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x+ z. Now y + z = 1− c. Therefore, the stationary distribution is

p = c2, q = (1− c)2, 2r = 2c(1− c).

Exercise 6.1.29. Doctors are not that bad.

In Example 1.3.3 compute the detection failure probability P (M |−). If it is not
small enough, how to improve things?

Solution (Exercise 6.1.29).

P (M |−) =
P (M,−)

P (−)
=

P (− |M)P (M)

P (− |M)P (M) + P (− |M)P (M)
,

that is

P (M |−) =
0.01× 0.001

0.01× 0.001 + 0.08× 0.009
,

which is approximately 1/80. This is still too large for certain illnesses, and you
must in that case have a better P (+ |M). With P (+ |M) = 0.999, you have

P (M |−) =
0.001× 0.001

0.001× 0.001 + 0.08× 0.009
,

that is, approximately, 1/800.

6.2 Chapter 2

6.2.1 Subsection 2.1.4

Exercise 6.2.1. Poincaré.

Let A1, . . . , An be events and let X1, . . . , Xn be their indicator functions. From the
developped expression of E [Πn

i=1(1−Xi)], deduce Poincaré’s formula:

P (∪n
i=1Ai) =

X

i

P (Ai) −
X

i<j

P (Ai ∩Aj)

+
X

i<j<k

P (Ai ∩Aj ∩Ak)− · · ·+ (−1)n+1P (A1 ∩A2 ∩ · · · ∩ An)

Solution (Exercise 6.2.1).

P (∪n
i=1Ai) = 1− P

�
∪n
i=1Ai

�
= 1− P

�
∩n
i=1Ai

�
.

P
�
∩n
i=1Ai

�
= E

h
1∩n

i=1Ai

i
= E

"
nY

i=1

1Ai

#

= E

"
nY

i=1

(1− 1Ai)

#
= E

"
nY

i=1

(1−Xi)

#
.
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nY

i=1

(1−Xi) = 1−




X

i

Xi −
X

i<j

XiXj +
X

i<j<k

XiXjXk + . . .



 .

Therefore

P (∪n
i=1Ai) = E


X

i

Xi −
X

i<j

XiXj +
X

i<j<k

XiXjXk + . . .




= E

"
X

i

Xi

#
− E


X

i<j

XiXj


+ E


 X

i<j<k

XiXjXk


+ . . .

Observe that
E [Xi1Xi2 . . .Xik ] = E

h
1∩k

l=1Ail

i
= P

�
∩k
l=1Ail

�
.

Exercise 6.2.2. Non essential set.

Let X be a discrete random variable taking its values in E, with probability distri-
bution p(x), x ∈ E. Define A = {ω; p(X(ω)) = 0}. Show that P (A) = 0.

Solution (Exercise 6.2.2).

P (A) = E [1A] = E
�
1{p(X)=0}

�
=
X

x∈E

1{p(x)=0}p(x) = 0 .

Exercise 6.2.3. The mean is the center of inertia.

Let X be a real random variable with mean µ and finite variance σ2. Show that, for
all a ∈ �, a 6= µ,

E[(X − a)2] > E[(X − µ)2] = σ2 .

Solution (Exercise 6.2.3).

E
�
(X − a)2

�
= E

h
((X − µ) + (µ− a))

2
i

= E
�
(X − µ)2

�
+ (µ− a)2 + 2(µ− a)E [(X − µ)]

= E
�
(X − µ)2

�
+ (µ− a)2 > E

�
(X − µ)2

�

whenever a 6= µ.

Exercise 6.2.4. Null variance.

Prove that a null variance implies that the random variable is almost-surely constant.
(Do the proof for an integer-valued random variable.)

Solution (Exercise 6.2.4).

+∞X

n=0

(n− µ)2P (X = n) = 0
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implies that n− µ = 0 whenever P (X = n) > 0. Therefore

P (X = µ) =
X

n;n=µ

P (X = n) =

+∞X

n=0

P (X = n) = 1.

Exercise 6.2.5. Checking conditional independence.

