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Abstract—We consider the problem of finding optimal, fair
and distributed power-rate strategies to achieve the sum capac-
ity of the Gaussian multiple-access block-fading channel. The
transmitters have access to only their own fading coefficients,
while the receiver has access to all of the fading coefficients.
We propose a distributed strategy called the ‘midpoint’ strategy
which is optimal when the system cannot tolerate outage. In
addition, we demonstrate a successive decoding scheme that can
achieve this maximal sum-rate. In presence of outage, we show
that the strategies based on a single threshold are suboptimal.

I. INTRODUCTION

The multiple-access channel is a widely used model to
understand the fundamental limits on information transmis-
sion in a ‘many-to-one’ communication scenario, such as the
uplink channel of a cellular network. In the wireless regime,
channel fading due to multipath, shadowing and inherent
channel variability introduces interesting challenges in reliable
communication. It is important to know whether the receiver
(and transmitters) have access to measurements on the fading
conditions, the delay and accuracy thereof.

Throughout this paper, we concentrate on the specific case
of individual channel state information (CSI) at the transmitter,
viz. each transmitter has instantaneous access to its own fading
state causally, but that of no other. The receiver has complete
channel state information. More specifically, we consider the
block-fading case: the fading coefficients are constant over a
block of channel uses, over which the codeword lasts. The
transmitters, thus, are not allowed to take advantage of the
ergodic nature of the fading process during coding, but may
employ adaptive power and rates. This particular situation
is motivated by systems involving occasional (opportunistic)
access to a shared medium, such as in a cognitive radio or a
sensor network with a star topology. Here, multiple users wish
to communicate their data to the receiver over the awarded
time slot in a fair but distributed fashion. If the slot duration
is not fixed, as described in [1], the receiver may employ a
beacon signal for synchronizing the rounds of communication.

There is considerable literature on multiaccess fading chan-
nels with instantaneous CSI. The Shannon capacity of a
Gaussian MAC with CSI available only at the receiver is eval-
uated rigorously in [2]. The optimal power control strategies
to achieve capacity for the case of complete channel state
information at the transmitters (CSIT) are given in [3] and
[4]. Coming to partial side information at the transmitters,

[5] gives the capacity region of a fading MAC under very
general notions of CSI at the transmitters. These notions
can be specialized to nearly all practical scenarios including
individual transmitter CSI. However, our work differs from [5]
due to the block-fading assumption. The ergodic averaging
inherently used in evaluating the Shannon capacity region
in [5] turns out to be essential because of the absence of
complete CSI. Alternate notions of capacity motivated by
different practical scenarios have also been investigated: delay-
limited capacity for the fading MAC is dealt with in [6] while
[7] defines the notions of expected capacity and capacity with
outage for information unstable single-user channels.

Our main results are summarized as follows:
• We introduce a fair, simple and distributed policy called

the ‘midpoint’ strategy for the Gaussian multiple-access
block-fading channel. The midpoint strategy is sum
throughput-optimal for symmetrical users when outage
cannot be tolerated.

• We also propose a low-complexity rate-splitting scheme
that allows the midpoint strategy throughput to be
achieved through successive decoding.

• When outage can be tolerated, we propose threshold-
based policies which narrowly out-perform the midpoint
strategy. We further show that schemes based on a fixed
threshold are suboptimal compared to variable ones.

II. SYSTEM MODEL

Consider M users communicating with a single receiver.
These users transmit real-valued signals Xi, encountering real-
valued fades Hi. If Y is the value of the received signal at a
(discrete) time instant we have

Y =

M∑
i

HiXi + Z

where Z is an independent Gaussian noise process. The fading
space Hi of the i-th user is the set of values taken by Hi,
and the joint fading space H is the set of values taken by
the joint fading state H̄ = (H1, H2, · · · , HM ). Similar vector
quantities of user-wise parameters, like rate, power, channel
state realization, will be denoted with a overbar symbol. We
assume that the (stationary and ergodic) fading processes Hi

are independent, and their distributions are known to all the
transmitters and the receiver. In addition, we have individual



CSIT, i.e. each transmitter knows its own channel fading
coefficient Hi but that of no other. The receiver knows all the
fading coefficients. The transmitters have individual average
power constraints P avg

i , and have the freedom to adapt their
rate (and power) according to their own channel conditions.
This leads to the following notion of a power-rate strategy.

