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Abstract—We consider a two user discrete memoryless broad-
cast channel (DMBC) with perfect feedback from both the
receivers. The best known achievable region for the general
DMBC without feedback is known as the Marton’s region, where
the achievable strategy employs random coding. By effectively
using the available feedback, we construct explicit coding schemes
which achieve any rate-pair in the Marton’s region.

I. INTRODUCTION

It is well known that feedback does not increase the capacity
of a point to point discrete memoryless channel (DMC).
However, it can drastically improve the error performance.
Furthermore, feedback enables the construction of explicit
coding strategies at all rates less than the capacity for many
point to point (single user) channels of interest [1], [2].

When it comes to multi-user models, feedback offers po-
tential improvement of the capacity region, see for example
[3], where the Gaussian multiple access channel (MAC) with
feedback is considered. The enlargement of capacity region
is also possible for the Broadcast channel (BC), where a
single transmitter conveys multiple streams of information to
different users/receivers. In [4], the capacity enlargement with
feedback from both the receivers in a 2 user Gaussian BC
is demonstrated. Similar results with feedback from just one
of the links appear in [5]. The purpose of the current paper
is not in demonstrating such enlargements in the capacity
region. Rather, we propose constructive coding schemes which
achieves good rate-pairs in a two user BC. In particular, we
construct coding schemes for all rate-pairs which are known
to be achievable by random coding methods.

The best known achievable rate for the general BC is known
as the Marton’s region. To achieve this region using feedback,
we combine several techniques available in the information
theory literature. The key ones are,

1) a feedback coding scheme for the DMC proposed in [1].
2) a coding scheme with feedback and side-information,

which appeared in [6].
3) an interleaving strategy which makes non-causal side-

information available at the transmitter [5].
It should however be noted that the original Marton bound
without its generalization to common messages is not always
tight, as recently shown by [7]. We are only considering the
original bound, i.e. transmission of private messages.

The organization of the paper is as follows. Section II
introduces the system model and the objectives. In Section III,
we will describe Ahlswede’s feedback coding scheme [1] for

the DMC and its generalization to a channel with transmitter
side information and feedback [6]. We combine the above-
mentioned techniques with a careful interleaving strategy, and
demonstrate in Section IV that all rate-pairs in Marton’s region
are achievable using our scheme.

We employ the following notational conventions. The sub-
script i is an index taking value in the non-negative integers
Z+. We use k to identify the receivers in a BC, for example
k ∈ {a, b}, where the receivers in consideration are user a and
user b. The notation Uai stands for the ith instantiation of the
variable Ua, which is related to user a. For any variable U , the
notation U ji stands for the sequence {Ui, Ui+1, ··, U j−1, U j},
whenever j > i. We will not explicitly mention the above
subscript if the sequence starts from index 1.

II. SYSTEM MODEL
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Fig. 1. DMBC with feedback

Consider the model depicted in Figure 1, where (Wa,Wb) ∈
({1, ··,Ma} × {1, ··,Mb}) is a pair of uniformly chosen
message index. The encoder, depending on (Wa,Wb) and any
other available information on the channel (for example, using
feedback), will choose the transmitted symbols X ∈ X . We
assume that the input alphabet X is discrete and of finite car-
dinality. There are two receivers, observing the output symbols
Ya and Yb respectively. The output symbols Yk ∈ Yk, k = a, b
are also discrete and |Yk| <∞,∀k.

A discrete memoryless broadcast channel (DMBC) is de-
fined by a collection of probability laws on the output prod-
uct space (Ya × Yb), one pair for each transmitted symbol
x, denoted as {Pa(ya|x), Pb(yb|x)}. We will call this a
(X, {pa, pb}, Ya×Yb) channel. Our aim is to convey the index
Wk to its respective receiver Yk for k ∈ {a, b}. Suppose



Receiver k declares Ŵk after n uses of the channel. The
probability of error is defined as,

Perror =
1

MaMb

∑
i,j

P (Wai 6= Ŵai,Wbj 6= Ŵbj). (1)

Definition 2.1: In the presence of feedback, we say a rate-
pair

Ra =
1
n

logMa, Rb =
1
n

logMb,

is achievable if we have a coding scheme which transmits
Xi = f(Wa,Wb, Y

i−1
a , Y i−1

b ), 1 ≤ i ≤ n, and the corre-
sponding Perror in (1) can be made as small as possible.

