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Gaussian Random Variables

A real Gaussian random variable is defined by the probability density function

fX(x) =
1

2πσ2
exp(−

(x − µ)2

2σ2
) (1)

where µ is the mean and σ2 the variance of X.
Notice that a real Gaussian RV is symmetric around µ. Complex circularly symmetric

Gaussian RV, denoted as C.C.S.G, is an extension of the Gaussian RV to the complex
domain. Figure below explains its symmetry around a mean value of zero.
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Figure 1: pdf of a zero mean C.C.S.G in complex plane

A c.c.s.g random variable can also be visualized as a complex random variable, with the
real and imaginary parts independently distributed as identical Gaussian RVs. So every
c.c.s.g Z with zero mean is of the form U + iV , where U ∼ N (0, σ2) and V ∼ N (0, σ2), for
some σ2 > 0. In particular, with z = u + iv,

fZ(z) = fU(u)fV (v) (2)

=
1

√
2πσ2

exp(−
u2

2σ2
)

1
√

2πσ2
exp(−

v2

2σ2
) (3)

=
1

2πσ2
exp(−

u2 + v2

2σ2
) (4)

Notice that u2 + v2 = ∣z∣2 and E∣Z∣2 = EU2
+EV2

= 2σ2. Let us call E∣Z∣2 as σ2
c . So the pdf

of a zero mean c.c.s.g Z is

fZ(z) =
1

πσ2
c

exp(−
∣z∣2

σ2
c

) (5)



It is clear that the pdf depends on z only through its magnitude. Thus the value of pdf at
z = r + j0 will be same as that at all z such that ∣z∣ = r.

Rayleigh Distribution of ∣Z∣

Consider the random variable Y = ∣Z ∣. Let us find the distribution of Y . In the last
section, we saw that fZ(z) is the same for all points with ∣z∣ = r. Furthermore, we know
from geometry that all points with ∣z∣ = r will lie on a circle with circumference 2πr and
centered at the origin. Thus

f∣Z∣(r) = 2πrfZ(r + j0) (6)

Notice that the argument r in the left side is a real number, while the argument to fZ is a
complex number.

Exponential Distribution of ∣Z∣2

Consider the random variable W = ∣X ∣2. To find the pdf of any random variable, a
robust way is to start from the cumulative distribution function (cdf). In particular, for a
positive random variable W with a pdf,

P (W ≤ w) = ∫

w

0
fW (y)dy. (7)

The quantity fW (⋅) on the right hand side is the pdf that we are looking for. Let us see
whether we can obtain an expression similar to this.

P (W ≤ w) = P (∣X ∣2 ≤ w) (8)

= P (∣X ∣ ≤
√
w) ; (true since∣X ∣ ≥ 0) (9)

= ∫

√

w

0
f∣X ∣(u)du (10)

= ∫

w

0
f∣X ∣(

√
v)

dv

2
√
v

; (putv = u2) (11)

= ∫

w

0
2π

√
vfX(

√
v + j0)

dv

2
√
v

; (from equation (6)) (12)

= ∫

w

0
πfX(

√
v)dv (13)

By equating equation (7) and (13), we find that

fW (w) = πfX(
√
w) =

1

σ2
c

exp(−
w

σ2
c

) (14)

Thus W is distributed as an exponential random variable with mean parameter σ2
c .

Comment: The step from equation (8) to (9) depended crucially on the fact that ∣X ∣ is
a positive valued RV. If X was a real random variable with non-zero probability of taking
negative as well as positive values, then P (X2 ≤ w) = P (−

√
w ≤ X ≤

√
w). Students many

a times forget this fact. Note that this derivation is a bit different from what was done in
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class. Here we obtained the density of W in terms of the pdf of X, whereas we derived it
in terms of pdf of ∣X ∣ in the class. Both should give the same answer.

Exercise 1.1: If X and Y are independent RVs, with pdfs fX(⋅) and fY (⋅), what is the
distribution of Z =X + Y .

Exercise 1.2: If W0 and W1 are two exponential RVs with parameters λ0 and λ1 respec-
tively, show that

P (W0 ≤W1) =
λ0

λ0 + λ1
(15)

Gaussian Random Vector X ∈ Rn

See last exercise in work-sheet 3 distributed in class.

C.C.S.G Random Vector X ∈ Cn

See last exercise in work-sheet 3 distributed in class.
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Some Fundamentals of Probability
This is not an exhaustive discussion. We expect the students to know the fundamentals.
There are many good books, for example S. Ross, ”A first course in probability”.

We denote events by letters A,B,C, random variables by U,V,W,X,Y,Z. The probabil-
ity space is not explicitly stated each time, but clear from the context. Further, statements
are made for either continuous or discrete variables, but clearly applicable to both by
appropriate modifications, for example - changing integrals to summations.

