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1 Conditional Probability

Events of an experiment can be related in various ways. For example, mutually exclusive
events have Ai⋂Aj = ∅. In other words, for such events, given that the outcome is in Aj,
it will not be in the set Ai. We can say that P (Ai, given Aj happened) = 0, which will be
represented concisely as

P (Ai∣Aj) = 0.

So conditioning can change the probability of an event. Let us look at another extreme,

P (A∣Ω) = P (A).

Thus conditioning by Ω does not change the probability of an event. This is intuitive, as
we already know that some outcome or the other has to happen. There is nothing new in
this conditioning than what we already knew. Let us generalize this notion to any A,B in
the sigma-field F1 associated with Ω. We denote by P (A∣B), the conditional probability
of A given that the event B has happened.

Definition 1 For events A,B ∈ F1

P (A∣B) = P (A⋂B)
P (B)

1{P (B)>0}.

The indicator is to avoid a divide by zero exception. When the events are clear from the
context, we will drop the brackets and write

P (A∣B) = PAB

PB

.

We have to verify that P (A∣B) is a true probability measure, i.e. it satifies the three
probability axioms. Before we show this, it is kind of intriguing to figure out the probability
space under consideration. You can think about it in two different, but equivalent ways.
One way is to consider the original probability space (Ω,F1), however the events which
do not overlap with B (the conditioning event) will be assigned a zero probability by
conditioning. Thus we modify the probabiliy measure on F1. Another alternative is to
modify the space itself, i.e. since we know B has happened, we can take Ω2 = B. Now, we
should choose an appropriate sigma-field to associate P (A∣B). A possible choice is

F2 = {Ai⋂B ∶ Ai ∈ F1}.

Exercise 1 Show that F2 is a sigma-field defined on B.

The new sigma-field F2 is also known as the restriction of F1 to B. Now P (A∣B) can be
thought of as a probability measure defined on B if it satisfies all the axioms for events in
F2. Clearly for axiom I,

P (A∣B) ≥ 0.



Furthermore

P (B∣B) = P (B)
PB

= PB

PB

= 1,

As for the other axiom, for pairwise disjoint sets Ai ∈ F1, i ≥ 1

P (⋃
i≥1

Ai∣B) =
P (⋃

i≥1
Ai⋂B)

PB

=
P (⋃

i≥1
(Ai⋂B))

PB

= ∑i≥1P (Ai⋂B)
PB

= ∑
i≥1

P (Ai∣Bi).

We have shown the property for any pairwise disjoint collection in F1, which ensures the
property to be true also for F2, since F2 ⊆ F1.

1.1 Bayes’ Rule

The two pillars of conditional probability are the so called Bayes’ rules. We provide the
statements below, the proofs are simple applications of the definition of conditional prob-
ability.

Bayes’ Rule I:

P (A∣B) = PAP (B∣A)
PB

.

Bayes’ rule of exclusive and exhaustive causes: Let Bi, i ∈ T be disjoint

countable events such that ⋃i∈T Bi = Ω (sample-space). Then for any event A,

P (A) = ∑
i∈T

P (Bi)P (A∣Bi)

Let us prove the latter rule using our axioms. We have,

P (A) = P (A⋂Ω)
= P (A⋂⋃

i∈T

Bi)

= P (⋃
i∈T

(A⋂Bi))

= ∑
i∈T

P ((A⋂Bi))

= ∑
i∈T

P (Bi)P (A∣Bi)

where we used the convention that anything multiplied by zero will result in zero.
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2 Independent Events

We will start with the notion of two events being independent.

Definition 2 Events A and B are said to be independent if

PAB = PAPB.

Exercise 2 Show that the events A and B with positive probability are independent iff

P (A∣B) = P (A).

How can we generalize to more than two events. Consider three events A,B,C. Let us look
at a weaker notion first, called pairwise independence. As the name implies, we expect any
pair of the given events to obey Definition 2.

Example 1 Let Ω = {a, b, c, d} with F = P(Ω) and the uniform probability measure. Let
A = {a, b},B = {b, c},C = {a, c}. Show that the events are pairwise independent.

Solution: Clearly,

P (A) = P (B) = P (C) = 1

2
,

and

P (A,B) = P (B,C) = P (A,C) = 1

4
.

n However,
it is natural to expect P (A,B,C) = P (A)P (B)P (C) if these events are independent. In
the above example P (A,B,C) = 0 or P (A∣B,C) = P (B∣A,C) = P (C ∣A,B) = 0. Thus two
events tell us a lot about the third, and we cannot consider them independent. One may
think that ensuring the condition P (A,B,C) = P (A)P (B)P (C) suffices for independence.
However, this will also turn out to be a weaker notion, as the example below illustrates.

Example 2 Let Ω = {a, b, c, d, e, f}, with uniform measure and let A = {a, b, c}, B = {c, d, e}
and C = {a, c, d, f}. It is easy to check that

P (A,B,C) = P ({c}) = 1

6
= P (A)P (B)P (C) = 1

2

1

2

4

6
.

However P (A,B) = P (A)P (B) suggesting that A and B are not independent.

The example gives us the idea about how to claim independence. Make an all inclusive
demand like in a patent-application.

Definition 3 A sequence of events Ai, i ∈ T are called independent if for any S ⊆ T of
finite cardinality, we have

P (⋂
i∈S

Ai) =∏
i∈S

P (Ai).

A few other examples to clarify these concepts are given as exercises below.

Exercise 3 Consider Ω = {1,2,⋯,12}, and a uniform probability law. Consider the fol-
lowing sets

A = {1,2,⋯,8} ; B = {5,6,⋯,12} and C = {2,3,⋯,10}.

Show that P (ABC) = P (A)P (B)P (C) but P (AB) ≠ P (A)P (B).
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Exercise 4 Let Ω = {1,⋯,64} and consider the subsets

A1 = {1,⋯,15}
A2 = {16,⋯,30}
A3 = {31,⋯,45}
A4 = {46,⋯,63}
A5 = {64}.

Let us take events B1 = A1⋃A5, B2 = A2⋃A5 and B3 = A3⋃A5. Compute P (B1,B2,B3),
P (B1,B2) and P (B1)P (B2).
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