}, and assume Fi = P(Ωi), i = 1,2.
Consider a uniform probability assignment over Ω1. For the map X(a) = 1,X(b) = 2,X(c) =
3,X(d) = 4.

• Find X−1({3,4}), is it in F1?

• Find X−1({4,5}), is it in F1?

• Find X−1({5}), is it in F1?

• Is X measurabe w.r.t (F1,F2)?

From now onward we will shorten the statement ‘X is (F1,F2)− measurable’ to simply ‘X
is measurable’, and the sigma-fields should be clear from the context.

Example 2 Let Ω1 correspond to the tossing of a die and Ω2 = a, b, c, d. Consider the
map X(1) = a,X(2) = X(3) = b,X(4) = X(5) = X(6) = c. For Fi = P(Ωi), i = 1,2, is X
measurable?

Example 3 For the same Ωi, i = 1,2 and map X(⋅) in the last example, let us take F1 =
{∅,{1},{2,3,4,5,6},Ω1}, F2 = P(Ω2). Is X measurable.

Thus, we have to take an appropriate sigma-field. Special care has to be taken about the
sigma-field F1 in particular.

Example 4 Let us keep Ωi and Fi from the previous example and change the map to a
new one, say Y . Just to make you think a bit all that I will tell you is some inverse images
of Y . In particular,

Y −1({a, b}) = {1};Y −1({b, c}) = {2,3,4,5,6}.

Show that Y is indeed a measurable function.

Solution: The first thing that you should notice is that {a, b} and {b, c} generate the
whole P(Ω2), i.e.

σ({a, b},{b, c}) = P(Ω2).
We have already shown this in the class, as any field which containts {a, b}, {b, c} has to
contain {a},{b},{c} and {d} also, which implies that this field is no smaller than P(Ω2).
While we can check for each subset that its inverse is in F1, it turns out that checking
Y −1({a, b}) and Y −1({b, c}) is sufficient for this example, and it is easy to see that both in
F1. The sufficiency follows from the next result.

Proposition 1 If X−1(A1) ∈ F1 and X−1(A2) ∈ F1 then

X−1(A1⋃A2) ∈ F1.

Proof: By definition,

X−1(A1⋃A2) = {ω1 ∈ Ω1 ∶X(ω1) ∈ A1 or X(ω1) ∈ A2)}
= {ω1 ∈ Ω1 ∶X(ω1) ∈ A1}⋃{ω1 ∈ Ω1 ∶X(ω1) ∈ A2}
=X−1(A1)⋃X−1(A2).

Clearly the RHS is in F1, as the latter is a field. n

The above argument also works for countable unions. Let us now look at complements.
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Proposition 2 If X−1(A) ∈ F1, then

X−1(Ac) ∈ F1.

Proof:

X−1(Ac) = {ω1 ∈ Ω1 ∶X(ω1) ∈ Ac}
= {ω1 ∈ Ω1 ∶X(ω1) ∈ A}c

(X−1(A))c

Since F1 is a field, the result follows. n

Putting this all together, we have the following simpler check for measurability.

Theorem 1 Let C be a collection of sets such that X−1(A) ∈ F1 for every A ∈ C. Then
the map X is (F1, σ(C))− measurable.

The advantage of measurability becomes obvious if we know how to associate a measure
to every event in F1. For example, this is the case when the first space is a probability
space (Ω,F , P ). Measurability guarantees that we can associate a appropriate probability
to every event in F2, by simply assigning P (X−1(B)), ∀B ∈ F2. All that we did is to
take the probability of the inverse image. If we can argue that this is a valid probability
association, then (Ω2,F2) will also become a probability space.

Theorem 2 Consider a measurable map X ∶ (Ω1,F1, P ) → (Ω2,F2), let us define Q on
(Ω2,F2) as

Q(B) = P (X−1(B)).
Then (Ω2,F2,Q) is a probability space. The measure Q is known as the induced proba-
bility measure.

Proof: Observe that we need to verify the axioms for the measure Q. First,

Q(B) = P (X−1(B)) ≥ 0.