Definition 1. A power-rate strategy is a collection of mappings
(Pi, Ri) : Hi 7−→ R+ × R+; i = 1, 2, · · · ,M . Thus, in
the fading state Hi, the ith user expends power Pi(Hi) and
employs a codebook of rate Ri(Hi).

This definition is reminiscent of power strategies in [4],
but there are two key differences. Firstly, we incorporate
individual transmitter CSI in the definition. Secondly, the rate
is allowed to be adaptive due to the block-fading restriction.
Considered block-wise the channel is a fixed-gain Gaussian
multiaccess channel (MAC). Consequently we assume that the
standard random Gaussian codebooks with ML decoding are
employed to achieve capacity thereof. Let CMAC(h̄, P̄ (h̄))
denote the capacity region of a Gaussian MAC with fixed
channel gains h̄ = h1, · · · , hM and power allocations P̄ (h̄) =
(P1(h1), · · · , PM (hM )). We know that,

CMAC(h̄, P̄ (h̄)) =

{
R̄ : ∀S ⊆ {1, 2, · · · ,M}

∑
i∈S

Ri ≤
1

2
log

(
1 +

∑
i∈S
|hi|2Pi(hi)

)}
(1)

Definition 2. We call a power-rate strategy as feasible if it
satisfies the average power constraints for each user i.e.
∀i ∈ {1, 2, · · · ,M}, EHi

Pi(Hi) ≤ P avg
i .

Definition 3. A power-rate strategy is termed as outage-free
if it never results in outage i.e.

∀h̄ ∈ H, (R1(h1), · · · , RM (hM )) ∈ CMAC(h̄, P̄ (h̄))

The throughput achieved by a given power-rate strategy is,
then:

Rsum = EH̄

M∑
i=1

Ri(Hi)I{(R1(H1),··· ,RM (HM ))∈CMAC(H̄,P̄ (H̄))}

(2)
where IA is the indicator function for the condition A.

Definition 4. The sum capacity is the maximum (average)
throughput achievable, i.e. Csum = maxRsum where the
maximum is taken over all feasible power-rate strategies.

III. OPTIMAL STRATEGIES WITHOUT OUTAGE

Consider a situation wherein it is required that the system
never suffer outage. This would be of importance when
the practical system under consideration involves occasional
communication during arbitrarily allocated time slots, which
are small in comparison with the channel coherence time.
Coordination being difficult in such a setup, the challenge
is to provide optimal, fair and distributed strategies for the
system. We describe a distributed power-rate strategy called

R1
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A

Fig. 1. The users 1 and 2 construct the innermost and outermost MAC
capacity regions respectively. The intermediate pentagon is the instantiated
MAC region and A denotes the operating point.

the midpoint strategy and a simple decoding scheme thereof.
Prior to that, let us consider the simple strategy of time sharing
among users, or plain time-division multiple-access (TDMA).

A. Plain TDMA

In plain TDMA the transmitters employ a simple ‘taking
turns’ policy. Each block is divided into sub-blocks with only
one user transmitting in that sub-block. This requires some ex-
tra coordination such as agreeing on an ordering for the users.
The channels for the users are now orthogonal and they may
water-fill over their own sub-blocks to improve throughput.
Thus, we obtain the power-rate strategy corresponding to plain
TDMA as:

Pi(hi) =

(
1

λi
− 1

|hi|2
)+

Ri(hi) =
1

2M
log
(
1 +M |hi|2Pi

)
where λi is chosen such that EHiPi(Hi) = P avg

i . The actual
power employed by the user in its sub-block is MPi(Hi) and
the full transmission rate supported thereby is chosen.