In this sequel we are also concerned about the rates in the
absence of feedback.

Definition 2.2: A (n,Ma,Mb, Ra, Rb, ε) coding scheme for
the DMBC (X, {pa, pb}, Ya × Yb) without feedback consists
of an encoder E : ({1, ··,Ma} × {1, · ·Mb}) → Xn and two
decoding functions ga : Yna → {1, ··,Ma} and gb : Ynb →
{1, ··,Mb} such that average error probability Perror (defined
in (1)) is less than ε when n is large enough.

Definition 2.3: The achievable rate region for a DMBC
(X, {pa, pb}, Ya × Yb) without feedback consists of all pairs

Ra =
1
n

logMa, Rb =
1
n

logMb,

such that a (n,Ma,Mb, Ra, Rb, ε) coding scheme exists for
all ε > 0.
In the absence of feedback, the best known achievable rate-
region is due to Marton [8].

Theorem 2.4: (Marton [8]) For the DMBC
(X, {pa, pb}, Ya × Yb), any rate pair in the convex closure of
the set RBC is achievable, where

RBC =
⋃

(Ra, Rb)

in which

Ra ≤ I(U ;Ya)
Rb ≤ I(V ;Yb)

Ra +Rb ≤ I(U ;Ya) + I(V ;Yb)− I(U ;V )

for some

p(u, v, x, ya, yb) = p(u, v)p(x|uv)p(ya, yb|x).

The proof of the above theorem employs random coding
arguments, where the existence of good coding schemes are
proved, without providing a constructive mechanism. In the
remaining part of this sequel, we will present a constructive
scheme which achieves any rate-pair given in Theorem 2.4.
This is made possible by efficient utilization of the available
noise-less feedback. The key ingredients in this are Ahlswede’s
feedback scheme for the DMC and its extension to channels
with transmitter side information [6].

III. AHLSWEDE’S FEEDBACK SCHEME

A feedback coding scheme for the DMC with finite alpha-
bets was proposed in [1]. This coding scheme builds on the
duality between source and channel coding. In fact, the central
results for discrete-memoryless source as well as channel
coding use the formulation of typical sequences [9]. Concisely,
a sequence Xn generated according to the law

∏n
i=1 p(xi)

belongs to the typical set Anε (x) if,

| 1
n

n∑
i=1

I{Xi=a} − p(a)| ≤
ε

|X |
, ∀a ∈ X ,

where I{·} is the indicator function. Furthermore,

2n(H(X)−ε) ≤ |Anε (x)| ≤ 2n(H(X)+ε),

which we will denote as |Anε (x)| ≈ 2nH(X). It is well known
that about nH(X) bits suffice to represent Xn on the average
in a loss-less fashion. The encoding strategy is to assign an
index to every sequence xn ∈ Anε (x), this is illustrated below.
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Fig. 2. Duality of Source and Channel Coding

A dual approach in channel coding is to consider a set
of index {1, ··,M}. For sending message i, we will use the
ith row in Figure 2 as the channel code. Let us call this
codebook as the base code. If the channel is error-free, the
receiver will find the transmitted message using the observed
base code-word. The only pit-fall is that in the presence of
noise, the transmitted sequence may not be received as it is.
Here is where feedback can help us, to progressively reduce
the uncertainty at the receiver. Ahlswede’s coding scheme
does this, which we describe below. We use the following
conventions to describe this feedback scheme.
• Fix an input distribution p(xn) =

∏
i p(xi).

• Let D(un) denote the smallest set in Yn such that, p(yn ∈
D(un)) > 1− ε, where un is the input to the DMC, and
yn the corresponding output.

• Consider a reverse channel from the output to the input,
defined by the law Q(x|y) = p(x,y)P

x p(x,y)
.

• Let E(vn) ⊂ Xn be the smallest set such that p(xn ∈
E(vn)) > 1−ε, where vn is the input to the reverse DMC
Q(x|v), and xn the corresponding output.

• Every time we use the sets D(·) and E(·), we will not
explicitly say that the associated event has probability
close to one. This is chosen for a simple presentation,
the reader can substitute each of those deterministic
statements in the algorithm with ‘probability close to
one’.