Notice that {ω ∈ Ω1 ∶X(ω) ∈ Ω2} = Ω1. Then

Q(Ω2) = P (X−1(Ω2)) = P (Ω1) = 1.

Finally, for disjoint sets Bi, i ≥ 1,

Q(⋃Bi) = P (X−1(⋃Bi))
= P (⋃X−1(Bi))
=∑

i≥1

P (X−1(Bi))

=∑
i≥1

Q(Bi).

Thus the sigma-additivity property is also satisfied the measure Q, indeed guaranteeing
that it is a proper probability measure.

n

The term induced probability measure is used for Q to emphasize that Q is induced by
the function X by its operation on (Ω1,F1, P ). Just like functions are extremely useful in
analysis and elsewhere, measurable functions are very useful in probability theory. That
they automatically induce a probability measure on the range-space is a boon, which allows
scientists/engineers/students to use measurable functions like a microscope, seamlessly
zooming in to the details of the ambient probability space.
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2 Random Variables

When the range space of a measurable function is R (or a subset), and the correspond-
ing sigma-field employed is B(R), the measurable function is also known as a random
variable.

Definition 3 A random variable X is a measurable function from (Ω1,F1, P ) to (R,B(R).

Some examples are in order.

Example 5 Show that the given function X in the previous question is a random variable
and compute the probability of the event {2,4,5}.

Solution: Let us find the probability, assuming that X is a random variable.

Q({2,4,5}) = P (X−1({2,4,5})) = P ({b, d}) = 1

2
.

One can verify that for all elements of F2, X will satisfy the measurability condition.
Verifying this is in fact a painful job. Fortunately, there is a more straightforward way to
check measurability, which we state without proof.

Theorem 3 Let C be a class of subsets of Ω2 and F2 = σ(C). Then X ∶ (Ω1,F1)→ (Ω2,F2)
is measurable iff X−1(C) ⊂ F1.

We have used the bi-directional iff statement above, and the condition states that the
inverse image of each element in the class C should be in F1, i.e. ∀A ∈ C,X−1(A) ∈ F1.

Example 6 Consider tossing a fair die, i.e. Ω1 = {1,2,3,4,5,6}. Consider the identity
map X ∶ (Ω1,P(Ω1)) → (Ω1,P(Ω1)), in other words, X(i) = i. Certainly all measurability
properties are satisfied, Notice that the assertion of a fair die specifies a uniform distribution
on Ω1. Thus X is a random variable.

Example 7 Consider rolling two fair dice independently.

Ω1 = {(i, j) ∶ 1 ≤ i, j ≤ 6},
Consider the map X(i, j) = i + j with domain Ω1. The range of X is the set {2,3,⋯,12}.
Assuming F1 = P(Ω1), we can find

X−1(5) = {(2,3), (3,2), (4,1), (1,4)} ∈ P(Ω1).
X−1(2,3) = {(1,1), (2,1), (1,2)} ∈ P(Ω1).

In fact for each element in {2,⋯,12} one can verify that the inverse map is in F1, guar-
anteeing that X is indeed a random variable. Using the induced probability measure Q on
Ω2,

Q({5}) = P (X−1{5}) = P{(2,3), (3,2), (4,1), (1,4)} = 4

36
= 1

9
.

n

As we mentioned in the class, random variables are like credit-cards. Once you set up
a bank account in a good place (say Switzerland), i.e. constructed a suitable probability
space (Ω2,F1, P ), then you can swipe the card in whichever shop you like and buy goods.
No worries about currency conversions etc, it will all be calculated and accounted in terms
of the original measure P (⋅). Some people may not like associating random-variables to one
currency. They ask, why just reals? why not other objects?. No problems, the terminology
variables are conventionally associated with reals and complex-values, hence the usage. To
exemplify, let us do an experiment on random chords, as in the Bertrand’s paradox. I
should warn that we may be jumping the gun a bit, we have not completed the theory that
is being built, but please bear with me, and ask questions if there is any confusion.
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2.1 Choosing a Chord

This example also helps us to understand random objects which are not just numbers or
variables. Here we will revisit our paradoxical problem of random chords of a unit circle
centered at origin. Recall that we motivated the modern axiomatic approach based on
this example. We will consider two different situations in this section, one is the classical
version of Bertrand. We will also mention another problem where we wish to find the
probability of a chord cutting both the positive y−axis and the negative x−axis. This will
further exemplify the concepts.