B. The Midpoint Rate Strategy

For simplicity, assume that the users have different fixed
powers P1, P2, · · · , PM for the given round of communication
(for instance, after deciding on an arbitrary feasible power
strategy). Each user assumes that all others are identical to
itself and constructs the symmetrical MAC region based on
this assumption. It then chooses the maximal equal-rates point
for operation. Thus we have

Rmid
i (hi) =

1

2M
log
(
1 +M |hi|2Pi

)
. (3)

Lemma 5. The midpoint rate strategy is outage free, i.e.

∀h̄ R̄mid
i ∈ CMAC(h̄, P̄ ).
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Fig. 2. The midpoint strategy is only a constant off the full CSI bound [3]

Proof: The lemma follows directly from the concavity of
the logarithm function, i.e. ∀S ⊂ {1, 2, · · · ,M} :∑

i∈S
Rmid

i (hi) =
∑
i∈S

1

2M
log
(
1 +M |hi|2Pi

)
+

M−|S|∑
i=1

1

2M
log 1

≤ 1

2
log

(
1 +

∑
i∈S
|hi|2Pi

)

As P1, · · · , PM are arbitrary, the users’ power strategies are
now completely independent of each other. The best power
strategy for each user would thus be to water-fill over its own
channel and we obtain

Pi(hi) =

(
1

λi
− 1

|hi|2
)+

(4)

where λi is chosen such that EHi
Pi(Hi) = P avg

i . When
the users have the same average power and identical fading
distributions, we call them a symmetric user set. We further
define a symmetric mid-point strategy, in which each user
in a symmetric user set employs the same power allocation
scheme and chooses the corresponding symmetric mid-point
rate. For a symmetric user set, we have the following result.

Theorem 6. For a symmetric user set and any given outage-
free strategy, there is a symmetric midpoint strategy which
achieves at least as much throughput as the given strategy.

Proof: See appendix.
Note here that the throughput achieved by the midpoint

strategy is identical to that achieved by plain TDMA. We com-
pare this in Figure 2 with the opportunistic TDMA possible
with complete CSIT [3]. The advantage of plain TDMA is
its simplicity in decoding, since only M single-user decoders
are needed. However, the price for this is paid in the extra
coordination required to set up an ordering for transmission
between users. The midpoint strategy avoids this coordination,
albeit at the cost of incurring joint decoding. We show in the

next section that this cost can be ameliorated through rate-
splitting and successive decoding.

C. Rate Splitting

We present an asymptotically optimal rate-splitting strategy
that replaces the joint decoder with LM successive single-user
decoders, where L is a parameter. This section is motivated
by the work in [1] and their technique is useful in showing the
achievability. However, [1] considers a rateless scheme with
variable coding block-lengths between rounds of communica-
tion. The length of each round is determined by a feedback
beacon link from the receiver, block or time slot, and there is
no assumption of such a feedback link.

By a slight abuse of the notation, we denote the received
signal power for user i, i.e. Pi|hi|2 as simply Pi, throughout
this section. Assume that the users have different (received)
powers P1, P2 . . . PM . For simplicity, we will assume that the
additive noise is of unit variance. The values of Pi may change
with each block of communication depending on the individual
fading conditions. Each user is unaware of the fade values and
transmit powers of the rest of the users and, consequently, the
interference they may cause.

The encoding and decoding are done thus: each user splits
itself into L virtual users and splits its power, perhaps un-
equally, among these users. Each user is to be visualized as a
‘stack’ of virtual users. For decoding, we use a successive
cancellation based single-user decoder, which decodes one
of the virtual users assuming all other virtual users as yet
undecoded as Gaussian noise, see [8] for the details.

More specifically, transmitter i, having power Pi, splits its
data stream in to L virtual users. This is done by allotting
a power/rate pair (P i

l , r
i
l) to the lth virtual user, such that∑

l P
i
l = Pi. The transmitter i assumes that all other users

are also at (received) power Pi and imagines identical power
splitting strategies across all users. It then chooses the rates
ril by considering all the other virtual users in the same and
lower layers as interference, i.e.,

ril =
1

2
log

(
1 +

P i
l

1 + (M − 1)P i
l +M

∑l−1
j=1 P

i
j

)
. (5)

However, in the actual setting, the interference encountered
from the other users are substantially different from that
accounted for in the denominator of (5) and a layer by layer
decoding may fail. Surprisingly, it turns out that this can
be compensated by not strictly adhering to a layer by layer
decoding. In particular, the receiver retains the freedom to
decode the topmost hitherto undecoded layer of any transmit-
ter, irrespective of the number of layers which were already
decoded. We now show that this is sufficient for complete
decoding.

