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Question 1) Half-band filters: Let us consider an L-interpolator where the output at
periodic sampling instants which are apart by L gives the input itself. Show that when
L = 2, the interpolating filter’s frequency response exhibits a symmetry around the half-
band to yield H(z) +H(−z) = 2 (also called half-band filter).
Solution: Notice that an L-interpolator is nothing but an upsampler followed by an ap-
propriate low pass filter. In particular, this is a multi-rate system with the input and
output having different sampling rates. Thus, we have to be a bit careful in using the term
frequency response. Like interpolators we learned in the digital to analog conversion, one
can visualize each sample being replaced by L samples, however, due to edge effects, more
values may become necessary at the endpoints.

For L = 2, the filter h[n] can be seen as operating on x[n] up sampled by 2. For the
input to be same as the output at n = 0, it is compulsory that h[2n] = 0, n ∈ Z, n ≠ 0. Let
us prove the above claim by contradiction. Assume h[2m] = ε ≠ 0. Imagine the output for
an input x[n] = δ[n]. Clearly y[2m] = ε ≠ x[2m] = 0. Thus the filter h[n] has a unit value
at n = 0, and other possible non-zero values only at odd integers. Putting these together

H(z) = 1 + ∑
n odd

h[n]z−n,

which implies

H(z) +H(−z) = 2. (1)

For real filters, we know that H(z) exhibits a symmetry in the unit circle, i.e. H(z = ejω) =
H∗(z = e−jω). This, together with (1), gives

H(z = ej(
π
2
+ω)) +H(z = ej(

π
2
−ω)) = 2,

called half-band symmetry. For ω ∈ [0, π], the values on either side of π
2 determines the

complete response, this is called half-band symmetry.

Question 2) Let us consider perfect reconstruction filter-banks for sub-band coding. Take
Hi(z)H̃i(z) ∶= Pi(z), i = 0,1.

(a) Show that under aliasing-free conditions we described in class,

P1(z) = −P0(−z).

Thus the distortion-free constraint becomes P0(z) − P0(−z) = 2z−l for some l ≥ 0.
Solution: We have already seen the alias free conditions

H̃0(z) =H1(−z) and H0(−z) = −H̃1(z).

This gives
P1(z) =H1(z)H̃1(z) = H̃0(−z) (−H0(z)) = −P0(−z).



The distortion free constraint now reads

2z−l = P0(z) + P1(z) = P0(z) − P0(−z).

(b) Show that l can only be an odd integer in above.
Solution: Assume l is not odd, then P0(z)−P0(−z) will have an even degree term remain-
ing, which is impossible.

(c) Let us take P (z) = zlP0(z), an we want P0(z) to be of linear phase. Show that P (z)
is zero phase half-band LPF, (i.e. there is symmetry around half-band). Further P (z) has
the form

P (z) = 1 +∑
i≥1

ai(z
i + z−i).

Solution:

P (z) + P (−z) = zlP0(z) + (−z)lP0(−z)

= zlP0(z) − z
lP0(−z)

= zl(P0(z) − P0(−z))

= zl2z−l

= 2.

Since we are interested in a P (z) with real coefficients, the half-band symmetry now follows
from Question 1. Since P (z) is linear phase, the symmetry of the coefficients will explain
the structure of P (z) above. Notice that the coefficient a0 = 1, ruling out any antisymmetry.
Furthermore, clearly we can take all a2n, n ∈ Z, n ≠ 0 to be zero in the above equation for
P (z).

(d) Many sub-band coding techniques can be derived by factorizing P (z) into a set of
analysis and synthesis filters, i.e. P (z) = zlH0(z)H̃0(z). A suitable form of P (z) with wide
applicability is

P (z) = (1 + z−1)m(1 + z)mR(z),

where R(z) is a polynomial of the form r0 +∑
m−1
i=1 ri(z−i + zi). For m = 1, can you identify

the analysis and synthesis filter.
Solution: For m = 1, we have

P (z) = r0(1 + z
−1)(1 + z)

= r0z
−1(1 + z−1)(1 + z−1)

= z−1 (
1 + z−1
√
r0

)

2

.

To find r0, notice that

P (z) + P (−z) = r0(2 + z + z
−1 + 2 − z − z−1) = 2,

yielding r0 = 0.5. Thus, the only possible choices for the analysis and synthesis filter are

H0(z) =
1 + z−1
√

2
and H̃0(z) =

1 + z−1
√

2
.

(e) Consider R(z) = az + b + az−1. Show that

P (z) =
1

16
z3 (1 + 2z−1 + z−2)

2
(−1 + 4z−1 − z−2).



Solution: Comparing with formula for R(z), we have taken m = 2. Thus

P (z) = (1 + z−1)2(1 + z)2(az + b + az−1).

We have to find the unknowns a and b. Expanding

P (z) = (1 + z−1)2(1 + z)2(az + b + az−1)

= [(1 − z−1)(1 − z)]2(b + a(z + z−1))

= (2 + z + z−1)2(b + a(z + z−1))

= 4b + 4b(z + z−1) + b(z + z−1)2 + 4a(z + z−1) + 4a(z + z−1)2 + a(z + z−1)3

Since P (z) + P (−z) = 2,
8b + (2b + 8a)(z + z−1)2 = 2.

