
Chapter 6

Solutions

6.1 Chapter 1

6.1.1 Subsection 1.1.3

Exercise 6.1.1. De Morgan’s rules.

Consider an arbitrary sequence {An}n≥1 of subsets of Ω. Prove De Morgan’s identities:

 ∞\

n=1

An

!
=

∞[

n=1

An and

 ∞[

n=1

An

!
=

∞\

n=1

An.

Prove that if F is a sigma-field on Ω, and if A1, A2, . . . belong to F , then so does their
intersection ∩∞

k=1Ak.

Solution (Exercise 6.1.1).
In order to prove a set identity A = B, we must show that ω ∈ A ⇐⇒ ω ∈ B. We do
this for the first identity:

ω ∈ (∩∞
n=1An) ⇐⇒ ω 6∈ ∩∞

n=1An

⇐⇒ ∃n ≥ 1 such that ω 6∈ An

⇐⇒ ∃n ≥ 1 such that ω ∈ An

⇐⇒ ω ∈ ∪∞
n=1An.

For the second identity, replace the An’s by their complements to obtain

�
∩∞
n=1An

�
= ∪∞

n=1An,

and then take complements in the last displayed identity.

195



196 CHAPTER 6. SOLUTIONS

By successively applying (2) and (3) of Definition 1.1.1, we have that the Ak’s are
in F and so is their union ∪∞

k=1Ak. The intersection ∩∞
k=1Ak is, by the corresponding

De Morgan’s identity, equal to the complement of the union ∪∞
k=1Ak. We conclude

by applying (2) of Definition 1.1.1 once more.

Exercise 6.1.2. Finitely often, infinitely often.

Consider an arbitrary sequence {An}n≥1 of subsets of Ω. Show that ω ∈ B :=S∞
n=1

T∞
k=n Ak if and only if there exists at most a finite number (depending on ω) of

indices k such that ω ∈ Ak. Show that ω ∈ D :=
T∞

n=1

S∞
k=n Ak if and only if there

exist an infinite number (depending on ω) of indices k such that ω ∈ Ak.

Solution (Exercise 6.1.2).

ω ∈ B ⇐⇒ ω ∈ ∪∞
n=1Cn

where Cn =
T∞

k=n Ak. Therefore

ω ∈ B ⇐⇒ ∃n ≥ 1 such that ω ∈ Cn

⇐⇒ ∃n ≥ 1 such that ω ∈ Ak for all k ≥ n

⇐⇒ ∃n ≥ 1 such that ω 6∈ Ak for all k ≥ n

⇐⇒ ∃ at most a finite number of k such that ω ∈ Ak .

ω ∈ D ⇐⇒ ∀n ≥ 1, ω ∈
∞[

k=n

Ak

⇐⇒ ∀n ≥ 1, ω ∈ Ak for at least one k ≥ n

⇐⇒ ∃ an infinite number of k such that ω ∈ Ak.

Exercise 6.1.3. Indicator functions.

Prove the following identities for all subsets A,B of a given set Ω, and all sequences
{An}n≥1 forming a partition of Ω:

1A∩B = 1A × 1B , 1A = 1− 1A , 1 =
X

n≥1

1An .

Solution (Exercise 6.1.3).

1A∩B(ω) = 1 ⇐⇒ ω ∈ A ∩B

⇐⇒ ω ∈ A and ω ∈ B

⇐⇒ 1A(ω) = 1 and 1B(ω) = 1

⇐⇒ 1A(ω)1B(ω) = 1

1Ā = 1 ⇐⇒ ω ∈ Ā

⇐⇒ ω 6∈ A

⇐⇒ 1A(ω) = 0

⇐⇒ 1− 1A(ω) = 1.
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Suppose that there is an ω such that
P

n≥1 1An(ω) = 0. For such an ω, 1An(ω) = 0 for
all n ≥ 1, and therefore ω 6∈ ∪∞

n=1An, which contradicts exhaustivity (∪∞
n=1An = Ω).

Suppose that there is an ω such that
P

n≥1 1An(ω) ≥ 2. For such an ω, there exist at
least 2 distinct indices n1 and n2 (say n1 = 1 and n2 = 2) such that 1A1(ω) = 1 and
1A2(ω) = 1. Therefore ω ∈ A1 ∩ A2, which contradicts mutual exclusion (Ai ∩ Aj = ∅,
∀i 6= j).

