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1 Conditional Probability

As the name implies, there are at least two random variables involved, let us denote it as
X and Y . Let us start with a familiar idea of probabilities of the joint events of the form
i.e. {X ≤ x} and {Y ≤ y}. We will use this later to define conditional probabilities. We
know that

P (X ≤ x∣Y ≤ y) = P (X ≤ x,Y ≤ y)
P (Y ≤ y)

1{P (Y ≤y)≠0}.

In the all-discrete case, we used P (Y = y) instead of P (Y ≤ y) in the above expression,
to define the conditional cumulative distribution. However, this cannot be done if Y is
absolutely continuous, as P (Y = y) = 0 uniformly for all y. So we will define four separate
versions of conditional probability depending on whether X and Y are continuous or not.
Though we say different versions, all of them have the same theme, with appropriate
replacement of distributions by densities. The first case is when X and Y are discrete,
which is already familiar.

1. X− discrete, Y − discrete

P (X = x∣Y = y) = P (X = x,Y = y)
P (Y = y)

1{P (Y =y)>0}.

2. X− continuous, Y − discrete

Here we will replace the event {X = x} by {X ≤ x}

P (X ≤ x∣Y = y) = ∫
x

−∞

fX ∣Y (u∣y)du1{P (Y =y)>0},

where we used the notation fX ∣Y (x∣y) to denote the density function of X given Y = y.
Notice that

P (X ≤ x∣Y = y) = P (X ≤ x,Y = y)
P (Y = y)

1{P (Y =y)>0}

= 1{P (Y =y)>0}
1

P (Y = y)∑v=y∫
x

−∞

fXY (u, v)du

= ∫
x

−∞

1

P (Y = y)
fXY (u, y)1{P (Y =y)>0}du

In this case, it makes sense to write

fX ∣Y (u∣y) =
fXY (u, y)
P (Y = y)

1{P (Y =y)>0}. (1)



Since the above case occurs frequently in the examples of electrical engineering, we
will conveniently denote fX ∣Y (u∣k) as fk(x), i.e. the conditional density of X given
Y = k. To check the consistency of our definition, observe that

∫
R
fX ∣Y (u∣y)du = ∫

fXY (u, y)
P (Y = y)

1{P (Y =y)>0}du

=
1{P (Y =y)>0}

P (Y = y) ∫
fXY (u, y)du

=
1{P (Y =y)>0}

P (Y = y)
P (Y = y)

= 1{P (Y =y)>0}.

Thus, our definition gives a valid probability measure for all y ∶ P (Y = y) > 0. Also,
the marginal distribution of X becomes

P (X ≤ x) =∑
k

P (Y = k)∫
x

−∞

fk(x)dx.

3. X− discrete, Y −continuous

We will reverse engineer a consistent definition of conditional distribution from the
last two cases. Specifically, let us define

P (X = i∣Y = y) = fXY (i, y)
fY (y)

1{fY (y)>0}. (2)

Clearly

∑
i

P (X = i∣Y = y) =∑
i

fXY (i, y)
fY (y)

1{fY (y)>0}

= fY (y)
fY (y)

1{fY (y)>0}

= 1{fY (y)>0}.

Thus, our definition gives a valid probability measure for all y ∶ fY (y) > 0. The
conditional probability that we defined also takes the convenient form,

.
fXY (i, y)
fY (y)

= P (X = i)fi(y)
fY (y)

= P (X = i)fi(y)
∑iP (X = i)fi(y)

, (3)

whenever the quantities are well-defined. Recall the definition of the conditional
density fi(y) from the previous case.

4. X− continuous, Y − continuous

Let us define

fX ∣Y (x∣y) =
fXY (x, y)
fY (y)

1{fY (y)>0}. (4)

It is simple to check that

∫
R
fX ∣Y (x∣y)dx = 1{fY (y)>0}.

Thus, it is a valid density function.
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1.1 Conditional Distribution of Random Vectors

The definitions that we made are equally applicable to random vectors, which are of the
mixed type, i.e. they may have some elements discrete and rest continuous. In each case,
we can modify the appropriate definition and get consistent results.

2 Conditional Expectation

Expectation with respect to a conditional distribution is known as conditional expectation.
Since we defined the conditional distribution for 4 separate cases, the conditional expec-
tation has to be evaluated accordingly in these cases. For generality, we will denote the
conditional distribution that we introduced in the last section by Π(x∣y). We will mention
the general framework here.

