Fading MACs with Distributed CSI and Non-identical Links

S. Sreekumar, B. K. Dey, Sibi Raj B. Pillai

Department of Electrical Engineering Indian Institute of Technology, Bombay

ACKS: Bharti Center for Telecommunications, IIT Bombay

Essential Features

> Block-fading/Opportunistic nature of channel.

Essential Features

> Block-fading/Opportunistic nature of channel.
> Individual CSI at transmitters + fixed transmit powers.

Essential Features

> Block-fading/Opportunistic nature of channel.
> Individual CSI at transmitters + fixed transmit powers.
$>$ Complete CSI at receiver + no outage tolerated.

Essential Features

> Block-fading/Opportunistic nature of channel.
> Individual CSI at transmitters + fixed transmit powers.
> Complete CSI at receiver + no outage tolerated.
> Objective: Adaptive Sum-capacity $\left(\sum_{i} \mathbb{E}\left[R_{i}\left(h_{i}\right)\right]\right)$ [E/GamalKim11].

(For Identical Users)

Figure: The users 1 and 2 construct the innermost and outermost symmetric regions respectively, and chooses the rate-pair A. [Deshpande11],[PillaiDey12]

Midpoint Strategy

(For Identical Users)

Figure: The users 1 and 2 construct the innermost and outermost symmetric regions respectively, and chooses the rate-pair A. [Deshpande11],[PillaiDey12]

Midpoint Strategy

(For Identical Users)

Figure: The users 1 and 2 construct the innermost and outermost symmetric regions respectively, and chooses the rate-pair A. [Deshpande11],[PillaiDey12]

Midpoint Strategy

(For Identical Users)

Figure: The users 1 and 2 construct the innermost and outermost symmetric regions respectively, and chooses the rate-pair A. [Deshpande11],[PillaiDey12]

Midpoint Strategy

(For Identical Users)

Figure: The users 1 and 2 construct the innermost and outermost symmetric regions respectively, and chooses the rate-pair A. [Deshpande11],[PillaiDey12]

Theorem (Deshpande11)
The midpoint strategy achieves adaptive sum-capacity for identical users

Throughput Optimality

Theorem (Deshpande11)
The midpoint strategy achieves adaptive sum-capacity for identical users Proof.

$$
\sum_{i=1}^{L} \mathbb{E} R_{i}\left(H_{i}\right)=\sum_{i=1}^{L} \int_{h} R_{i}(h) d \Psi(h)
$$

Throughput Optimality

Theorem (Deshpande11)
The midpoint strategy achieves adaptive sum-capacity for identical users Proof.

$$
\begin{aligned}
\sum_{i=1}^{L} \mathbb{E} R_{i}\left(H_{i}\right) & =\sum_{i=1}^{L} \int_{h} R_{i}(h) d \Psi(h) \\
& =\int_{h} d \Psi\left(\sum_{i=1}^{L} R_{i}(h)\right)
\end{aligned}
$$

Throughput Optimality

Theorem (Deshpande11)

The midpoint strategy achieves adaptive sum-capacity for identical users Proof.

$$
\begin{aligned}
\sum_{i=1}^{L} \mathbb{E} R_{i}\left(H_{i}\right) & =\sum_{i=1}^{L} \int_{h} R_{i}(h) d \Psi(h) \\
& =\int_{h} d \Psi\left(\sum_{i=1}^{L} R_{i}(h)\right) \\
& \leq \frac{1}{2} \int_{h} d \Psi \log \left(1+|h|^{2} \sum_{i=1}^{L} P_{i}(h)\right)
\end{aligned}
$$

Throughput Optimality

Theorem (Deshpande11)

The midpoint strategy achieves adaptive sum-capacity for identical users Proof.

$$
\begin{aligned}
\sum_{i=1}^{L} \mathbb{E} R_{i}\left(H_{i}\right) & =\sum_{i=1}^{L} \int_{h} R_{i}(h) d \Psi(h) \\
& =\int_{h} d \Psi\left(\sum_{i=1}^{L} R_{i}(h)\right) \\
& \leq \frac{1}{2} \int_{h} d \Psi \log \left(1+|h|^{2} \sum_{i=1}^{L} P_{i}(h)\right) \\
& =\frac{1}{2} \int d \Psi \log \left(1+L|h|^{2} P(h)\right)
\end{aligned}
$$

Non-Identical Fading Statistics

$\overbrace{\overbrace{1}}^{p_{1}}$| G_{1} |
| :---: |
| B_{1} |$\Psi_{1}(h)$

$\underbrace{B_{2}}_{p_{2}} \quad G_{1-p_{2}}^{G_{2}}$$\Psi_{2}(h)$

Non-Identical Fading Statistics
$\overbrace{B_{1} \quad G_{1}}^{p_{1} \quad 1-p_{1}} \Psi_{1}(h)$
$\underbrace{\begin{array}{cc}B_{2} & G_{2} \\ 1-p_{2}\end{array}}_{p_{2}} \Psi_{2}(h)$