Exercise 6.1.4. Small sigma-fields.

Is there a sigma-field on Ω with 6 elements (including of course Ω and ∅)?

Solution (Exercise 6.1.4).
F must contain ∅ and Ω and some other element, A, and therefore A. This makes
4 elements. Suppose there is a fifth, B. Then B is a sixth element, distinct from
the 5 previous ones. But A ∩B and A ∩B are in F and at least one of them is new.
Therefore there cannot be a sigma-field with 6 elements.

Exercise 6.1.5. Operations on measurable sets.

Let F be a sigma-field on some set Ω. Show that if A1, A2 are in F , then so is their
symmetric difference A1△A2 := A1 ∪A2 −A1 ∩A2.

Solution (Exercise 6.1.5).
C := A1 ∪A2 and D := A1 ∩A2 are in F and therefore A1△A2 = C −D := C ∩D ∈ F .

Exercise 6.1.6. Sigma-field generated by a collection of sets.

(1) Let {Fi}i∈I be an arbitrary non-empty family of sigma-fields on some set Ω (the
non-empty index set I is arbitrary). Show that the family F = ∩i∈IFi (A ∈ F if and
only if A ∈ Fi for all i ∈ I) is a sigma-field.

(2) Let C be an arbitrary family of subsets of some set Ω. Show the existence of a
smallest sigma-field F containing C. (This means, by definition, that F is a sigma-
field on Ω containing C, such that if F ′ is a sigma-field on Ω containing C, then
F ⊆ F ′.)

Solution (Exercise 6.1.6).
Obvious.

Exercise 6.1.7. Union of sigma-fields.

Let F1 and F2 be two sigma-fields on the set Ω. Give a counterexample contradicting
the assertion that F1 ∪ F2 is a sigma-field.

Solution (Exercise 6.1.7).
Ω := {1, 2, 3, 4}, F1 = {Ω,∅, {1, 2}, {3, 4}}, F2 = {Ω,∅, {1, 3}, {2, 4}}. If F1 ∪ F2 were a
sigma-field, it would contain the intersection of any pair of its elements, for instance,
{1, 2} ∩ {1, 3} = {1}. But {1} 6∈ F1 ∪ F2.

Exercise 6.1.8. Atoms.

Let the non-empty subsets A1, . . . , Ak of a set Ω form a partition of the latter. How
many elements are there in the sigma-field F they generate on Ω? (The sets A1, . . . , Ak
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are called the atoms of F .) Show that, conversely, if a sigma-field F on Ω contains
a finite number of elements, it is generated by a finite number of sets that form a
partition of Ω.

Solution (Exercise 6.1.8).
2k (Hint: how many subsets in the set {1, 2 , . . . k} including the whole set and the
empty subset?). Hint: The atoms are the sets in F other that Ω and ∅ that do not
intersect with any other set in F other that Ω and ∅.

Exercise 6.1.9. Set inverse function.

Let f : U → E, where U and E are arbitrary sets. For any subet A ⊆ E, define

f−1(A) = {u ∈ U ; f(u) ∈ A} .

(i) Show that for all u ∈ U , 1A(f(u)) = 1f−1(A)(u).
(ii) Prove that if E is a sigma-field on E, then the collection of subsets of U

f−1(E) :=
�
f−1(A) ; A ∈ E

	

is a sigma-field on U .

Solution (Exercise 6.1.9).
(i)

1A(f(u)) = 1 ⇐⇒ f(u) ∈ A

⇐⇒ u ∈ f−1(A)

⇐⇒ 1f−1(A)(u) = 1.

(ii) This is a direct consequence of the definition of a sigma-field and of the following
set identities. For all subsets A,A1, A2, . . . of E,

f−1(Ā) = f−1(A),

f−1

 ∞\

n=1

An

!
=

∞\

n=1

f−1(An),

f−1

 ∞[

n=1

An

!
=

∞[

n=1

f−1(An).

6.1.2 Subsection 1.2.3

Exercise 6.1.10. Why just sigma-additive?

Consider the probability model of Example 1.2.3 (random point on the square).
Observing that any singleton {a} (a ∈ [0, 1]2) is in the Borel sigma-field and has a
null surface in the usual sense, show that there exists no totally additive probability
P on the Borel sigma-field on the square [0, 1]2 that assigns to rectangles therein
their surface. (By “totally additive”, it is meant that the probability of the union
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of an arbitrary —not necessarily countable— collection of mutually disjoint sets in
the Borel sigma-field is the sum of the individual probabilities.)