Let X, Y , and Z be three discrete random variables with values in E, F , and G,
respectively. Prove the following: If for some function g : E × F → [0, 1], P (X =
x | Y = y, Z = z) = g(x, y) for all x, y, z, then P (X = x | Y = y) = g(x, y) for all x, y, and
X and Z are conditionally independent given Y .

Solution (Exercise 6.2.5).
We have

P (X = x, Y = y) =
X

z

P (X = x, Y = y, Z = z)

=
X

z

P (X = x | Y = y, Z = z)P (Y = y, Z = z)

= g(x, y)
X

z

P (Y = y, Z = z) = g(x, y)P (Y = y).

Therefore,
P (X = x | Y = y) = g(x, y) = P (X = x | Y = y, Z = z).

Exercise 6.2.6. Gibbs’s inequality.

Let (p(x), x ∈ X ) and (q(x), x ∈ X ) be two probability distributions on the finite space
X . Prove the Gibbs inequality

−
X

x∈X
p(x) log p(x) ≤ −

X

x∈X
p(x) log q(x) , (6.1)

with equality if and only if p(x) = q(x) for all x ∈ X .

Solution (Exercise 6.2.6).
We may suppose that q(x) > 0 for all x such that p(x) > 0 (otherwise the inequality
is trivial, the right-hand side being infinite). One can therefore restrict oneself to
the case where X contains only elements x such that p(x) > 0 , and where q is a
subprobability (

P
x∈X q(x) ≤ 1) such that q(x) > 0 for all x. Using the fact that

z > 0 ⇒ log z ≤ z − 1 with equality if and only if z = 1, we have that :

X

x∈X
p(x) log

q(x)

p(x)
≤
X

x∈X
p(x)

�
q(x)

p(x)
− 1

�

=
X

x∈X
q(x)−

X

x∈X
p(x) ≤ 0 ,

with equality if and only if q(x)
p(x) = 1 for all x ∈ X .
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6.2.2 Subsection 2.2.5

Exercise 6.2.7. Geometric is memoryless.

Show that a geometric random variable T with parameter p ∈ (0, 1) is memoriless in
the sense that for all integers k, k0 ≥ 1, P (T = k + k0 | T > k0) = P (T = k).

Solution (Exercise 6.2.7).

P (T > k0) =

∞X

k=k0+1

(1− p)
k−1

p

= p (1− p)
k0

∞X

n=0

(1− p)
n
=

p (1− p)
k0

1− (1− p)
= (1− p)

k0 .

P (T = k0 + k|T > k0) =
P (T = k0 + k, T > k0)

P (T > k0)
=

P (T = k0 + k)

P (T > k0)

=
p (1− p)k+k0−1

(1− p)
k0

= p (1− p)
k
= P (T = k) .

Exercise 6.2.8.
Let T1 and T2 be two independent geometric random variables with the same pa-
rameter p ∈ (0, 1). Give the probability distribution of the sum X = T1 + T2.

Solution (Exercise 6.2.8).
For n ≥ 2:

P (T1 + T2 = n) =

n−1X

k=1

P (T1 + k = n, T2 = k)

=

n−1X

k=1

P (T1 = n− k)P (T2 = k)

=

n−1X

k=1

(1− p)
n−k−1

p (1− p)
k−1

p

=
n−1X

k=1

(1− p)n−2 p2 = (n− 1)

�
p

1− p

�2

(1− p)n

Exercise 6.2.9. The return of the coupon collector.

In the coupon’s collector problem of Example 2.2.4, compute the variance σ2
X of X

(the number of chocolate tablets needed to complete the collection of the n different

coupons) and show that
σ2
X

n2 has a limit (to be identified) as n grows indefinitely.

Exercise 6.2.10. The ambitious coupon collector.
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In the coupon’s collector problem of Example 2.2.4, prove that for all c > 0,

P (X > ⌈n lnn+ cn⌈) ≤ e−c .

Hint: you might find useful to define Ai to be the event that Type i coupon has not
shown up during in first ⌈n lnn+ cn⌈ tablets.