Lemma 7. Assuming layer-wise rate allocation as per (5), it
is always possible to find a virtual user which can be decoded
correctly, i.e. with arbitrarily small error probability.



Proof: By induction: assume that layers (virtual users)
above lk have been decoded for the kth transmitter. Choose:

k∗ = arg max
k

lk∑
j=1

P k
j

The actual interference for this virtual user is given by:

1 +

lk∗−1∑
j=1

P k∗

j +
∑
k 6=k∗

lk∑
j=1

P k
j

= 1 +

M∑
k=1

lk∑
j=1

P k
j − P k∗

lk∗

≤ 1 +M

lk∗∑
j=1

P k∗

j − P k∗

lk∗

= 1 +

lk∗−1∑
j=1

P k∗

j + (M − 1)

lk∗∑
j=1

P k∗

j

The inequality follows directly from the choice of k∗. The
RHS is the expected interference for the lk∗ th virtual user
of the k∗th transmitter. Thus, as the actual interference is less
than the expected interference, this virtual user can be correctly
decoded. In other words, the user with the ‘best’ received SNR
can always be chosen for decoding.

Theorem 8. As L → ∞ and ∀j, l, P j
l → 0 , the rate

achieved by all the users equals their midpoint rate.

Proof: Using 5, we have

Ri =

L∑
j=1

1

2
log

(
1 +

P i
l

1 + (M − 1)P i
l +M

∑l−1
j=1 P

i
j

)
Under the given conditions, we can use the same method

as in Lemma 1 of [1] to show that:

lim
L→∞

Ri = lim
L→∞

L∑
j=1

P i
l

1 + (M − 1)P i
l +M

∑l−1
j=1 P

i
j

=
1

2

∫ Pi

0

dy

1 +My
=

1

2M
log (1 +MPi)

Computational results in [1] also show that only a nominal
number of virtual users L suffice to yield good performance.

IV. STRATEGIES WITH OUTAGE

Thus far, we have seen that plain TDMA (or, equivalently,
midpoint) is throughput-optimal without outage. However, a
simple example demonstrates that this is not so when we
allow outage. By sacrificing on some blocks (or rounds of
communication) we may improve the overall throughput.

Consider 2 symmetrical users transmit over a fading channel
with two states: H (or high) and L (or low). The fading
coefficients are iid Bernoulli random variables for both the
users, with Pr(H) = δ. Suppose the users do not employ
power control. If δ is small enough, any user who has access

to a fading level of H , should not expect the other user to be
also at H and in turn try a pessimistic mid-point strategy. On
the contrary, the ‘better’ user should expect the other one to
have a value L, which is more likely, and choose a rate of

R′(H,L) =
1

2
log(1 + (H2 + L2)P )− 1

4
log(1 + 2L2P ),

(6)

where we adhered to the mid-point strategy for the fading
value L. Certainly, the (H,H) fading states will result in
outage, and the resulting throughput is

(1− δ)1

2
log(1 + 2L2P ) + 2(1− δ)δR′(H,L), (7)

which can be greater than that of the outage-free strategies at
low values of δ.

Motivated by this, we move to the general case wherein
the system can tolerate outage. We make some simplifying
assumptions on the outage scenario. We consider only 2
completely symmetrical users (i.e. they have equal power
constraints and fading marginals). The fading distributions are
assumed to be iid Rayleigh. In addition, we ignore power
control: the power is fixed to be P (h) = P . In this section, we
detail two policies which outperform the midpoint strategy in
terms of long-term throughput. It is shown that simple single-
threshold policies are strictly suboptimal.