Solution (Exercise 6.1.10).
If such P existed,

1 = P (Ω) = P (∪a∈Ω{a}) =
X

a∈Ω

P ({a}) =
X

a∈Ω

0 = 0 ,

a contradiction.

Exercise 6.1.11. Identities.

Prove the set identities

P (A ∪B) = 1− P (A ∩B), P (A ∪B) = P (A) + P (B)− P (A ∩B).

Solution (Exercise 6.1.11).
Apply de Morgan’s rule to obtain

A ∪B = A ∩B

and then use property (1.1). For the second identity, observe that A ∪B = A+ (B −
A ∩B) and therefore

P (A ∪B) = P (A) + P (B −A ∩B)

= P (A) + P (B)− P (A ∩B) .

Exercise 6.1.12. Sub-sigma-additivity.

Let (Ω,F , P ) be a probability space. Prove the sub-sigma-additivity property: for any
sequence {An}n≥1 of events,

P

 ∞[

n=1

An

!
≤

∞X

n=1

P (An).

Solution (Exercise 6.1.12).

Let A′
1 := A1 and for n ≥ 2, A′

n := An ∩
�
∪n−1
k=1Ak

�
. We have that the A′

n’s are mutually
disjoint and that A′

n ⊆ An (and in particular P (A′
n) ≤ P (An)). Also

S∞
k=1 A

′
n ≡ S∞

k=1 An

and therefore P (
S∞

n=1 An) = P (
S∞

n=1 A
′
n) =

P∞
k=1 P (A′

n) ≤
P∞

k=1 P (An).

Exercise 6.1.13. Sequential continuity, the decreasing case.

Prove Corollary 1.2.1.

Solution (Exercise 6.1.13).
To obtain (1.8), use De Morgan’s identity (Exercise 6.1.1) and apply (1.5) with
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An = Bn:

P (∩∞
n=1Bn) = 1− P

�
∩∞
n=1Bn

�

= 1− P (∪∞
n=1Bn)

= 1− lim
n↑∞

P (Bn)

= lim
n↑∞

(1 − P (Bn)) = lim
n↑∞

P (Bn) .

Exercise 6.1.14. Roll it!

You roll fairly and simultaneously three unbiased dice.
(i) What is the probability that one die shows 4, another 2, and another 1?

(ii) What is the probability that some die shows 2, given that the sum of the 3 values
equals 5?

Solution (Exercise 6.1.14).
Call X, Y , Z the results of the three dices A, B, C respectively. We want to compute

x = P (X = 4, Y = 2, Z = 1) + P (X = 4, Y = 1, Z = 2)

+ P (X = 2, Y = 4, Z = 1)

+ P (X = 2, Y = 1, Z = 4)

+ P (X = 1, Y = 4, Z = 2)

+ P (X = 1, Y = 2, Z = 4).

All these probabilities are equal to 1
63 and therefore x = 6× 1

63 = 1
36 .

Exercise 6.1.15. One is the sum of the two others.

You perform three independent tosses of an unbiased die. What is the probability
that one of these tosses results in a number that is the sum of the two other numbers?

Solution (Exercise 6.1.15).
By accounting. Enumerate all possibilities, and beware that the dice have to be
ordered. For instance (1, 2, 3) is different from (3, 1, 2). The result is 5

24 . See also
Exercise 6.2.26 where a less fastidious method is given.

6.1.3 Subsection 1.3.4

Exercise 6.1.16. Urns.

1. An urn contains 17 red balls and 19 white balls. Balls are drawn in succession at
random and without replacement. What is the probability that the first 2 balls are
red?

2. An urn contains N balls numbered from 1 to N . Someone draws n balls (1 ≤ n ≤ N)
simultaneously from the urn. What is the probability that the lowest number drawn
is k?
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Solution (Exercise 6.1.16).

1. Let R1 and R2 be the events that the first and second ball respectively that are
drawn out from the urn are red. P (R1∩R2) = P (R1)P (R2|R1). But P (R1) =

17
17+19 = 17

36 .
If the first ball is red, there remain 16 red balls and 19 white balls. Therefore
P (R2|R1) =

16
16+19 = 16

35 , so that P (R1 ∩R2) =
17×16
36×35 = 68

315 .