Solution (Exercise 6.2.10).

Then

P (X > ⌈n lnn+ cn⌉) = P (∪n
i=1Ai) ≤

nX

i=1

P (Ai)

=

nX

i=1

�
1− 1

n

�⌈n lnn+cn⌉
≤ n exp (n lnn+ cn) = e−c .

Exercise 6.2.11. Factorial of Poisson.

1. Let X be a Poisson random variable with mean θ > 0. Compute the mean of the
random variable X ! (factorial, not exclamation mark!).

2. Compute E
�
θX

�
.

Solution (Exercise 6.2.11).

1.

E [X !] =

∞X

n=0

n!e−θ θ
n

n!
= eθ

∞X

n=0

θn .

If θ ≥ 1, E [X !] = ∞, if θ < 1, E [X !] = e−θ 1
1−θ .

2.

E
�
θX

�
=

∞X

n=0

θnP (X = n) =

∞X

n=0

θne−θ θ
n

n!

= e−θ
∞X

n=0

θ2n

n!
= e−θeθ

2

= e−θ(1−θ).

Exercise 6.2.12. Even and odd Poisson.

Let X be a Poisson random variable with mean θ > 0. What is the probability that
X is odd?

Solution (Exercise 6.2.12).

P (X is odd) =
X

k odd

θk

k!
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Now

eθ =
X

k even

θk

k!
+

X

k odd

θk

k!
,

and

e−θ =
X

k even

θk

k!
−

X

k odd

θk

k!
.

Therefore

X

k odd

θk

k!
=

eθ − e−θ

2
,

and

P (X is odd) = e−θ × eθ − e−θ

2
=

1− e−2θ

2
.

Exercise 6.2.13. Entropy.

Let X be a discrete random variable taking its values in a finite set F . Let p (x) :=
P (X = x) , x ∈ F , be its distribution.

i) Compute −E [log p (X)]. (This quantity is called the entropy of X and is denoted
by H [X ].)

ii) Let now X = (X1, . . . , Xn) where the Xi’s are iid random variables taking their
values in a finite set E with the common distribution π. Express H [X ] in terms of
H [X1].

iii) What is the entropy of a binomial random variable of size n and parameter
p ∈ (0, 1)?

Solution (Exercise 6.2.13).

i) −E [log p (X)] = −Px∈F P (X = x) log p(x) = −Px∈F p(x) log p(x).

ii) p(x) = P (X = x) = P ((X1 = x1, . . . , Xn = xn)) =
Qn

i=1 P (Xi = xi) =
Qn

i=1 π(xi).

−E [log p (X)] = −E [log
Qn

i=1 π(Xi)] = −Pn
i=1 E [log π(Xi)] = nH [X1].

(iii) −n(p log p+ (1− p) log(1− p)).

Exercise 6.2.14. Poisson–Bernoulli sum.

Let {Xn}n≥1 be independent random variables taking the values 0 and 1 with prob-
ability q = 1 − p and p, respectively, where p ∈ (0, 1). Let T be a Poisson random
variable with mean θ > 0, independent of {Xn}n≥1. Let S := X1 + · · ·+XT . Show that
S is a Poisson random variable with mean pθ.
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Solution (Exercise 6.2.14).

P (S = k) = P (X1 + · · ·+XT = k)

= P

 ∞X

n=k

{X1 + · · ·+Xn = k, T = n}
!

= ∪∞
n=kP (X1 + · · ·+Xn = k, T = n)

=
∞X

n=k

P (X1 + · · ·+Xn = k)P (T = n),

that is

P (S = k) =

∞X

n=k

n!

k!(n− k)!
pkqn−ke−θ θ

n

n!

= e−θ (pθ)
k

k!

∞X

n=k

(qθ)n−k

(n− k)!

= e−θ (pθ)
k

k!

∞X

i=0

(qθ)i

i!

= e−θ (pθ)
k

k!
eqθ = epθ

(pθ)k

k!
.

Thus, if one “thins out” with thinning probability 1 − p a population sample of
Poissonian size, the remaining sample has also a Poissonian size, with the obvious
mean that is p times that of the original sample.