• Consider an indexed set A. Let IndA(x) be an operator
on A which returns a distinct index for each x ∈ A.
Similarly, define IndA[i] as an operator which returns
the member of set A with index i.

• We use lexicographical ordering of the elements to form
an indexed set.

• The coding scheme is iterative. In the lth iteration nl
symbols from the alphabet X are sent. We denote s =∑l−1
i=1 ni as the total number of transmissions performed

before the lth iteration, with n0 = 0. We choose,

nl =
nl−1H(X|Y )

H(X)
, l ≥ 2. (2)

The reasons behind this choice will be clear as we
progress.

• The symbols are chosen in such a manner that the remain-
ing uncertainty about the transmitted symbols Xs

s−nl−1

(in previous iteration) after receiving Y ss−nl−1
is resolved

by the symbols Xs+nl
s (in current iteration). Thus, if

there is no error in the lth iteration, we can find all the
transmitted symbols Xs

s−nl−1
in the previous iteration.

Continuing this backwards, we can recover all the trans-
mitted symbols with probability close to one.

Algorithm to send N bits
1) Choose an index w ∈ {1, ··, 2N} based on the input bits.
2) Let l = 1 and A = An1

ε (x) be the base code.
3) Encoder sends IndA[w] in the coming nl channel-uses 1.
4) By observing the output ys+nl

s , the decoder finds the set
E(ys+nl

s ) (definition before the algorithm).
5) Using perfect feedback, the encoder also finds the set
E(ys+nl

s ).
6) Assign w = IndE(ys+nl

s )
(xs+nl
s ).

7) Set A = A
nl+1
ε , where A is indexed and assign l = l+1.

8) Go back to Step 3.
Let us find the total number of transmissions to send N bits of
information. The initial number of transmissions n1 is chosen
such that,

n1H(X) = N.

Using (2), ∑
l≥1

nl =
N

H(X)

∑
l

[
H(X|Y )
H(X)

]l−1

(3)

=
N

H(X)−H(X|Y )
(4)

=
N

I(X;Y )
(5)

Thus, by choosing p(x) as the capacity achieving distribution
of the DMC, we can transmit at rates close to the capacity. In
addition, a termination criteria can be judiciously chosen such
that the last stage has zero error, say using a conventional low-
rate block code. This will ensure that nl remains large enough
in each of the iterations, that the typicality arguments are tight.

1assume nl large enough to support all the index

Notice that the termination step will not cause a considerable
reduction in the overall data rate.

Remark 3.1: At transmission instant s =
∑l−1
i=1 ni, the

future transmitted values xs+nl
s are completely known in

Ahlswede’s scheme. In other words, this information is avail-
able non-causally.

A. Transmitter Side Information

Ahlswede’s feedback scheme was generalized by Merhav
and Weissman [6] to do feedback coding in the presence of
transmitter side information. The general DMC with trans-
mitter side information is also known as the Gelfand-Pinsker
channel, see Figure 3.

W Encoder p(y|x, s) Decoder Ŵ

sy

Fig. 3. Gelfand-Pinsker channel with feedback

The sequence S (see figure), which can be considered as a
state of the channel, is assumed to be available non-causally
at the transmitter. The output of the channel at any instant i
depends on the current input and state, and independent of
all other variables once the input and state is given. We will
communicate an auxiliary random variable U which contains
information about the message. The transmitted symbol X is
chosen to be a deterministic function of U and S. In [6],
it is shown that after knowing the state sequence Sn, the
transmitter can jointly generate Un using a distributed source
coding approach. Effectively, nH(U |S) bits can be conveyed
in the absence of noise using this approach. In other words,
the base codebook is of length n and contains 2nH(U |S)

sequences. The impairments created by noise can be iteratively
rectified in the same manner as in Ahlswede’s scheme, except
that nl = nl−1

H(U |Y )
H(U |S) is the number of required transmissions

in stage l, l ≥ 2. Thus, the number of transmissions required
to convey N bits of information is,∑

nl =
N

H(U |S)−H(U |Y )

=
N

I(U ;Y )− I(U ;S)
. (6)

The denominator in (6) can now be maximized over the
distribution p(u|s). We call the above scheme as the M-W
scheme [6].