2. There are
�
N
n

�
subsets of n balls among N balls. If ball k is in the subset that is

drawn, and if it is the ball with the lowest number, the remaining n− 1 balls must
be chosen among N − k balls (that is k + 1, . . . , N). This leaves

�
N−k
n−1

�
choices. The

probability to be found is therefore
�
N−k
n−1

�
/
�
N
n

�
.

Exercise 6.1.17. Heads and tails as usual.

A person, A, tossing an unbiased coin N times obtains TA tails. Another person, B,
tossing her own unbiased coin N +1 times has TB tails. What is the probability that
TA ≥ TB? Hint: Introduce HA and HB the number of heads obtained by A and B
respectively, and use a symmetry argument.

Solution (Exercise 6.1.17).
We have

N + 1 = HB + TB

N = HA + TA

Therefore
TA − TB = HB −HA − 1

and
P (TA − TB ≥ 0) = P (HB −HA > 0) .

By symmetry,

P (HB −HA > 0) = P (TB − TA > 0) = 1− P (TA − TB ≥ 0) .

Therefore
P (TA − TB ≥ 0) = 1− P (TA − TB ≥ 0) ,

which gives P (TA − TB ≥ 0) = 1/2.

Exercise 6.1.18. The switches.

Two nodes A and B in a communications network are connected by three different
routes and each route contains a number of links that may fail. These are represented
symbolically in Fig. 6.1 by switches that are in the lifted position if the link is in a
failure state. In this figure, the number associated with a switch is the probability
that the corresponding link is out of order. The links fail independently. What is
the probability that A and B are connected?

Solution (Exercise 6.1.18).
Let U1 be the event ”no switch lifted in the upper path”. Defining similarly U2 and
U3, we see that the probability to be computed is that of U1 ∪ U2 ∪ U3, or by De



202 CHAPTER 6. SOLUTIONS

0.25 0.25

A
0.4

B

0.1 0.1 0.1

Figure 6.1: All switches up.

Morgan’s law, that of the complement of U1 ∩ U2 ∩ U3:

1− P (U1 ∩ U2 ∩ U3) = 1− P (U1)P (U2)(PU3),

where the last equality follows from the independence assumption for the states of
the link. Letting now U1

1 = “switch 1 (first from left) in the upper path is not lifted”
and U2

1 =”switch 2 in the upper path is not lifted”, we have U1 = U1
1 ∩U2

1 , therefore,
in view of the independence of the bridges,

P (U1) = 1− P (U1) = 1− P (U1
1 )P (U2

1 ).

We must now use the data P (U1
1 ) = 1 − 0.25, P (U2

1 ) = 1 − 0.25 to obtain P (U1) =
1 − (0.75)2. Similarly P (U2) = 1 − 0.6 and P (U3) = 1 − (0.9)3. The final result is
1− (0.4375)(0.4)(0.271) = 0.952575.

Exercise 6.1.19. Pairwise independence does not suffice.

1. Give a simple example of a probability space (Ω,F , P ) with three events A1, A2, A3

that are pairwise independent, but not globally independent (that is, the family
{A1, A2, A3} is not independent).

2. If {Ai}i∈I is an independent family of events, is it true that {Ãi}i∈I is also an
independent family of events, where for each i ∈ I, Ãi = Ai or Ai (your choice, for
instance, with I = �, Ã0 = A0, Ã1 = A1, Ã3 = A3, . . .)?

Solution (Exercise 6.1.19).

1. For all i ∈ Ω = {1, 2, 3, 4}, take P ({i}) = 1
4 . Define A1 = {1, 2}, A2 = {2, 3}, A3 = {3, 1}.

We have

P (A1 ∩A2 ∩A3) = P (∅) = 0 .

On the other hand,

P (A1)P (A2)P (A3) =
1

8
.

Therefore

P (A1 ∩A2 ∩A3) 6= P (A1)P (A2)P (A3),

which contradicts independence of the family {A1, A2, A3}. However, A1, A2, A3 are
pairwise independent. For instance,

P (A1 ∩A2) = P ({2}) = 1

4
= P (A1)P (A2).
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2. Yes. By recurrence, it suffice to prove the result when just one Ai is changed in
Ai. Say i = 0. The result follows from the following type of computations:

P
�
A0 ∩A1 ∩A2

�
= P (A1 ∩A2)− P (A0 ∩A1 ∩A2)

= P (A1)P (A2)− P (A0)P (A1)P (A2)

= (1− P (A0))P (A1)P (A2)

= P
�
A0

�
P (A1)P (A2) .