Clearly, 2b + 8a = 0 and 8b = 2 for this formula to work, yielding

a = −
1

16
and b =

1

4
.

Equivalently, we have

P (z) =
1

16
z3 (1 + 2z−1 + z−2)

2
(−1 + 4z−1 − z−2).

(f) With H0(z) =
1
2(1 + 2z−1 + z−2) we get the LeGall 3/5 tap filter. What are the other

three filters for constructing a two sub-band coding scheme. Explain the name 3/5-tap
filter.
Solution: By identification P (z) = z3H0(z)H̃0(z). Thus

H̃0(z) =
1

8
(1 + 2z−1 + z−2)(−1 + 4z−1 − z−2)

=
1

8
(−1 + 2z−1 + 6z−2 + 2z−3 − z−4).

Also

H1(z) = H̃0(−z) =
1

8
(−1 − 2z−1 + 6z−2 − 2z−3 − z−4)

H̃1(z) = −H0(−z) =
1

2
(−1 + 2z−1 − z−2)

(g) With H0(z) = 1
8 (1 + 3z−1 + 3z−2 + z−3) we get another decomposition scheme. What

are the remaining filters to generate a two sub-band coding.
Solution:

H0(z) =
1

8
(1 + 3z−1 + 3z−2 + z−3)

H̃0(z) =
1

2
(−1 + 3z−1 + 3z−2 − z−3)

H1(z) =
1

2
(−1 − 3z−1 + 3z−2 + z−3)

H̃1(z) =
1

8
(−1 + 3z−1 − 3z−2 + z−3)



(h) In the last two questions, notice that the obtained filters Hi(z), H̃i(z) are of linear
phase. A Daubechies-4/4 filter is obtained by splitting the second polynomial of P (z) such
that one root is there in H0(z) and the other in H̃0(z). Given that it is 4/4 tap filter, give
the analysis and synthesis filters.
Solution:

H0(z) =
1

4(
√

3 − 1)
(1 + z−1)2(1 − (2 −

√
3)z−1)

= 0.3415 + 0.5915z−1 + 0.1585z−2 + 0.0915z−3

H̃0(z) = −0.0915 + 0.1585z−1 + 0.5915z−2 + 0.3415z−3

H1(z) = −0.0915 − 0.1585z−1 + 0.5915z−2 − 0.3415z−3

H̃1(z) = −0.3415 + 0.5915z−1 − 0.1585z−2 − 0.0915z−3

Question 2) Give the complete 4 band analysis and synthesis diagram for Haar MRA.
Only 4 down-samplers and 4-up samplers are allowed.
Solution:

The MRA can be obtained by appropriate filtering and downsampling. The general
picture of a 4− subband octave decomposition is

H1(z)

H0(z)H1(z2)

H0(z)H0(z2)H1(z4)

H0(z)H0(z2)H0(z4)

↓ 2

↓ 4

↓ 8

↓ 8

↑ 2

↑ 4

↑ 8

↑ 8

H̃1(z)

H̃0(z)H̃1(z2)

H̃0(z)H̃0(z2)H̃1(z4)

H̃0(z)H̃0(z2)H̃0(z4)

x[n] y[n]

Remember that the mother wavelet is nothing but the inverse of H1(z). Sometimes people
call −H1(z) as the mother wavelet, or some other times a scaled version of H1(z) as the
mother wavelet. We will stick to the first convention. We know the formula for the
Haar filter from Question (1.d). Substitute the appropriate filter above to obtain the
decomposition.

Question 3) Give the complete 4 band analysis and synthesis diagram for Daub-4/4 MRA.
Only 4 down-samplers and 4-up samplers are allowed.
Solution: The answer is obtained similar to the last question, except that the MRA filters
are to be taken from Question (1.h).

Question 4) Given the sequence x[n] = [1, 2, 2, 3, 3, 4, 3, 3, 3, 5, 7, 7, 7, 7, 3, −1], find
the 4− band Haar decomposition.



Solution: At the lowest sub-band, we get

xh[n] = [−0.70711, −0.70711, −0.70711, 0.00000, −1.41421, 0.00000, 0.00000, 2.82843]

It is okay to get the negative of this sequence as the output. On the other hand, if you are
getting a scaled version, ensure that an appropriate scale is applied at the synthesis side.
In general, though I have occasionally neglected the scalars, you may get the wrong answer
in MRA if you ignore the scales. So please ensure the correct scalars.
Notice that the first output is 1

√

2
(x[0]− x[1]) = −0.707. If you shift the sequence and take

the first output as 1
√

2
(x[−1] − x[0]) = 0 − 0.707 = −0.707, then the subsequent outputs will

be different from the above sequence. While this is okay, try to match the numbers such
that an N length input sequence has N output values in total, and the last(highest) two
subbands have only a single output.
For the other subbands we get

xlh[n] = [−1.0, 0.5, −3.0, 6.0]

xllh[n] = [−1.76777, 2.12132]

xlllh[n] = [−4.25]

xllll[n] = [14.75]