Let us throw more light to the Betrand’s problem by using what we have learned. In
particular, choosing a chord is about choosing two end-points of the chord, and this can be
done in several ways. Notice that each end-point is specified by one real-value, as the circle
constrains the other coordinate. Thus, two end-points will correspond to two real values,
and we will propose a method to choose those. starting at (cos(2πx), sin(2πx)) and ending
at (cos(2πy), sin(2πy)). Clearly both points lie in the unit circle.

Instead of assigning probability to the chords, let us take recourse our credit utility
of random variables or random chords. Our strategy is as follows: since there are two
parameters involved for each chord, let us construct a probability space on Ω1 = [0,1]2, i.e.
the unit square. We have already showed that taking rectangular intervals and assigning
the area of the interval as the probability measure will do. This procedure associates
itself with the sigma-fied generated by open rectangles [0,1]2, let us call this as F1. The
probability space (Ω1,F1, P ) is thus ready.

We will create a second space Ω2 which will contain the objects of interest, i.e. chords of
the unit circle. Without much ado define Ω2 as the collection of all chords of the unit circle
centered at origin. Let us now define a suitable map from Ω1 to Ω2. Since the outputs are
not variables or vectors, rather chords, let us denote the map by RC ∶ Ω1 → Ω2. Consider
the map

RC(ωx, ωy) = [(cos(2πωx), sin(2πωx)) , (cos(2πωy), sin(2πωy))] .
Clearly each point in Ω1 is mapped to some chord of the unit circle. The figure below
illustrates this for the point p = (1

4 ,
5
8) on the unit square, where p1 is the start of the chord

and p2 the endpoint. Also shown is a map for another point q. Clearly, with the map
above, every point in Ω1 will be mapped to a directed chord (possibly de-generate).

1
4

5
8

p

q

p2

p1

q1

q2

Figure 2: Unit Square and Circle (not to scale), the point p corresponds to the red chord,
and point q corresponds to the blue one
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The next question is about F2. For simplicity, let us take A as the set of all chords with
length greater than

√
3. The associated sigma-field then is

F2 = {Ω1,A,A
c,∅}

It now makes sense to ask, ‘what is the probability of the chord having length greater than√
3?. In other words, what is P (A)?. More specifically, we are being asked to evaluate the

induced probability.
Alternately, the uniform distribution on the square [0,1]2 corresponds to taking two

coordinates, where each coordinate is chosen uniformly from [0,1]. We also need to say
that the values are taken independently, a notion we are yet to define(please come next
class). Observe that an x−coordinate value 0 is mapped to the point (1,0) on the circle and
the x−coordinate 1

4 is mapped to (0,1). Tracing the values of x from 0 to 1 will traverse
the circular perimeter once in the anti-clockwise direction. The length of the chord will be
greater than

√
3 whenever the chosen points x and y obeys

1

3
≤ y − x ≤ 2

3
.

This is marked in the following figure. Clearly the marked area is 1
3 , same as the probability

y
= x

(1,1)

(0,0)

Figure 3: Region (shaded) Corresponding Chord-length at least
√

3

that we have computed earlier. More importantly, there is no ambiguity in this experiment,
as the notion of uniform randomness was defined on the unit-square, which is our Ω. The
random chords were generated using the above method to give an induced measure on the
space of chords. If we choose some other mapping, we will get a different random chord
experiment, and the probability computations may give a different answer. This is okay,
as the induced measure by different random variables or random chords need not be the
same.

Exercise 1 Let us consider the experiment of a random chord cutting both the positive
y− axis and negative x−axis. Using the same map as above, can you find this probability.
Write down all the spaces, fields and measure that you use.
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