IV. DMBC WITH FEEDBACK

Let us now describe a feedback coding scheme for the
DMBC. Similar in spirit to the original Marton’s coding [8]
for the BC, our strategy is to convey two auxiliary random
variables U and V , say U to the receiver Ya and V to Yb.
We use Ahlswede’s coding scheme on the link to Yb, along
with an additional stage of interleaving. The M-W scheme
(Merhav and Weissman [6]) is used to convey U on the link



Ya, where the variable V is considered as side-information.
The initial transmission steps are as follows.
• Fix a distribution p(u, v), with marginals p(u) and p(v).
• Generate 2n1H(V ) sequences ∼

∏n1
i=1 p(vi), and keep it

as the base code for the link V → Yb. In particular n1 is
chosen to convey Nb bits of information, i.e. n1H(V ) =
Nb.

• Collect d blocks of information bits intended for Yb, each
block containing Nb bits. In our scheme d can be taken
arbitrarily large, without any degradation in performance.

• Pick the base code-word for each block and concatenate
these to get a long sequence, which forms the transmitted
symbols V n1d to user b.

• Pick m1 = Na

H(U |V ) , where Na is the number of bits to
be conveyed to user a.

• By choosing m1 ≤ n1 d, the sequence V m1 is non-
causally available at the transmitter. It then performs M-
W coding to generate Um1 .

• For 1 ≤ i ≤ m1, the transmitter sends Xi = f(Ui, Vi).
The observations (Ya, Yb) are then perfectly fed-back to
the transmitter.

The feedback values are used to generate the input variables U
and V for future channel-uses. We will update V iteratively,
where at the end of iteration l − 1, nl d new symbols are
generated using feedback, to be conveyed as the auxiliary
variable V in the coming iteration. The transmissions to user a
follow another loop, where mj symbols are generated for
future transmissions at the end of step j− 1. We notice that a
large enough d can be chosen to align the transmission index
of both U and V to some super-block.
• Let s =

∑l−1
i=1 ni and t =

∑j−1
i=1 mi. Consider the lth

iteration for transmitting to user b. At the end of transmis-
sion i = d s + k nl, the entire sequence V d(s+nl)+k nl+1

is available at the transmitter in lieu of Remark 3.1.
• By choosing d large enough, we can assume that for each

iteration for user a, the information V
t+mj

t is available
non-causally at the transmitter. The symbols U t+mj

t can
be generated as per the M-W scheme.

• The remaining steps are now straight-forward. Utilizing
feedback, the encoder chooses auxiliary code-words of
length nl = nl−1

H(V |Yb)
H(V ) to user b. The codebook

contains indexed elements from Anl
ε (v). The chosen

code-words for each of the d blocks of data are then
concatenated to form a long sequence.

• At transmission instant i, the encoder generates Xi =
f(Ui, Vi) and sends it over the channel, similar to the
M-W scheme in Section III-A.

• The number of transmissions required for every Nb bits
of input information to user b is approximately Nb

I(V ;Yb)
.

Thus,

Rb ≤ I(V ;Yb) (7)

• Na bits of information are conveyed to Ya using the M-W
scheme, then the rate obeys,

Ra ≤ I(U ;Ya)− I(U ;V ) (8)

The last two equations suffice to ensure that all rate-pairs in
the Marton’s region (see Theorem 2.4) are achievable [8].
However, we need to reconcile two points to support this
sufficiency. The differences between the achievable rates in
(7)–(8) and that in Theorem 2.4 are that
• we used a deterministic mapping Xi = f(Ui, Vi) to

generate the transmitted symbols, while randomization
was allowed in the latter.

• the random variables U and V have to be of finite
cardinality for our arguments to work.

The first point can be quickly reconciled by the following
argument [10]. Let W be an independent random variable
such that X = f(U, V,W ), and define Ṽ = (V,W ). The
expressions of Theorem 2.4 can only be improved by using Ṽ
instead of V . As for the second limitation, cardinality bounds
for the auxiliary random variables U and V were recently
established in [11].

V. CONCLUSION

We presented a coding scheme which effectively utilizes
feedback to achieve all rate-pairs in the so called Marton’s
region of a two user BC. Improving the presented scheme
to achieve some of the known outerbounds for the broadcast
channel is a direction which we will pursue in future.
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