1. Baye’s Rule

P (A,B) = P (A)P (B∣A) (16)

P (A,B∣C) = P (A∣C)P (B∣A,C) (17)

2. Independence
For independent events A and B,

P (B∣A) = P (B) (18)

P (A,B) = P (A)P (B) (19)

A sequence of RV {Xi}
n
i=1 are independent if

P (X1,X2, ⋅⋅,Xn) =
n

∏
i=1

P (Xi) (20)

A sequence of RVs are i.i.d if, (20) is true and each Xi has the same probability
distribution.

3. Conditional Independence
The RVs X and Y are conditionally independent given Z iff

P (X ∣Y,Z) = P (X ∣Z) (21)

Notice that this doesn’t imply that X and Y are independent.
Exercise 1.3: Find an example of X, Y and Z where the above property is true.

4. Expectation

E[g(X)] = ∫ g(x)fX(x)dx (22)

For independent RVs X and Y ,

E[f(X)g(Y)] = E[f(X)]E[g(Y)] (23)

Expectation is a linear operation.
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1 Digital Communication Model for Wireless

We will assume that a transmission band of [fc −
β
2 , fc +

β
2 ] is available to communicate

between a transmitter-receiver pair over a wireless channel. From our first level commu-
nication courses, we can generate an information bearing baseband signal in [−

β
2 ,+

β
2 ] and

then modulate it to the appropriate carrier frequency using amplitude modulation. Imagine
that the baseband input waveform xB(t) is given to us. Let XB(f) denote the frequency
domain representation, also known as the Fourier Transform of xB(t). Remember that
our assumption of bandlimited will imply that xB(t) is unlimited in time. For real input
signals, XB(f) is complex symmetric around the origin. However, there is no reason that
our baseband signal should be real, and we will consider complex signals of the form,

xB(t) = xBR(t) + jxBI(t).

For illustration, we will consider a xB(t) waveform with Fourier Transform XB(f) as de-
picted below.

xB(t)
DFT
ÐÐ→ f

XB(f)

−
β
2 +

β
2

We will repeatedly use the above pictorial representation. We should keep couple of things
in mind while using these pictures. First, the inverse Fourier transform (IFT) of such an
XB(f) may correspond to a non-causal signal. Thus our descriptions are not for the abso-
lute time, and we do not really worry about causality. This is the reason why you will not
find additional path delays appearing in this subsection. However, we will incorporate the
delays while considering the physical propagation models. Secondly, we do not emphasize
the phase information in these pictures. This is partly due to the fact that we expect the
phase response to be linear in the passband frequencies, i.e. all frequencies are delayed by
an equal amount. So the pictures do not depict the phase component at all, for convenience.

We can represent the modulated output radiated from an ideal transmit antenna as

xm(t) = Real (xB(t) exp(j2πfct)) = xBR(t) cos 2πfct − xBI(t) sin 2πfct.

Xm(f)

−
β
2 +

β
2

−fc −
β
2 +

β
2

+fc

A natural question here is about the effect of the transmit antenna, and also contri-
butions from the RF circuitry, amplifiers and so on. It is reasonable to assume that the
antenna has good response over the transmission bandwidth. In reality, the antenna re-
sponse depends on various factors like frequency, the angle between the transmitter and
receiver, distance etc. Similar effects are contributed by the receive antenna too. In between
the antennas, the wireless medium pitches in with its own effects on physical propagation,
like reflection, refraction, interference etc.
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Our strategy is to visualize the contribution of these three entities, i.e. the transmit
antenna-wireless channel-receive antenna as a combined system, which is the channel. We
will in particular assume a linear system for the channel, this not only enables forming a
cohesive theory, but also works very well in practice, that most modern day communication
systems are designed for linear models. Keep in mind that linear does not mean LTI, as
the systems we consider are typically time-varying. Thus, the actual time-scales become
important. We will argue that the medium response stays LTI for reasonable time-intervals,
and we can exploit this to approximate the medium as locally LTI. This, in turn, arms us
with the popular and powerful tools of Fourier Theory. Thus, our objective now is to
obtain a meaningful model for the channel, in the vicinity of any chosen time t0. Since an
LTI system is completely specified by its transfer-function, we need to specify the response
Hm(f) to each frequency f ∈ [fc −

β
2 , fc +

β
2 ].

1.1 Frequency Response

The frequency response of the medium can be measured by sending adequately spaced
complex sinusoids and measuring the output attenuation, in terms of magnitude decrements
and phase-rotations. From this we can find the response which is continuous over the
frequency range of interest. Note that certain frequencies may propagate better for a given
transmit-receive pair, whereas some other frequencies may combine destructively at the
receiver. Since the antenna is excited by the active power of the signals impinging on it,
the received passband signal without including the effect of additive noise can be written
as

Ym(f) =Xm(f)Hm(f).

