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1 Variance of a Random Variable

The expectation E[X] is also known as the first moment or mean of the random variable.
Can we put some quantitative measure on how close the random variable is to its mean. In
electrical engineering such situations frequently occur in sampling and quantization, where
one wishes to know the quantization error around a level of finite bit representation. To
put it more formally, we are trying to find the mean square error, i.e, the difference X − a
is squared and then expectation is taken to obtain E (X − a)

2
, where a is some value of

interest, for example the quantized value after sampling. The variance of a random variable
V ar(X) is defined as

V ar(X) = E (X −E[X])
2

In the notes, we will often denote V ar(X) by σ2
X . A simple expansion of the RHS above

results in the following.

Proposition 1

E (X −E[X])
2
= EX2 − (E[X])

2
.

The mean EX is the point of minimum mean squared error, as the following proposition
states.

Proposition 2

E(X − µ)2 ≤ E(X − a)2,∀a ∈ R

Proof: Let us maximize the RHS with respect to a.

d

da
E(X − a)2 = −2E(X − a) = −2(EX − a).

Thus the only optimum is at a = EX, and since the double derivative is 2 everywhere, we
have the desired result.

n

Let us now introduce the Poisson distribution and compute its variance as an example.

1.1 Poisson Distribution: Poisson(λ)

The Poisson distribution is over N, and has a single parameter, namely λ ∈ R+. The
distribution is

P (X = k) = e−λ
λk

k!

Exercise 1 Verify that the given distribution satisfies the axioms of probability.



Let us compute the mean and variance of Poisson(λ).

E(X) = e−λ∑
k≥0
k
λk

k!

= e−λ∑
k≥1
k
λk

k!

= e−λ∑
k≥1
λ

λk−1

(k − 1)!

= e−λλeλ

= λ.

Let us now compute EX2 −EX.

E(X) = e−λ∑
k≥0

(k2 − k)
λk

k!

= e−λ∑
k≥2
k(k − 1)

λk

k!

= e−λλ2∑
h≥2

λk−2

(k − 2)!

= λ2.

The variance can now be computed as

σ2
X = EX2 −EX +EX − (EX)2 = λ2 + λ − λ2 = λ.

2 Expectation in terms of Probability

To explain their intimate connection, we now express the expectation of a N− valued
random variable in terms of just the probabilities.

Theorem 1 For a non-negative integer valued random variable X,

E[X] =∑
n≥1

P (X ≥ n).

Proof:

E[X] =∑
j∈N
jP (X = j)

=∑
j∈N

∞
∑
n=1

1{n≤j}P (X = j)

=
∞
∑
n=1
∑
j∈N

1{n≤j}P (X = j)

=
∞
∑
n=1
∑
j≥n

P (X = j)

=
∞
∑
n=1

P (X ≥ n).

n

To show the convenience of this property, let us consider the example of a popular random
variable in the next subsection.
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2.1 Geometric Random Variable- Geometric(p)

This random variable takes values in the countable state space N, and the only parameter
governing its realization is p ∈ [0,1]. In relation to tossing a coin, a geometric random
variable X captures the first occurrence of HEADs. The probability of HEAD occurring
on the kth toss and not before it is

P (X = k) = (1 − p)k−1p, k ≥ 1.

Example 1 Compute E[X] and E[X2] if X ∼ Geometric(p).

Solution: Let us find P (X ≥ k) first.

P (X ≥ k) =
∞
∑
j=k

(1 − p)j−1p

= p(1 − p)k−1
∞
∑
j=0

(1 − p)j

= (1 − p)k−1.

E[X] =∑
k≥1
P (X ≥ k)

=∑
k≥1

(1 − p)k−1

=
1

p
.

3 Markov’s Inequality

To further underline that expectation contains significant information about the distribu-
tion, we state the Markov’s inequality.

Theorem 2 For a non-negative valued random variable X,

P (X ≥ a) ≤
E[X]

a
. (1)

Proof: While the proof can be done by expanding the summation of expectation, we resort
to a more elegant method using indicator functions.

X =X 1{X<a} +X 1{X≥a}
≥X 1{X≥a}
≥ a1{X≥a}.

Taking expectation of both sides, we get

aP (X ≥ a) ≤ E[X].

n
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4 More On Independence

Theorem 3 Consider the random vector (X1,X2) ∈ E1 × E2. Then X1.X2 is a random
variable.

Proof: Let Y = X1.X2, we will show that Y is a random variable. Clearly Y is discrete.
Furthermore,

{Y = y} = {X1.X2 = y}

=⋃
x
{(ω1, ω2) ∶X1(ω1) = x,X2(ω2) =

y

x
}

Since X1 and X2 are measurable maps, the above union is well defined and an element of
F . Hence Y is a random variable.

n

Theorem 4 Consider the random variable (X1,X2) ∈ E1 × E2, let g1 ∶ E1 → R̄ and g2 ∶
E2 → R̄ be two functions. Then g1(X1)g2(X2) is a random variable.

Proof: Since we know g1(X1) and g2(X2) are random variables, applying the previous
theorem shows that g1(X1).g2(X2) is indeed a random variable. n

Let us now come back to our discussion of independence. The independence of random
variables is preserved by individual functional transformations.

