
Indian Institute of Technology Bombay
Department of Electrical Engineering

Handout 5 EE 708 Information Theory and Coding
Tutorial 2 Feb 9, 2018

Q1: Arithmetic and Shannon-Fano-Elias Codes: Arithmetic coding is a widely used
data compression technique which has many advantages1.

Remark: Arithmetic Coding operates on sequences of source symbols or strings.
While mapping strings to values in the encoding process, let us be consistent with
the lexicographical ordering of strings. In particular the ordering is captured by
the following notation,

u1u2 ⋅ ⋅un > v1v2 ⋅ ⋅vn

if ui > vi, where i is the first position that they differ.

Arithmetic codes are related to the so called Shannon-Fano-Elias coding, and their
cousin, Elias codes. We start with a seemingly unrelated question on continuous valued
random variables.
a) Let random variable X admit a pdf fX(x), and is supported on a connected interval, i.e.
we can define an inverse for the CDF FX(x). Suppose we independently draw a continuous
valued random variable S ∼ fX(⋅) and take

Y = FX(S).

where we used bold-face to denote that expression is a mapping of random variables.
Draw FY (y) in the figure below (say with dashed lines).

y

FY (y)

0 1

1

Figure 1: Fig. for (a)-(b)

(b) Let X be a discrete random variable in 0,1,2,3 with probabilities q1, q2, q3, q4 respec-
tively, having CDF FX(⋅). With Y = FX(X), draw FY (y) in Figure 1. Assume right
continuity for all the calculations.
(c) Show that

H(Y ) =H(X)

(d) Let vi = ∑j<i qj +
qi
2 represent the mid-points of the jumps in the CDF. Suppose we

quantize the binary representation of vi to li bits. By taking li = ⌈log 1
qi
⌉ + 1, construct a

prefix free code for encoding this source. Will such prefix free codes exist for a general
discrete random variables X taking finite values, for the same choice of lengths as above.

1parts of the practical implementations are proprietary



(e) Assume that q1 = p, q2 = 1 − p, p > 1
2 . Draw FY (y) in Figure 2.

y

FY (y)

0 1

1

Figure 2: Fig for part (e)-(f)

(f) Consider X̄ = X1, ⋅⋅,Xk generated iid, and Y = FX̄(X1, ⋅⋅,Xk). Can you draw FY (y) on
Figure 2 for k = 2,3,4.
(g) Read and understand Section Consider a uniform random variable U in [0,1]. Let
us partition the unit interval into 2 parts, of lengths p and 1 − p.

red p 1

Suppose we are required to convey whether red occurred or not, based on U . This is
equivalent to conveying a Bernoulli RV X with P (X = 1) = p. We can generalize this
picture for k = 2 and more.

p 1
Step I: X1

p2 p 2p − p2 1
Step II: X1,X2

Like part (f), conveying X̄ is equivalent to identifying one among the four sub-segments.
Equivalently, we can toss a uniform U and the occurred segment above needs to convey its
identity. See that there is an one to one map between any X1, ⋅⋅,Xk and the mid-point of
FY (y) based on our ordering of sequences (as in part d).

Let us look at the cumulative distribution function FXn(xn) sequentially in n. Then, in
an equivalent sense, we will convey the identity of the line segment which contains FXn(xn)

for the occurred sequence xn. To this end, we will progressively localize the line segment in
a dyadic fashion. Assume that the location is known to be in [a, b]. At every step, we will
try to localize the line segment to be on either side a+b

2 . For example at the start a = 0, b = 1
and we will check the line-segment to be on either side of 1

2 .
At n = 1, if x1 = 1, we will send(output) 1, since the line segment (p,1) is to the right

of 1
2 . So the new locality is [a, b] = [1

2 ,1]. Can x1 be further localized to sub-halves inside
[a, b], then we will output the corresponding bit and again update the interval [a, b] in an
iterative fashion. At some point, we will not be able to localize to either side of a+b

2 inside
[a, b]. In this case, we will take the next source symbol, say x2 and consider FX1,X2(x1, x2).
The corresponding line segment will be contained in the last known locality [a, b]. We will
now localize FX1,X2(x1, x2) within the interval [a, b]. The general procedure is, with symbol
xi localized to be in [a, b],

2



Elias’s Algorithm, AlgoE

1. Every time we localize further

• to the left, output the bit 0, update a = a, b = a+b
2 .

• to the right, output the bit 1, update a = a+b
2 , b = b.

2. If no further localization,

• Output nothing, set a = a, b = b.