Definition 1. Consider a function g ∶ R×R→ R, which is either non-negative or integrable.
The function

Ψ(y) = E[g(X,Y )∣Y = y]

is known as the conditional expectation of g(X,Y ) given Y = y, where the expectation is
evaluated with respect to Π(x∣y).

Observe that this definition can be easily specialized to each of the cases that we dealt.
The most important case in our discussion is the last one, where it reads,

Ψ(y) = ∫
R
g(x, y)Π(x∣y)dx

in which Π(x∣y) is same as the function fX ∣Y (x∣y) given in (4). On the other hand, when
X is discrete and Y continuous, we can write

Ψ(y) =∑
i

g(i, y)Π(i∣y),

where Π(i∣y) is taken as per (2), or the more convenient form in (3).

Example 1. Let (X1,X2) be a zero mean jointly Gaussian random vector with covariance
matrix

K = [ σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

] .

Find E[X1∣X2] and E[X2
1 ∣X2].

Solution: Notice that we need to specialize our definition of conditional distribution. In
particular, since both RVs are continuous, let us look at their joint density.

fX1,X2(x1, x2) =
1√

det(2πK)
e−

1
2
xTK−1x,

where x = (x1, x2)T . The marginal distribution of X2 is a Gaussian (since the given vector
is jointly Gaussian), which we can identify as

fX2(x2) =
1√

2πσ2
2

e
−
x22
2σ2

2 .
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The conditional density becomes

fX1,X2(x1, x2)
fX2(x2)

= 1√
2π(1 − ρ2)σ2

1

e
−

1

2(1−ρ2)σ2
1

(x1−ρ
σ1
σ2
x2)

2

.

Observe that the conditional density is nothing but a Gaussian density function with mean
ρσ1σ2x2 and variance (1 − ρ2)σ2

1. Thus, it is easy to identify

E[X1∣X2] = ρ
σ1
σ2
x2 and E[X2

1 ∣X2] = (1 − ρ2)σ2
1 + ρ2

σ2
1

σ2
2

x22.

n

3 Other results

It is clear that Ψ(Y ) defined above is a random variable taking values in R̄ whenever
E∣g(X,Y )∣ <∞, and then it is meaningful to talk about its expectation. We have performed
such computations for the discrete case. Many results from the conditional expectation for
discrete cases have exact analogs in the general case. Here we list a few of them, whose
proofs are straightforward, whenever the quantities involved are finite or non-negative. For
example

1.

E [E[g(X,Y )∣Y = y]] = Eg(X,Y ) (5)

2.

E[g(X)∣X] = g(X) (6)

3. If X á Y ,
EyEx[g(X)∣Y ] = Eg(X).

4. Wald’s Inequality.

Exercise 1. Using the definition of conditional probabilities, prove each of these expres-
sions.

4 Detection Theory

The conditional probability and expectation that we learned have many applications, par-
ticularly in communication and signal processing. We present a motivating application,
known as detection, or Hypothesis testing in general statistical literature. In the detection
problem, there is a finite set of indices or parameters that we are interested in. Let us de-
note it as S = {θ1,⋯, θK}. In communication problems, these parameters typically take the
form of messages. In statistical literature, one says that there are K possible hypothesis,
H0,⋯,HK−1. In both cases, our job is to pick the correct hypothesis or parameter. What
is meant by correct?.

Imagine a parameter of interest θ taking values in S. If we can observe θ, certainly we
will always have the correct answer for θ. Unfortunately, in many real life situations we
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may only have some noisy observations of what θ is, i.e. we observe some corrupted version
of the parameter. This can be due to random perturbations, where a random vector Y ∈ Rn

is observed, which is a function of θ and some other unobservable random phenomenon
Z ∈ Rm. Thus

Y = g(θ,Z) , g ∶ R ×Rm → Rn.

For example, a scalar output Y = θ +Z is a popular model.
In general, we have to design a device, called the detector, which predicts θ after ob-

serving Y . The output of the detector is θ̂(Y ), where θ̂(Y ) ∈ S.