Exercise 6.2.15. Bernoulli sum of products.

Let X1, . . . , X2n be independent random variables taking the values 0 or 1, and such
that for all i, 1 ≤ i ≤ 2n, P (Xi = 1) = p ∈ [0, 1]. Define Z =

Pn
i=1 XiXn+i. Compute

P (Z = k), 1 ≤ k ≤ n.

Solution (Exercise 6.2.15).
Define Zi = XiXn−i. The sequence {Zi}1≤i≤n is a Bernoulli sequence with

P (Zi = 1) = P (Xi = 1)P (Xn−i = 1) = p2.

Therefore Z =
Pn

i=1 Zi is a binomial random variable of size n and parameter p2.
Therefore, for 0 ≤ k ≤ n,

P (Z = k) =

�
n

k

�
p2k

�
1− p2

�n−k
.

Exercise 6.2.16. Hazard rate.

The hazard rate function λ : �→ [0, 1] of an integer-valued function X is defined by
λ(n) = P (X = n|X ≥ n).
(i) Compute P (X ≥ n) in terms of λ(0), · · · ,λ(n).
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(ii) Let {Un}n≥0 be a sequence of iid random variables uniformly distributed on [0, 1].
Show that the random variable Z := min{n ≥ 0 : Un ≤ λ(n)} has the same distribution
as X.

Solution (Exercise 6.2.16).

(i) Letting An = P (X ≥ n), we have λ(n) = An−An+1

An
= 1− An+1

An
, from which we obtain,

observing that A0 = 1,

P (X ≥ n) =

nY

i=0

(1− λ(i)) .

(ii)

P (Z ≥ n) = P (U0 > λ(0), . . . , Un > λ(n))

= P (U0 > λ(0)) · · ·P (Un > λ(n)) =

nY

i=0

(1− λ(i)) = P (X ≥ n) .

Exercise 6.2.17. Stochastically larger.

Let X and Y be two integer-valued random variables. Then X is said to be stochas-

tically larger than Y if for all n ≥ 0, P (X ≥ n) ≥ P (Y ≥ n). Show that in this case
E[u(X)] ≥ E[u(Y )] whenever u : � → � is a non-negative and non-decreasing func-
tion.

Solution (Exercise 6.2.17).
The proof immediately follows from the observation that

E[u(X)] = u(0)P (X = 0) + u(1)P (X = 1) + · · ·+ u(n)P (X = n) + · · ·
= u(0)(P (X ≥ 0)− P (X ≥ 1)) + u(1)(P (X ≥ 1)− P (X ≥ 2))

+ · · ·+ u(n)(P (X ≥ n)− P (X ≥ n+ 1)) + · · ·
= u(0)P (X ≥ 0) + (u(1)− u(0))P (X ≥ 1) + · · · (u(n+ 1)− u(n))P (X ≥ n+ 1) + · · ·

Exercise 6.2.18. The matchbox.

A smoker has one matchbox with N matches in each pocket. He reaches at random
for one box or the other. What is the probability that, having eventually found an
empty matchbox, there will be k matches left in the other box?

Solution (Exercise 6.2.18).
Let Xn = 1 if the match is taken from the box in the left pocket, = 0 otherwise.
The sequence {Xn}n≥1 is a Bernoulli sequence. The event that the box in the right
pocket has k matches left when the box in the left pocket is empty for the first time
is

P (X1+· · ·+XN+k−1 = N−1, XN+k = 1) = P (X1+· · ·+XN+k−1 = N−1)P (XN+k = 1) =

�
N + k − 1

N − 1

�
×1

2
.

Inverting the role of the pockets, we find the same result, by symmetry. Therefore
the answer is

�
N+k−1
N−1

�
.
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Exercise 6.2.19. The blue pinko.