• Take the next symbol, say xi+1 and consider the line segment corresponding to
x1, x2, ⋅⋅, xi, xi+1 and go back to the start.

For example, if x1 = 0, then no output is produced as we cannot localize the segment to
either side. In this case, we will look at x2 and try to localize FX1,X2(x1, x2). Notice that
the segments get smaller and smaller as more symbols come in.
(h) Using the above procedure, find the Elias code for every binary sequences x1, x2, x3,
assuming the source is binary iid with p = 0.74. Also argue that the code is not prefix-free
and not even uniquely decodable.

(i) How can you convert this to a prefix-free code. Do you now understand how compression
is happening in Shannon-Fano-Elias and hence Arithmetic coding.

(j) A big advantage of this scheme is that it is sequential. Explain what you understand
about the previous statement.

FYI: A finite precision implementation of this scheme is what is known as Arithmetic
Coding. What we described was developed by Elias.

Q2) Tunstall Coding The data compression codes that we studied in the classroom
converted a fixed number of input symbols to variable length output codewords. The
current question aims to convey a dual approach: take a variable number of input symbols
and convert it into fixed-length output sequences.
(a) Consider a directed code tree of a given variable length prefix free code (say Huffman
code). Let us call the leaves of the tree as the terminal vertexes or terminal nodes.
We can name the terminal nodes by the corresponding input symbol/sequence.

x1

A0 1

x2

x4x3

Consider any intermediate node (vertex), say node A. Let BA
j ,1 ≤ j ≤ q be the set of

terminal vertexes which can be reached from A in j steps. In other words, from A, there
exists a sequence of child branches leading to each terminal node BA

i ,1 ≤ i ≤ q. Define,

P (A)
△

=∑
i

p(BA
i ).

3



The above figure illustrates the idea. Here x1, x2, x3 and x4 are the terminal nodes. For
the node marked A there, BA

1 = x2,BA
2 = {x3, x4}.

Show that for the code-tree of any prefix-free code

∑
A

P (A) = Lavg

where the summation is over all the nodes excluding the terminal nodes, and Lavg is the
average code-length.

(b) Let X ∈ {A,B,C} be some source with probability pA = 0.7, pB = 0.2, pC = 0.1. Assume
a long sequence of iid realizations of X. We are also free to append up to 2 dummy inputs
at the end of the sequence. This is just to sensibly terminate our coding scheme, and can
be neglected for computations. Now consider the following coding scheme, which maps the
occurrence of symbols shown on the left to the corresponding code bits on the right.

AAA→ 000

AAB → 001

AAC → 010

AB → 011

AC → 100

B → 101

C → 110

Is this code uniquely encodable?. i.e., is there a unique code sequence corresponding
to every input sequence?. Explain how this code achieves compression over simply using 2
bits to convey A,B,C.

(c)Notice that in part (b), variable length input streams (or words) are mapped to a fixed
length codewords. Let us call this C3 scheme, as the codewords are 3 bit sequences. In
general we will say Ck scheme for any uniquely encodable strategy with output codewords
of k bits. With no loss of generality we can strike off any unused codewords (like 111 above)
and consider the minimal set.
Show that the code in part (b) is the best C3 scheme in terms of compression achieved (i.e.
k
Nk

) for the source X in part (b).

(d) Tunstall Code: It turns out that the best Ck coding scheme can be constructed in an
iterative fashion. Given a set of words and their probabilities, pick the highest probable
word at any stage and append all possible source symbols to it. As an example, for the
source we consider, from the initial set S1 = {A,B,C} to S2 = {AA,AB,AC,B,C} and
S3 = {AAA,AAB,AAC,AB,AC,B,C}. Iteratively, find the highest probability element of
Sj and append each possible source alphabet to it to get Sj+1. Continue this if ∣Sj+1∣ ≤ 2k,
otherwise terminate with the best Ck scheme.

Show that
H(S3) = N3.H(X)

where Nk is the average number of source symbols getting encoded in Ck scheme.
Hint: Hm(p1, p2,⋯, pm) =Hm−1(p1 + p2, p3,⋯, pm) + (p1 + p2)Hb(

p1
p1+p2

), and use part (a).

(e) (Bonus) We can show that for the Ck scheme using Tunstall coding, and large k

H(X) ≤
k

Nk

≤H(X) + 1

(While a proof will be presented in class, there is scope for an innovative but elementary
technique, please attempt). Compare the efficiency of Huffman and Tunstall codes.

4