Non-Identical Fading Statistics

Non-Identical Fading Statistics

p_{1}	$1-p_{1}$
B_{1}	G_{1}
B_{2}	G_{2}
p_{2}	1-

Non-Identical Fading Statistics

Non-Identical Fading Statistics

Rate Assignment Demo

Iterative Assignment

Theorem

The iterative rate assignment

$$
\begin{aligned}
& R_{1}\left(h_{10}\right) \in C_{M A C}^{\text {sum }}\left(h_{10}, h_{20}\right) \\
& R_{2}\left(h_{2 i}\right)=C_{M A C}^{\text {sum }}\left(h_{1 i}, h_{2 i}\right)-R_{1}\left(h_{1 i}\right) \\
& R_{1}\left(h_{1 j}\right)=C_{M A C}^{\text {sum }}\left(h_{1 j}, h_{2(j-1)}\right)-R_{2}\left(h_{2(j-1)}\right)
\end{aligned}
$$

for $0 \leq i<k, 1 \leq j<k$ achieves the adaptive sum-capacity.
> The first expression is about choosing any rate-pair in the dominant face of the minimal pentagon.

Outage-Free

Lemma

Let (h, g) and $\left(h^{\prime}, g^{\prime}\right)$ be two state-pairs such that $\left(h^{\prime}, g^{\prime}\right) \geq(h, g)$. Assume $\left(R_{1 h}, R_{2 g}\right) \in C_{M A C}(h, g)$ and $\left(R_{1 h^{\prime}}, R_{2 g^{\prime}}\right) \in C_{M A C}\left(h^{\prime}, g^{\prime}\right)$.
If

$$
R_{1 h^{\prime}}+R_{2 g}=\frac{1}{2} \log \left(1+h^{\prime 2} P_{1}+g^{2} P\right)
$$

then

Outage-Free

Lemma

Let (h, g) and $\left(h^{\prime}, g^{\prime}\right)$ be two state-pairs such that $\left(h^{\prime}, g^{\prime}\right) \geq(h, g)$. Assume $\left(R_{1 h}, R_{2 g}\right) \in C_{M A C}(h, g)$ and $\left(R_{1 h^{\prime}}, R_{2 g^{\prime}}\right) \in C_{M A C}\left(h^{\prime}, g^{\prime}\right)$.
If

$$
R_{1 h^{\prime}}+R_{2 g}=\frac{1}{2} \log \left(1+h^{\prime 2} P_{1}+g^{2} P\right)
$$

then

$$
\begin{aligned}
& R_{1 h}+R_{2 g^{\prime}} \leq \frac{1}{2} \log \left(1+h^{2} P_{1}+g^{\prime 2} P\right) . \\
& \text { Proof. } \\
& \left(1+h^{2} P_{1}+g^{2} P_{2}\right)\left(1+h^{\prime 2} P_{1}+g^{\prime 2} P_{2}\right) \\
& \leq\left(1+h^{2} P_{1}+g^{\prime 2} P_{2}\right)\left(1+{h^{\prime 2}}^{2} P_{1}+g^{2} P_{2}\right) .
\end{aligned}
$$

Inducting Outage-free

Inducting Outage-free

Inducting Outage-free

> By induction, rate-choices of all state-pairs are outage-free.

Inducting Outage-free

> By induction, rate-choices of all state-pairs are outage-free.

- For every vertical state-pair, the rate-choice is on the dominant face.

Inducting Outage-free

> By induction, rate-choices of all state-pairs are outage-free.
> For every vertical state-pair, the rate-choice is on the dominant face.

- Hence the scheme achieves the adaptive sum-capacity.

Continuous-valued Channels

Theorem
For a two user Gaussian MAC with respective fading cdfs $\psi_{1}(\cdot)$ and $\psi_{2}(\cdot)$, the adaptive sum-capacity is achieved by the rate-allocation,

$$
R_{i}(h)=\int_{0}^{h} \frac{y P_{i}}{1+y^{2} P_{i}+\left(\psi_{j}^{-1}\left(\psi_{i}(y)\right)\right)^{2} P_{j}} \mathrm{~d} y, j \neq i
$$

Numerical Comparison

Figure: Two users: Ψ_{1}-Rayleigh and Ψ_{2}-Uniform $[0, a]$

- We computed the adaptive sum-capacity of several fading MAC models with individual state information at the transmitters.
$>$ We mention that a simple sequential decoding scheme employing rate splitting can achieve the above rates.
$>$ Our rate-allocations are optimal for any given power-allocation, thus decoupling these two aspects in the optimization. In fact, efficient procedures for power-control can be derived from this.
> Though the two user case was described, extensions to multiple users are straightforward.