The blue pinko, an extravagant australian bird, lays T eggs, each egg blue or pink,
with probability p that a given egg is blue. The colors of the successive eggs are
independent, and independent of the number of eggs laid. Exercise 6.2.14 shows
that if the number of eggs is Poisson with mean θ, then the number of blue eggs is
Poisson with mean θp and the number of pink eggs is Poisson with mean θq. Show
that the number of blue eggs and the number of pink eggs are independent random
variables.

Solution (Exercise 6.2.19).
If S is the number of blue eggs, T − S is the number of pink eggs. One must show
that for any integers k ≥ 0, ℓ ≥ 0,

P (S = k, T − S = ℓ) = P (S = k)P (T − S = ℓ)

= e−θp (θp)
k

k!
e−θq (θq)

ℓ

ℓ!
.

But

P (S = k, T − S = ℓ) = P (S = k, T = k + ℓ)

= P (X1 + · · ·+Xk+ℓ = k, T = k + ℓ)

= P (X1 + · · ·+Xk+ℓ = k)P (T = k + ℓ)

=
(k + ℓ)!

k!ℓ!
pkqℓe−θ θk+ℓ

(k + ℓ)!
= e−pθ (pθ)

k

k!
e−qθ (qθ)

ℓ

ℓ!
.

Exercise 6.2.20. The entomologist.

Each individual of a specific breed of insects has, independently of the others, the
probability θ of being a male. An entomologist seeks to collect exactly M > 1
males, and therefore stops hunting as soon as M males are captured. What is the
distribution of X, the number of insects that must be caught in order to collect
exactly M males?

Solution (Exercise 6.2.20).
Consider the (independent) random variables Z1, Z2, . . . where Zi = 1 if and only if
the i-th captured insect is a male, Zi = 0 otherwise. If k < M , P (X = k) = 0. If
k ≥ M ,

P (X = k) = P (Z1 + · · ·+ Zk−1 = M − 1, Zk = 1)

= P (Z1 + · · ·+ Zk−1 = M − 1)× P (Zk = 1)

=
(k − 1)!

(k −M)!(M − 1)!
θM−1(1− θ)k−M × θ

=
(k − 1)!

(k −M)!(M − 1)!
θM (1− θ)k−M .

where we have used the fact that Z1 + · · ·+ Zk−1 is a binomial random variable.

Exercise 6.2.21. The return of the entomologist.
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The situation is as in Exercise 6.2.20. What is the distribution of X, the smallest
number of insects that the entomologist must catch to collect at least M males and
N females?

Solution (Exercise 6.2.21).

P (X = k) = 0 if k < N +M . If k ≥ N +M ,

P (X = k) = P

 
Zk = 1,

k−1X

i=1

Zi = M − 1

!
+ P

 
Zk = 0,

k−1X

i=1

(1− Zi) = N − 1

!

(the first term on the right is the probability of obtaining at time k exactly M
males and at therefore at least N females since k ≥ N +M , the second term is the
probability of obtaining at time k exactly N females and therefore at least M males).
Therefore

P (X = k) = 1k≥N+M

��
k − 1

M − 1

�
pk (1− p)

M−k
+

�
k − 1

N − 1

�
(1− p)

k
pN−k

�
.

6.2.3 Subsection 2.3.4

Exercise 6.2.22. Mean and variance via generating functions.

Compute the mean and variance of the binomial random variable B of size n and
parameter p from its generating function. Do the same for the Poisson random
variable P of mean θ.

Solution (Exercise 6.2.22).

By (2.24) and (2.25), when it is defined, the variance σ2
X of any integer-valued

random variable X of generating function gX(z) is given by the formula

σ2
X = g′′X(1) + g′X(1)− g′X(1)2.

Applying this formula to B and P of respective generating function gB(z) = (1−p+pz)n

and gP (z) = eθ(z−1), we obtain σ2
B = np(1− p) and σ2

P = θ.

Exercise 6.2.23. Variance of the geometric function.