θ ∈ S System Y = g(θ,Z)

Z

y ∈ Y Detector θ̂(y) ∈ S

Figure 1: Observation and Detection: Block representation

The system demands that the detector should unambiguously output a value in S for
every observed Y . Let Y be the space where Y takes value in. We will partition this into
K regions. Denoting a disjoint union by ∑, we have

Y =∑Ai,

where Ai = {y ∈ Y ∶ θ̂(y) = i}. In other words, whenever y falls in the region Ai, the detector
will output i as the value of θ̂. The region Ai is also known as the decoding region for
parameter i.

A1

A2

⋯

AK

Figure 2: The space Y is partitioned to K regions at the detector

4.1 Detection Error

We wish the detector to be correct most of the times, if not all the time. However, since
random phenomenons are involved we may not be able to guarantee the correctness every
time we run the experiment. So, we should target to reduce the average probability of
error. In a physical sense, one imagines repeating the experiment of predicting θ, and looks
for the empirical average the event 1

{θ̂(Y )≠θ}. There are two kinds of randomness involved
in this outcome.
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1. The way θ is chosen every time. We assume independent experiments with the
probability law P (θ = i) = π(i),1 ≤ i ≤K. For example, if only a subset of S is chosen
every time, our detector need not consider the rest for possible outputs.

2. The noise phenomenon Z. As an example, in communication systems, depending on
the conditions, additive noise may over-power the signal, and nothing will be received
correctly.

We define the error probability as

P (E) = P (θ̂(Y ) ≠ θ).

We will use θ̂ instead of θ̂(Y ) from now onward. Using Baye’s rule,

P (E) =
K

∑
i=1

P (θ = i, θ ≠ θ̂) (7)

=
K

∑
i=1

π(i)P (Y ∉ Ai∣θ = i). (8)

We wish to minimize P (E), which is same as maximizing 1 − P (E).

1 − P (E) = 1 −
K

∑
i=1

π(i)P (Y ∉ Ai∣θ = i) (9)

=∑π(i)(1 − P (Y ∉ Ai∣θ = i)) (10)

=∑π(i)∫
Ai
fi(y)dy, (11)

where fi(y) is the conditional density fY ∣θ(y∣i) (see previous section). Let us now try to
maximize the probability of correct detection.

K

∑
i=1

π(i)∫
Ai
fi(y)dy =

K

∑
i=1

π(i)∫ 1{y∈Ai}fi(y)dy (12)

= ∫
K

∑
i=1

π(i)fi(y)1{y∈Ai}dy (13)

≤ ∫
K

∑
i=1

(max
1≤j≤K

π(j)fj(y))1{y∈Ai}dy (14)

= ∫ (max
1≤j≤K

π(j)fj(y))(
K

∑
i=1

1{y∈Ai})dy (15)

= ∫ max
1≤j≤K

π(j)fj(y)dy (16)

We will now introduce the best decoder which minimizes the probability of error, known as
the MAP decoder (Maximum Aposteriori Probability Decoder). To this end, for 1 ≤ k ≤K,
consider the sets given by

Âk = {y ∶ π(k)fk(y) > π(j)fj(y),∀j ≠ k}. (17)

Clearly Âk are non-overlapping subsets of Y. Imagine a detector employing the sets Âk,1 ≤
k ≤K to decide θ̂. Let us also assign

θ̂(y) = 1 if {y ∉ Âk,1 ≤ k ≤K},
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to take care of the remaining elements in Y, which does not fall into any Âk. This is due
to the strict inequality in (17), but will not impact our probability computations1. The
probability of correct detection in such a detector is, by (11)

1 − P (E) =
K

∑
k=1
∫
Âk
π(k)fk(y)dy (18)

=
K

∑
k=1
∫
Âk

(max
1≤j≤K

π(j)fj(y))dy (19)

= ∫ ( max
1≤j≤K

π(j)fj(y))dy. (20)

The second equality follows since π(k)fj(y) ≥ π(j)fj(y),∀y ∈ Âk. Comparing this result to
(16), it is clear that the probability of correct detection by any other scheme can at best
be the same as that of a decoder which uses Âk,1 ≤ k ≤K as the decoding regions. Such a
decoder is called the MAP decoder.

Theorem 1. The MAP decoding scheme minimizes the error probability P (θ̂ ≠ θ).

Example 2. Let θ ∈ {−3,−1,+1,+3} and the observation be given by Y = θ + Z, where
Z á θ. Let Z ∼ N (0, σ2). If each parameter is equally likely to be chosen, find the minimum
probability of error in detection.

1feel free to ignore those elements outside ⋃ Âk, whenever Y admits a density
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