Energy Efficient Random Multiple Access with Strict Delay Constraints

Sibi Raj B. Pillai

Department of Electrical Engineering
Indian Institute of Technology Bombay
Joint work: Sreejith Sreekumar, B. K. Dey@IIT Bombay

Distributed Multiple Access

2)What is the cost?

Flush packets without delay + high success-rate using distributed info.

Distributed Multiple Access

1)Is it possible?
2)What is the cost?

Flush packets without delay + high success-rate using distributed info.

Distributed Multiple Access

1)Is it possible?
2)What is the cost?

Flush packets without delay + high success-rate using distributed info.

Distributed Multiple Access

El Gamal et al, " Energy efficient scheduling of packet transmissions over wireless networks", INFOCOM 2002.
1)Is it possible?
2)What is the cost?

Flush packets without delay + high success-rate using distributed info.

Time Division Multiple Access

$>$ Assume $\alpha_{i}=\alpha, \forall i$.

Uncoordinated Access

Figure: Symmetric MAC
> User i employs a rate B_{i} codebook of blocklength n and average power

$$
P_{i}\left(B_{i}\right)=\frac{2^{2 L B_{i}}-1}{\alpha^{2}}
$$

> Transmissions interfere with each other.

- Can we still decode everyone?

Two User Capacity Region $C_{\text {MAC }}\left(P_{1}, P_{2}\right)$

$$
\frac{R_{1}}{2} \leq \frac{1}{2} \log \left(1+P_{1}\right)
$$

The region also includes TDMA rates, i.e. our power choice works!

Two User Capacity Region $C_{\text {MAC }}\left(P_{1}, P_{2}\right)$

The region also includes TDMA rates, i.e. our power choice works!

Optimality

Lemma

With identical link gains and arrival statistics

$$
P_{\text {sum }}^{\min }=\frac{1}{\alpha^{2}} \mathbb{E}\left[2^{2 L B}-1\right] .
$$

Proof.

$$
\begin{aligned}
\mathbb{E} \sum_{i=1}^{L} P_{i}\left(B_{i}\right) & =\mathbb{E} \sum_{i=1}^{L} P_{i}(B) \\
& =\frac{1}{\alpha^{2}} \mathbb{E}\left(2^{\log \left(1+\alpha^{2} \sum_{i=1}^{L} P_{i}(B)\right)}-1\right) \\
& \geq \frac{1}{\alpha^{2}} \mathbb{E}\left(2^{2 L B}-1\right) .
\end{aligned}
$$

Non-identical Arrival Statistics

Non-identical Arrival Statistics

Non-identical Arrival Statistics

Non-identical Arrival Statistics

Non-identical Arrival Statistics

Non-identical Arrival Statistics

Non-identical Arrival Statistics

Non-identical Arrival Statistics

> Allocation not only successful, but also Power Optimal for

$$
\min \sum_{i=1}^{L} \mathbb{E} P_{i}\left(B_{i}\right):\left(P_{i}\left(B_{i}\right), P_{j}\left(B_{j}\right)\right) \in \operatorname{PoMa}^{c}\left(B_{i}, B_{j}\right) \forall i, j
$$

Non-identical Arrivals

Figure: Optimal Sum-power Allocation

Non-identical Arrivals

Figure: Optimal Sum-power Allocation

$$
P_{s u m}^{\min }=\int_{0}^{1} \frac{2^{2\left(b_{1}(x)+b_{2}(x)\right)}-1}{\alpha^{2}} d x, \text { where } b_{i}(x)=\sup \left\{b \mid \Psi_{i}(b) \leq x\right\}
$$

Asymmetric Links

> To support a packet-rate pair of $\left(b_{1}, b_{2}\right)$,

$$
\beta P_{1}\left(b_{1}\right)+P_{2}\left(b_{2}\right) \geq 2^{2\left(b_{1}+b_{2}\right)}-1
$$

Asymmetric Links

> To support a packet-rate pair of $\left(b_{1}, b_{2}\right)$,

$$
\beta P_{1}\left(b_{1}\right)+P_{2}\left(b_{2}\right) \geq 2^{2\left(b_{1}+b_{2}\right)}-1
$$

Difficulty: This does not parse into a suitable constraint on $P_{1}+P_{2}$.

CDF Transformations

Figure: Optimal Power-allocation for $\beta=0.75$

CDF Transformations

Figure: Optimal Power-allocation for $\beta=0.75$
Theorem
The minimum sum-power for our MAC model is

$$
P_{s u m}^{\min }=\int_{0}^{1-\beta} \frac{2^{2 b_{1}(x)}-1}{\beta} d x+\int_{0}^{\beta} \frac{2^{2\left(b_{1}(v+1-\beta)+b_{2}\left(\frac{v}{\beta}\right)\right)}-1}{\beta} d v
$$

Power-Savings

Figure: Power savings for rates in $\{1,2\}$ with $p(1)=0.75, \alpha_{1}=\beta, \alpha_{2}=1$
> Optimal power allocations under strict delay constraints were proposed for a MAC with random arrivals.
> The approach can also solve the weighted power minimization problem.
> General arrival processes and relaxed delay constraints is a possible future extension.

- A dual result can solve the so called adaptive capacity region of distributed CSI MACs Chapter 23 of El Gamal and Kim, Network lnformation Theory, Cambidge 2011.
> Optimal power allocations under strict delay constraints were proposed for a MAC with random arrivals.
> The approach can also solve the weighted power minimization problem.
> General arrival processes and relaxed delay constraints is a possible future extension.
> A dual result can solve the so called adaptive capacity region of distributed CSI MACs Chapter 23 of El Gamal and Kim, Network Information Theory, Cambridge 2011.