What is the generating function gT of the geometric random variable T with param-
eter p ∈ (0, 1) (recall P (T = n) = (1 − p)n−1p, n ≥ 1). Compute its first two derivatives
and deduce from the result the variance of T .
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Solution (Exercise 6.2.23).
We have

gT (z) =

∞X

n=1

(1− p)
n−1

pzn

= pz

∞X

n=1

[(1− p) z]
n−1

= pz

∞X

j=1

[(1− p) z]
j
=

pz

1− (1− p) z
=

pz

1− qz
,

where q = 1−p (the radius of convergence of the power series is 1/1−p, and therefore
the domain of definition of gT is {z; |z| ≤ 1/1− p}). In the interior of the disk of
absolute convergence

g′T (z) =
p

(1− qz)
2 , g′′T (z) =

2pq

(1− qz)
3

Therefore

g′T (1) =
p

(1− q)2
=

1

p
, g′′T (1) =

2pq

(1− q)3
=

2q

p2

and

E [T ] = g′T (1) =
1

p
.

Var (T ) = g′′T (1) + E [T ]− E [T ]
2

=
2p

p2
+

1

p
− 1

p2
=

2q + p− 1

p2

=
q + p+ q − 1

p2
=

q + 1− 1

p2
=

q

p2
.

Exercise 6.2.24. Factorial moment of Poisson.

What is the n-th factorial moment (E [X(X − 1) · · · (X − n+ 1)]) of a Poisson random
variable X of mean θ > 0?

Solution (Exercise 6.2.24).
The generating function of a Poisson variable X of mean θ > 0 is

gX (z) = eθ(z−1) ,

and
g
(n)
X (z) = θneθ(z−1) .

But

dn

dzn
E
�
zX

�
= E

�
dn

dzn
zX

�

= E
�
X (X − 1) . . . (X − n+ 1) zX

�
.
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Therefore

E [X (X − 1) . . . (X − n+ 1)] = g
(n)
X (0) = θn .

Exercise 6.2.25. From the generating function to the distribution.

What is the probability distribution of the integer-valued random variable X with
generating function g(z) = 1

(2−z)2 ?

Solution (Exercise 6.2.25).

g(z) =
1

(2− z)2
=

1

2

d

dz

1

1− z
2

=
1

2

d

dz

�
1 +

z

2
+

z2

4
+ · · ·+ zn

2n
+ · · ·

�

=
1

4

�
1 +

2z

2
+

3z2

4
+ · · ·+ nzn−1

2n−1
+ · · ·

�
.

Therefore, for all n ≥ 0,

P (X = n) =
1

4

n+ 1

2n
.

Exercise 6.2.26. Throw a die.

You perform three independent tosses of an unbiased die. What is the probability
that one of these tosses results in a number that is the sum of the two other numbers?
(You are required to find a solution using generating functions.)

Solution (Exercise 6.2.26).
We seek to compute

P (X1 = X2 +X3) + P (X2 = X1 +X3) + P (X3 = X1 +X2) ,

which is equal, by symmetry, to 3P (Y = 6), where Y = 6+X2+X3−X1. The generating
function of any X1 is

1

6

�
z + . . .+ z6

�
=

1

6
z
1− z6

1− z
,

and therefore

gY (z) = E
�
zY

�

= z6E
�
zX2

�
E
�
zX3

�
E
h�
z−1

�X1
i

= z6
1

63
z2

�
1− z6

�2

(1− z)
2 z−1 1− z−6

1− z−1
=

1

216
z2

�
1− z6

�3

(1− z)
3 ,

that is

1

216
z2

�
1−

�
3

1

�
z6 + · · ·

��
1 +

�
3

2

�
z +

�
4

2

�
z2 +

�
5

2

�
z3 +

�
6

2

�
z4 + · · ·

�
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P (Y = 6) is the term in z6, that is
1

216

�
6
2

�
. The result is therefore

3P (Y = 6) =
3

216

5× 6

2
=

5

24
.

Exercise 6.2.27. Residual time.

Let X be a random variable with values in � an with finite mean m. Show that
pn = 1

mP (X > n), n ∈ �, defines a probability distribution on �. Compute its
generating function G in terms of the generating function g and the mean m of X.

Solution (Exercise 6.2.27).
By the telescope formula,

m := E[X ] =
X

n≥0

P (X > n) .