Exercise 6.1.20. Conditional independence and Markov property.

1. Let (Ω,F , P ) be a probability space. Define for a fixed event C of positive prob-
ability, PC(A) := P (A | C). Show that PC is a probability on (Ω,F). (And note that
A and B are independent with respect to this probability if and only if they are
conditionally independent given C.)

2. Let A1, A2, A3 be three events of positive probability. Show that events A1 and A3

are conditionally independent given A2 if and only if the “Markov property” holds,
that is, P (A3 | A1 ∩A2) = P (A3 | A2).

Solution (Exercise 6.1.20).

1. Recall that PC(A) :=
P (A∩C)
P (C) and therefore clearly 0 ≤ PC(A) ≤ 1. Also

PC(Ω) =
P (Ω ∩C

P (C)
=

P (C)

P (C)
= 1,

and

PC(

∞X

n=1

An) =
P ((
P∞

n=1 An) ∩ C

P (C)
=

P (
P∞

n=1(An ∩ C)

P (C)

=

P∞
n=1 P (An ∩ C)

P (C)
=

∞X

n=1

P (An ∩ C)

P (C)
=

∞X

n=1

PC(An) .

2. Assume conditional independence. Then

P (A3 | A1 ∩A2) =
P (A1 ∩A2 ∩A3)

P (A1 ∩A2)
=

P (A1 ∩A3 | A2)P (A2)

P (A1 ∩A2)

=
P (A1 | A2)P (A3 | A2)P (A2)

P (A1 | A2)P (A2)
= P (A3 | A2).

Similar computations yield the converse implication.

Exercise 6.1.21. Roll it once more!

You roll fairly and simultaneously three unbiased dice. What is the probability that
some die shows 2, given that the sum of the 3 values equals 5?

Solution (Exercise 6.1.21).
Of course, 1.
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Exercise 6.1.22. Apartheid University.

In the renowned Social Apartheid University, students have been separated into
three social groups for “pedagogical” purposes. In group A, one finds students who
individually have a probability of passing equal to 0.95. In group B this probability
is 0.75, and in group C only 0.65. The three groups are of equal size. What is the
probability that a student passing the course comes from group A? B? C?

Solution (Exercise 6.1.22).
By the Bayes retrodiction formula,

P (A|pass) = P (pass|A)P (A)

P (pass)
.

By the Bayes rule of exclusive and exhaustive causes,

P (pass) = P (pass|A)P (A) + P (pass|B)P (B) + P (pass|C)P (C)

= 0.95× 1

3
+ 0.75× 1

3
+ 0.65× 1

3
=

2.35

3
.

Therefore

P (A|pass) = 0.95/3

2.35/3
=

95

235
.

Similar computations give P (B|pass) = 75
235 and P (C|pass) = 65

235 .

Exercise 6.1.23. Wise Bet.

There are 3 cards. The first one has both faces red, the second one has both faces
white, and the third one is white on one face, red on the other. A card is drawn at
random, and the color of a randomly selected face of this card is shown to you (the
other remains hidden). What is the winning strategy if you must bet on the color
of the hidden face?

Solution (Exercise 6.1.23).
In the following computations, C stands for “card”, HF for “hidden face”, FS for
“face shown”.

P (HF = R|FS = R) = P (HF = R,FS = R) /P (FS = R)

= P (C = RR) /P (FS = R) .

P (C = RR) =
1

3
P (FS = R) = P (FS = R|C = RR)P (C = RR) + P (FS = R|C = RW )P (C = RW )

= 1× 1

3
+

1

2
× 1

3
=

3

2
× 1

3
.

Therefore

P (HF = R|FS = R) =
2

3
.

The best strategy is therefore: bet that the hidden face has the same color as the
face exposed.
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Exercise 6.1.24. A sequence of liars.

Consider a sequence of n ‘’liars” L1, . . . , Ln. The first liar L1 receives information
about the occurrence of some event in the form ‘’yes or no”, and transmits it to
L2, who transmits it to L3, etc. . . Each liar transmits what he hears with probability
p ∈ (0, 1), and the contrary with probability q = 1− p. The decision of lying or not is
made independently by each liar. What is the probability xn to obtain the correct
information from Ln? What is the limit of xn as n increases to infinity?