The effect of noise was excluded in the above received waveform to clarify some aspects
of propagation. Thus, we may continue to call Ym(f) or its IFT as the received signal.
The effect of noise is additive, and it will be added eventually. All the responses above are
conjugate-symmetric w.r.t to the origin, guaranteeing that the signals under consideration
are real. This can be drawn pictorially as follows.

Xm(f)

−
β
2 +

β
2

−fc −
β
2 +

β
2

+fc

Hm(f)

−
β
2 +

β
2

−fc −
β
2 +

β
2

+fc

Ym(f)

−
β
2 +

β
2

−fc −
β
2 +

β
2

+fc
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The diagram above illustrates that the time domain passband signal ym(t) at the receiver
is

ym(t) = xm(t) ∗ hm(t),

where hm(t) is the IFT of Hm(f). We can transfer all these passband operations to
equivalent baseband operations to obtain

YB(f) =XB(f)Hm(f + fc)1{−β
2
≤f≤β

2
}
,

where we applied ideal lowpass filtering after demodulation. Notice that such a YB(f) may
no longer be conjugate symmetric.

Exercise 1. Argue that yB(t) may correspond to a complex waveform even when the input
is real.

Our equivalent model now becomes,

yB(t) = xB(t) ∗ hB(t),

where hB(t) is the IFT of HB(f) =Hm(f + fc)1{−β
2
≤f≤β

2
}
.

Clearly, hB(t) appears to be a time continuous impulse response function. This will
imply that the system possibly introduces a continuum of delayed replicas of the transmit-
ted signal, also known as echos. It turns out that a much more simpler visualization is
possible. Notice that

YB(f) =XB(f)H̃B(f)1{−β
2
≤f≤β

2
}
,

for any H̃B(f) such that

H̃B(f) =HB(f) , −
β

2
≤ f ≤

β

2
. (24)

Thus, we can choose any H̃B(f) with the above property, and our output YB(f) stays
unchanged. ON taking IFT, this implies

yB(t) = xB(t) ∗ h̃B(t),

where h̃B(t) is the IFT of H̃B(f). Let us now choose a H̃B(f) which satisfies (24), but
has a convenient inverse. In particular, we will periodically repeat HB(f) over the entire
frequency axis, i.e.

H̃B(f) = ∑
k∈Z

HB(f − kβ).

H̃B(f)

0−
β
2 +

β
2

The periodic nature of H̃B(f) implies that h̃B(t) is of discrete in nature. Furthermore,
since H̃B(f) is the periodic repetition of HB(f) in frequency, the time domain response
h̃B(t) is nothing but a time-sampled version of hB(t). In other words,

h̃B(t) =∑
k

1

β
hB(

k

β
)δ(t −

k

β
). (25)
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The scaling 1
β is due to the fact that a periodic impulse train in time will have a Fourier

Transform of a scaled impulse train, with their periods in inverse relationship. Equation
(25) assures that the effective channel can be visualized as a tapped delay line between the
transmitter and the receiver in the baseband itself. We will term the value of the taps as
fading coefficients and denote them by hk, k ∈ Z, clearly hk =

1
βhB(

k
β ). With this,

yB(t) =∑
k∈Z

hk xB(t −
k

β
). (26)

While this model is remarkably simple, we did not loose any generality in obtaining this.
For any communication system with an ideal front-end filter, our discussion holds true, and
the channel can be visualized for all purposes as a tapped delay-line. This simplicity should
be compared with the practical case where a continuum of paths, at almost all permitted
delays, exist between the transmitter and receiver over a wireless channel.

1.2 Discrete-time Communication System

In the last section, we constructed an equivalent discrete-time channel, which gives us both
conceptual and analytic simplicity. Can we convert the communication model itself to an
equivalent discrete-time system. The advantages are many fold, as several DSP books will
advertise in the first chapter. How to do this is explained in the second chapters there, the
premise of Sampling Theorems.

Exercise 2. What is the Nyquist sampling rate to preserve all the information of yB(t) in
(26)?

Let us sample yB(t) at the rate of β samples per second.

yB(
m

β
) =∑

k

hkxB(
m

β
−
k

β
).

Denoting u(mβ ) = um, and dropping the subscripts,

ym =∑
k

hkxm−k,

or in our usual DSP notation,
y[m] = h[m] ∗ x[m].

1.3 Additive Noise Model

So far we have kept the noise out of consideration to obtain a simple system representation.
Now let us put the noise back. While this can be done in a rigorous fashion (see for example
Gallager’s book), we will simply assume that the additive noise is a discrete time stochastic
process with iid zero-mean Gaussian samples of variace σ2. Thus,

y[m] = h[m] ∗ x[m] + z[m],

or, in short, y = h ∗ x + z, where z ∼ Nc(0, σ2).
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