Now,

mG(z) =
X

n≥0

P (X > n)zn

= P (X = 1) + P (X = 2) + P (X = 3) + P (X = 4) + · · ·
+ P (X = 2)z + P (X = 3)z + P (X = 4)z + · · ·
+ P (X = 3)z2 + P (X = 4)z2 + · · ·
+ P (X = 4)z3 + · · ·

= P (X = 1) + P (X = 2)(1 + z) + P (X = 3)(1 + z + z2) + P (X = 4)(1 + z + z2 + z3) + · · ·

=
1

1− z

�
P (X = 1)(1− z) + P (X = 2)(1− z2) + P (X = 3)(1− z3) + P (X = 4)(1− z4) + · · ·

�

=
1

1− z
(1− P (X = 0))− 1

1− z
(g(z)− P (X = 0)) .

Therefore

G(z) =
1− g(z)

m(1− z)
.

Exercise 6.2.28. Wald’s expectation formula.

Let {Yn}n≥1 be a sequence of integer-valued integrable random variables such that
E[Yn] = E[Y1] for all n ≥ 1. Let T be an integer-valued random variable such that for

all n ≥ 1, the event {T ≥ n} is independent of Yn. Define X :=
PT

n=1 Yn. Prove that

E [X ] = E[Y1]E[T ] .

Solution (Exercise 6.2.28).
We have

E[X ] = E[
∞X

n=1

Yn1{n≤T}] =
∞X

n=1

E[Yn1{n≤T}].
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But
E[Yn1{n≤T}] = E[Yn]E[1{n≤T}] = E[Y1]P (n ≤ T }).

The result then follows from the telescope formula.

Exercise 6.2.29. The entomologist strikes again!

Recall the setup of Exercise 6.2.20. Each individual of a specific breed of insects
has, independently of the others, the probability θ of being a male. An entomologist
seeks to collect exactly M > 1 males, and therefore stops hunting as soon as she
captures M males. She has to capture an insect in order to determine its gender.
What is the expectation of X, the number of insects she must catch to collect exactly

M males? (In Exercise 6.2.20, we computed the distribution of X, from which we
can of course compute the mean. However you can give the solution more quickly,
and this is what is required in the present exercise)

Solution (Exercise 6.2.29).
Apply Wald’s expectation formula of Exercise 6.2.28 to obtain M = E [X ] × θ. For
the result of Exercise6.2.28 to apply, one must be sure that for each n ≥ 0, the
random variable Zn (= 1 if the n-th insect captured is a male, = 0 otherwise) and
the event {T ≥ n} are independent. Equivalently (see Exercise 6.1.19) we must show
that Zn and {T < n} are independent. This is true since {T < n} depends only on
Z1, . . . , Zn−1.

Exercise 6.2.30. A recurrence equation.

Recall the notation a+ = max(a, 0). Consider the recurrence equation,

Xn+1 = (Xn − 1)
+
+ Zn+1, (n ≥ 0),

where X0 is a random variable taking its values in �, and {Zn}n≥1 is a sequence
of independent random variables taking their values in �, and independent of X0.
Express the generating function ψn+1 of Xn+1 in terms of the generating function ϕ
of Z1.

Solution (Exercise 6.2.30).

Xn+1 = Xn − 1Xn>0 + Zn+1

Observe that Zn+1 is independent of Xn (the latter depends only on X0, Z1, . . . , Zn).
Therefore

E
�
zXn+1

�
= E

�
zXn−1Xn>0

�
E
�
zZn+1

�

= E
�
zXn−1Xn>0

�
ϕ (z) .

Now

zXn−1Xn>0 =
�
zXn−1Xn>0

�
1Xn>0 +

�
zXn−1Xn>0

�
1Xn=0

= zXn−11Xn>0 + zXn1Xn=0

= zXn−1 − zXn−11Xn=0 + zXn1Xn=0

= zXn−1 +−z−11Xn=0 + 1Xn=0

= zXnz−1 +
�
1− z−1

�
1Xn=0.