Theorem 5 Let X1 and X2 be independent random variables in E1 and E2 respectively.
Consider two functions g1 ∶ E1 → R and g2 ∶ E2 → R. The random variables g1(X1) and
g2(X2) are independent.

Solution: The RVs g1(X1) and g2(X2) are discrete. Considering joint events,

{g1(X1) = y1, g2(X2) = y2} = ⋃
(x1,x2)∶g1(x1)=y1,g2(x2)=y2

{X1 = x1,X2 = x2},

where the events inside the union are disjoint. The probability of the event on the LHS is,

P (g1(X1) = y1, g2(X2) = y2) = ∑
(x1,x2)∶

g1(x1) = y1,
g2(x2) = y2

P (X1 = x1,X2 = x2)

= ∑
(x1,x2)∶

g1(x1) = y1,
g2(x2) = y2

P (X1 = x1)P (X2 = x2)

= ∑
x1∶g1(x1)=y1

P (X1 = x1) ∑
x2∶g2(x2)=y2

P (X2 = x2)

= P (g1(X1) = y1)P (g2(X2) = y2).

Thus, by the definition of independence of two random variables, g1(X1) and g2(X2) are
independent. n
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Note: There is some room for an argument that the correct proof should show

P (g1(X1) = y1, g2(X2) = y2) = P1(g1(X1) = y1)P2(g2(X2) = y2),

where P1(⋅) and P2(⋅) are the corresponding measures. Indeed we have shown
this desired result, but the notation that we used in the theorem is an univer-
sally accepted one. In particular, we may use the same notation P (⋅) for dif-
ferent probability measures, but depending on the argument, the associated
measure will be understood. For example, P (X1 = x1) is the measure induced
by X1 on E1, where as P (X2 = x2) is a possibly different measure, induced by
the random variable X2.

Observe that the transformations were applied in a separable fashion on each variable.
Let us now state a simple, yet powerful law for the distribution of expectation over product
of independent random variables.

Proposition 3 The independent random variables X and Y

E[g1(X)g2(Y )] = E[g1(X)][Eg2(Y )]

whenever these expectations are well defined.

Proof:

Eg1[X]g2[Y ] =∑
x,y

g1(x)g2(y)P (X = x,Y = y) (2)

=∑
x,y

g1(x)g2(y)P (X = x)P (Y = y) (3)

= ∑
x∈E1

g1(x)P (X = x) ∑
y∈E2

g2(y)P (Y = y) (4)

= E[g1(X)]E[g2(Y )]. (5)

Example 2 A fair die is thrown k times. Let Xi be the outcome of the ith toss. Consider
the probability association,

P (X1 = x1,⋯,Xk = xk) =
1

6k
.

Show that the random variables X1,⋯,Xk are pairwise independent, i.e. every pair of
Xi,Xj with i ≠ j are independent.

Solution: Clearly each Xi takes values in {1,⋯,6}. Let us consider the event {Xi = xi,Xj =

xj}.

P (Xi = xi,Xj = xj) = ∑
x1,⋯,xm∖{xi,xj}

P (x1,⋯, xk)

= ∑
x1,⋯,xm∖{xi,xj}

1

6k

=
1

6k
6k−2

=
1

36
.

Thus, P (Xi = xi,Xj = xj) = P (Xi = xi)P (Xj = xj). See footnote1 below.

1we used x1,⋯, xk ∖ {xi, xj} to take the sum of over all subscripts except i and j
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Example 3 Consider the above example, and let Sk = ∑
k
i=1Xi. Compute the mean and

variance of Sk.

Solution: Let the mean be denoted as µk.

µk = E[Sk] =
k

∑
i=1

E[Xi] =
7

2
k.

Let us compute the variance σ2
Sk

= E[(Sk − µk)2].

E[(Sk − µk)
2] = E[(

k

∑
i=1

(Xi −E[Xi]))

2

] (6)

= E[
k

∑
i=1

(Xi −E[Xi])
2 + ∑

i,j∶i≠j
(Xi −E[Xi])(Xj −E[Xj])] (7)

=
k

∑
i=1

E(Xi −E[Xi])
2 + ∑

i,j∶i≠j
E[(Xi −E[Xi])(Xj −E[Xj])] (8)

=
k

∑
i=1
σ2
Xi
+ ∑
i,j∶i≠j

E[Xi −E[Xi]]E[Xj −E[Xj]] (9)

=
k

∑
i=1
σ2
Xi

(10)

Since σ2
Xi

= 70
24 ,∀i, we have σ2

Sk
= 70k

24 . n

In fact, our computations in the last example show that we can generalize this result
to arbitrary random variables which are pair-wise independent.

Theorem 6 Let X1,⋯,Xk be a collection of pairwise independent random variables. Then

σ2
X1+⋯+Xk

=
k

∑
i=1
σ2
Xi
.

We have already defined independent sequence of random variables. Among this, a a
particular class is the most appealing.

4.1 IID Random Variables

Definition 1 A sequence Xn, n ≥ 1 of RVs is said to be Independent and Identically Dis-
tributed (IID) if

1. Xn, n ≥ 1 is a independent sequence, each Xn taking values in the same set E.

2. P (Xi = x) = P (Xj = x),∀i, j and ∀x ∈ E.
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