Solution (Exercise 6.1.24).
We have the recurrence equation

xn+1 = pxn + q (1− xn) ,

where q = 1− p and x1 = p. Rewrite it as

xn+1 = q + (p− q)xn .

Thus, if limxn = x exists, then necessarily

x = q + (p− q)x,

that is x = 1/2. Subtracting the last displayed equality with x = 1/2 from the previous
one yields �

xn+1 −
1

2

�
= (p− q)

�
xn − 1

2

�
.

and therefore
�
xn − 1

2

�
= (p− q)n−1

�
x1 −

1

2

�

= (p− q)
n−1

�
p− 1

2

�
.

That is

xn =
1

2
+ (p− q)

n−1

�
p− 1

2

�
.

Exercise 6.1.25. The campus library complaint.

You are looking for a book in the campus libraries. Each library has it with proba-
bility 0.60 but the book of each given library may have been stolen with probability
0.25. If there are 3 libraries, what are your chances of obtaining the book?

Solution (Exercise 6.1.25).
The probability of not having the book from a given library is

0.4 + (0.6) (0.25) = 0.55

(it does not hold a copy of the book, or it does but the book was stolen). Therefore

the probability that the book is not available in all three libraries is (0.55)
3
and that

of finding it in some library is therefore 1− (0.55)
3
= 0.833625.
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Exercise 6.1.26. Safari butchers.

Three tourists participate in a safari in Africa. Here comes an elephant, unaware
of the rules of the game. The innocent beast is killed, having received two out of
the three bullets simultaneously shot by the tourists. The probability of hit of the
tourists are: Tourist A: 1

4 , Tourist B: 1
2 , Tourist C: 3

4 . Give for each of the tourists
the probability that he was the one who missed.

Solution (Exercise 6.1.26).

P (A missed | 2 tourists hit ) =
P (A missed and 2 tourists hit)

P ( 2 tourists hit )
.

But “A missed and 2 tourists hit” means “A missed, B hit, C hit”. Therefore (using
independence for the second equality),

P (A missed and 2 tourists hit) = P (A missed, B hit, C hit)

= P (A missed)P (B hit)P (C hit)

= (1 − P (A hit))P (B hit)P (C hit)

=
3

4
× 1

2
× 3

4
=

9

32
.

Now, “two tourists hit” means “one and only one missed”. Therefore (again using
independence for the second equality),

P (two hits) = P (A missed, B hit, C hit) + P (A hit, B missed, C hit) + P (A hit, B hit, C missed)

= P (A missed)P (B hit)P (C hit) + P (A hit)P (B missed)P (C hit) + P (A hit)P (B hit)P (C

=
3

4
× 1

2
× 3

4
+

1

4
× 1

2
× 3

4
+

1

4
× 1

2
× 1

4
=

9 + 3 + 1

32
=

13

32
.

Therefore

P (A missed | 2 tourists hit ) =
9

13
.

Similar computations give

P (B missed | 2 tourists hit ) =
3

13
.

P (C missed | 2 tourists hit ) =
1

13
.

Exercise 6.1.27. Professor Nebulous.

Professor Nebulous travels from Los Angeles to Paris with stopovers in New York
and London. At each stop his luggage is transferred from one plane to another. In
each airport, including Los Angeles, chances are that with probability p his luggage
is not placed in the right plane. Professor Nebulous finds that his suitcase has not
reached Paris. What are the chances that the mishap took place in Los Angeles,
New York, and London, respectively ?

