Indian Institute of Technology Bombay
 Department of Electrical Engineering

Handout 2
EE 708 Information Theory and Coding
Homework 1
Jan 16, 2018
Question 1) Two simple but useful inequalities
(a) Show that

$$
\log _{e} x \leq x-1, \forall x>0
$$

(b) Show that

$$
\log _{e}(1+x) \geq x-\frac{x^{2}}{2}, \forall x>0
$$

Question 2) Give an example of three random variables being pairwise independent, but not independent.

Question 3) Markov's Inequality: For a non-negative valued random variable X show that

$$
P(X \geq a) \leq \frac{1}{a} \mathbb{E}[X], a>0
$$

where \mathbb{E} is the expectation operator.
Question 4) State and prove weak law of large numbers (WLLN) for the sequence $X_{n}, n \geq$ 1, generated IID from a distribution with finite mean and variance. (Hint: the previous question can be used for a proof)

Question 5) For a random variable X, it is given that

$$
\mathbb{E}[f(X, A)]=\operatorname{Pr}(A)
$$

for all A from the appropriate Borel field (If this term is new, take it as the collection of all meaningful events). Identify the non-negative valued function $f(x, A)$.

Question 6) Given the lengths as $l_{1}=l_{2}=5, l_{3}=l_{4}=4, l_{5}=l_{6}=3, l_{7}=l_{8}=2$, does there exist a ternary $(D=3)$ prefix-free code with these lengths.

Question 7) Let us do a treasure-hunt in the real line. Consider the unit interval [0,1$]$. We will divide this into 4 territories, marked as the segments [$\left.0, t_{1}, t_{2}, t_{3}, 1\right]$. The innerpoints t_{1}, t_{2} and t_{3} define the boundary points of the adjacent territories. The treasure is buried in the unit interval according to a uniform distribution. We can use a generalized measuring device to ask questions on the location of the treasures. For example:"Is the treasure in the first or third territory?", to which we will get YES/NO answers. Another example question: "Is it in the first territory?".
Let $t_{1}=0.52, t_{2}=0.625, t_{3}=0.74$. Suppose we do this experiment several times and wish to find the territory in the minimum number of questions on the average. Find a strategy.

Question 8) A random variable takes values on an alphabet of K letters, with the probability assignment p_{1}, \cdots, p_{K}. It is given that $p_{i}=\rho, 1 \leq i \leq K-1$ and $p_{K}=\frac{\rho}{2}$, for some constant $\rho \in(0,1)$. These letters are encoded into binary words using the Huffman procedure so as to minimize the average codeword length. Let j and x be chosen such that $K=x 2^{j}$, where j is an integer and $1 \leq x<2$.
(a) Find the number of codewords having lengths less than j ?
(b) In terms of j and x, how many code words have length j ?
(c) What is the average codeword length?