A. A Single-Threshold Strategy

R1

R2

C

(
h2
1P

N

)
C

(
h2
t P

N

)

C(h2
2P/N)R′(h2,ht)

A

Fig. 3. Here, C(x) , 1
2
log(1 + x). User 2, who is beyond the threshold,

constructs the outer two pentagons assuming 1 to be at most as good as the
intermediate region. User 1, who is within threshold constructs the innermost
region, choosing its midpoint rate. A denotes the final operating point.

With iid Rayleigh fading, we can modify the above strategy
to get good opportunistic access as follows:

R(h) =

{
1
4 log

(
1 + 2|h|2P

N

)
for h ≤ ht

R′(h, ht) otherwise,
(8)

where R′(·, ·) is defined in (6). Here, beyond the threshold
ht, the transmitter assumes that the other transmitter is at
most as good as ht and operates on the boundary of the MAC
constructed thereof (see Figure 3). Thus, the only time when
outage occurs is when both the transmitters are beyond ht.
Since much of the probability mass is concentrated towards
the ‘bad’ channel gains, the midpoint rates are retained in that
region, while with good channels the transmitter takes a risk.



The throughput achieved by such a strategy can be com-
puted according to (2). They maximal throughput by using
the best threshold is plotted in Figure 5, which for the scales
of our plot is indistinguishable from that of the midpoint rate
strategy, suggesting the utility of the midpoint rate scheme.

B. A Single Threshold is Insufficient
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Fig. 4. Optimum variable threshold H(h).

On closer scrutiny, one can strictly improve the single-
threshold strategy. In an improved scheme, the transmitter is
pessimistic when below the threshold ht, similar to the previ-
ous scheme. However, when it experiences a better channel,
say h1, it attempts to choose the best threshold value Ht(h1)
which maximizes the throughput when averaged over the re-
alizations of the other user’s fading coefficients. This involves
maximization for each value of h ≥ ht yielding a function
Ht(h) which depicts the optimal threshold assumption for that
channel state. The rate strategy then gets modified as:

R(h) =

{
1
4 log

(
1 + 2|h|2P

N

)
for h ≤ ht

R′(h,Ht(h)) otherwise

where we have

Ht(h) = min
[
ht, argmaxh′

{
(1− e−|h′|2)R′(h, h′)

}]
.

The function Ht(h) is plotted in the Figure 4. The improve-
ment of throughput by employing Ht(h) is shown in Figure 5
as the dashed line, which shows the difference in throughput,
when magnified 200 times to match the scale of the plot.

V. CONCLUSIONS AND FUTURE WORK

The proposed midpoint strategy has straightforward gen-
eralizations to MIMO MAC systems, since its basis is the
concavity property of the logarithm. Coupled with the pro-
posed successive decoding, this strategy is a viable alternative
for many practical systems wherein coordination is difficult to
achieve due to large overhead. The notion of expected capacity
matches the setup we consider here. For the case of none or
complete CSIT, the expected capacity matches the Shannon
capacity of the channel. However, with partial CSIT and, in
particular, our case of individual CSIT, the characterization of
the expected capacity is a line of work that can be pursued
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Fig. 5. Throughput comparison

further. Similarly, the capacity with outage can be considered
for this channel, generalizing on the conclusions of section IV.

APPENDIX A
PROOF OF THEOREM 6

For a symmetric user set, the independent fading states Hi

have the same distribution, say p(h). Consider any outage-free
power-rate strategy (Pi(hi), Ri(hi)). Let us define P (h) =
(1/M)

∑M
i=1 Pi(h). Since there is no outage by the above

choice for any of the users, the average sum-throughput is

M∑
i=1

ERi(Hi) =

M∑
i=1

∫
h

Ri(h)p(h)dh

=

∫
h

p(h)

(
M∑
i=1

Ri(h)

)
dh

≤
∫
h

p(h)

(
0.5 log

(
1 + |h|2

M∑
i=1

Pi(h)

))
dh

=

∫
h

p(h)
(
0.5 log

(
1 +M |h|2P (h)

))
dh

The first inequality follows from the sum-rate bound of a
MAC, which should be necessarily satisfied for no outage.
The right hand side is the expected sum-rate of the symmetric
mid-point strategy for power allocation P (h).
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