Solution (Exercise 6.1.27).
Think of the misplacement procedure as follows: a demoniac probabilist throws
three coins independently. This results in three random variables X1, X2 and X3,
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with values in {0, 1} (1 is for heads and 0 for tails), and with P (X1 = 1) = P (X2 =
1) = P (X3 = 1) = p. If X1 = 1, the misplacement happened in Los Angeles. If X1 = 0
and X2 = 1, it happenend in New York, and if X1 = 0 and X2 = 0 and X3 = 1, it
happened in London. The event M = “ the luggage has been misplaced ” is the
sum of these three disjoint (incompatible) events and its probability is therefore
P (M) = P (X1 = 1) + P (X1 = 0, X2 = 1) + P (X1 = 0, X2 = 0, X3 = 1). It is natural to
assume that the staff in different airports misbehave independently of one another,
so that P (M) = P (X1 = 1)+P (X1 = 0)P (X2 = 1)+P (X1 = 0)P (X2 = 0)P (X3 = 1) = p+(1−
p)p+(1−p)2p = 1−(1−p)3. This result could have been obtained more simply: P (M) =
1−P (M) = 1−P (X1 = 0, X2 = 0, X3 = 0) = 1−P (X1 = 0)P (X2 = 0)P (X3 = 0) = 1−(1−p)3.
We want to compute the probabilities x, y, and z for the luggage to be stranded in
Los Angeles, New York, and London, respectively , knowing that it does not reach
Paris: x = P (X1 = 1|M), y = P (X1 = 0, X2 = 1|M), z = P (X1 = 0, X2 = 0, X3 = 1|M). One
finds

x = P (X1 = 1,M)/P (M) = P (X1 = 1)/P (M)

=
p

1− (1− p)3

y = P (X1 = 0, X2 = 1,M)/P (M) = P (X1 = 0, X2 = 1)/P (M)

=
p(1− p)

1− (1− p)3

z = P (X1 = 0, X2 = 0, X3 = 1,M)/P (M) = P (X1 = 0, X2 = 0, X3 = 1)/P (M)

=
p(1− p)2

1− (1− p)3

Exercise 6.1.28. Hardy–Weinberg’s law.

In Example 1.3.1, show that the genotypic distributions of all generations, starting
from the third one, are the same (Hardy–Weinberg’s law) and that the stationary
distribution depends only on the proportion c of alleles of type A in the initial
population.

Solution (Exercise 6.1.28).
Define the functions f1, f2, and f3 by

f1(x, y, z) = (x+ z)2

f2(x, y, z) = (y + z)2

f3(x, y, z) = (x+ z)(y + z).

To be proven: for all nonnegative numbers x, y, z such that x+ y + 2z = 1,

fi(x, y, z) = fi[f1(x, y, z), f2(x, y, z), f3(x, y, z)], i = 1, 2, 3.

The third equality, for instance, is

(x + z)(y + z) = [(x+ z)2 + (y + z)(x+ z)][y + z)2 + (y + z)(x+ z)].

It holds since (x+z)2+(y+z)(x+z) = (x+z)(x+2z+y) = x+z and (y+z)2+(y+z)(x+z) =
(y + z)(y + 2z + x) = y + z. The ratio c of alleles of type A in the initial population is
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x+ z. Now y + z = 1− c. Therefore, the stationary distribution is

p = c2, q = (1− c)2, 2r = 2c(1− c).

Exercise 6.1.29. Doctors are not that bad.

In Example 1.3.3 compute the detection failure probability P (M |−). If it is not
small enough, how to improve things?

Solution (Exercise 6.1.29).

P (M |−) =
P (M,−)

P (−)
=

P (− |M)P (M)

P (− |M)P (M) + P (− |M)P (M)
,

that is

P (M |−) =
0.01× 0.001

0.01× 0.001 + 0.08× 0.009
,

which is approximately 1/80. This is still too large for certain illnesses, and you
must in that case have a better P (+ |M). With P (+ |M) = 0.999, you have

P (M |−) =
0.001× 0.001

0.001× 0.001 + 0.08× 0.009
,

that is, approximately, 1/800.

6.2 Chapter 2

6.2.1 Subsection 2.1.4

Exercise 6.2.1. Poincaré.

Let A1, . . . , An be events and let X1, . . . , Xn be their indicator functions. From the
developped expression of E [Πn

i=1(1−Xi)], deduce Poincaré’s formula:

P (∪n
i=1Ai) =

X

i

P (Ai) −
X

i<j

P (Ai ∩Aj)

+
X

i<j<k

P (Ai ∩Aj ∩Ak)− · · ·+ (−1)n+1P (A1 ∩A2 ∩ · · · ∩ An)

Solution (Exercise 6.2.1).

P (∪n
i=1Ai) = 1− P

�
∪n
i=1Ai

�
= 1− P

�
∩n
i=1Ai

�
.

P
�
∩n
i=1Ai

�
= E

h
1∩n

i=1Ai

i
= E

"
nY

i=1

1Ai

#

= E

"
nY

i=1

(1− 1Ai)

#
= E

"
nY

i=1

(1−Xi)

#
.


