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Flush packets without delay 4+ high success-rate using distributed info.
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Distributed Multiple Access

X El Gamal et al, “ Energy efficient
m h ;
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scheduling of packet transmissions over
wireless networks”, INFOCOM 2002.
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Time Division Multiple Access
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Uncoordinated Access

Figure: Symmetric MAC

» User i employs a rate B; codebook of
blocklength n and average power

22LB;__1
Pi(B) = "—5—
(B) ="

» Transmissions interfere with each
other.

» Can we still decode everyone?




Two User Capacity Region Cyac(P1, P2)
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The region also includes TDMA rates, i.e. our power choice works!
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Lemma
With identical link gains and arrival statistics
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Non-identical Arrival Statistics
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Non-identical Arrival Statistics
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Non-identical Arrival Statistics
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Non-identical Arrival Statistics
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Non-identical Arrival Statistics

Ppo

» Allocation not only successful, but also Power Optimal for
L
min » "EP;(B;) : (Pi(B:), Pj(B;)) € PoMa“(B;, B;)Vi, j.
i=1

) S. Sreekumar, SRBP, B. K. Dey, On the adaptive sum-capacity of MAC with distributed CSI and non-indentical links, ISIT 2013




Non-identical Arrivals

X <
) P2 Yn P, E
Y AN AR ¥
0.75 f—— — Py(by) [T
_____ A I Y
05fF---- A e
025 f--A -l
VZA R N—— > b

by b

Figure: Optimal Sum-power Allocation
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. 1 92(bi(x)+b2(x)) _ 1
Pom = / ————dx, where b;(x) = sup{b| V;(b) < x}.
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sum a2
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Asymmetric Links
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» To support a packet-rate pair of (b, by),

BPy(by) + Pa(by) > 22(brtba) _ 1
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Asymmetric Links

Xlw
1

Xy

» To support a packet-rate pair of (b, by),
BP1(by) + Pa(by) > 22ith) 1

» Difficulty: This does not parse into a suitable constraint on Py + Ps.
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CDF Transformations
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Figure: Optimal Power-allocation for 5 = 0.75




CDF Transformations

X
¢ O1
1 I —

s/
05 o5 f /-
0.25 0.25k7 VANNENE———

/T |1-p

b b

Figure: Optimal Power-allocation for 5 = 0.75

Theorem
The minimum sum-power for our MAC model is
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Figure: Power savings for rates in {1,2} with p(1) = 0.75,c1 = B, a2 =1
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Conclusion

» Optimal power allocations under strict delay constraints were
proposed for a MAC with random arrivals.

» The approach can also solve the weighted power minimization
problem.

» General arrival processes and relaxed delay constraints is a possible
future extension.
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» Optimal power allocations under strict delay constraints were
proposed for a MAC with random arrivals.

» The approach can also solve the weighted power minimization
problem.

» General arrival processes and relaxed delay constraints is a possible
future extension.

» A dual result can solve the so called adaptive capacity region of
dIStI’Ibuted CSl MACS Chapter 23 of EI Gamal and Kim, Network Information Theory, Cambridge 2011.
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