Optimal Scheduling in Distributed MACs under Delay Constraints

Sibi Raj B. Pillai

Department of Electrical Engineering Indian Institute of Technology Bombay

- System Model with Random Arrivals
- Power Consumption in TDMA
- Optimal Power Allocation Functions
- Generalizations
- Conclusion
- System Model with Random Arrivals
- Power Consumption in TDMA
- Optimal Power Allocation Functions
- Generalizations
- Conclusion
- System Model with Random Arrivals
- Power Consumption in TDMA
- Optimal Power Allocation Functions
- Generalizations
- Conclusion
- System Model with Random Arrivals
- Power Consumption in TDMA
- Optimal Power Allocation Functions
- Generalizations
- Conclusion

Outline

- System Model with Random Arrivals
- Power Consumption in TDMA
- Optimal Power Allocation Functions
- Generalizations
- Conclusion

Distributed Multiple Access

- 'Motivated by practical wireless' [EGaman11].
- Adaptive Capacity $\mathcal{C}_{A}: \Rightarrow$ No outage rates under blockwise encoding/decoding.
- Unknown for many models[GamalCiofior]
- Solve \mathcal{C}_{A} for arbitrary fading distributions.
- An explicit rate-allocation algo is the key.
- Can be generalized to other CSI models.
- SS, BKD, SRBP, "Distributed Rate Adaptation and Power Control in Fading MACs", Submitted to IEEE Trans Infomation Theory, 2014 (also in ITW11, ISIT13, ITW14).

Distributed Access with Arrivals

ALOHA

- G_{i} : attempt probability of transmitter i.
- Incoming load:

$$
\sum_{i=1}^{L} G_{i}=G
$$

- Throughput:

$$
\begin{aligned}
& \sum_{i=1}^{L} G_{i}\left(1-G_{i}\right)^{L-1} \rightarrow G e^{-G} \\
& \text { Maximum }=\frac{1}{e} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Distributed Access with Arri } \\
& \text { ALOHA } \\
& G_{i} \text { : attempt probability } \\
& \text { of transmitter } i \text {. } \\
& \text { - Incoming load: } \\
& \sum_{i=1}^{L} G_{i}=G \\
& \text { Throughput: } \\
& \sum_{i=1}^{L} G_{i}\left(1-G_{i}\right)^{L-1} \rightarrow G e^{-G} \\
& \text { Maximum= } \frac{1}{e} \text { () } \\
& \text { 完 } \\
& \text { 厌 }
\end{aligned}
$$

Distributed Access with Arri
ALOHA

- G_{i} : attempt probability of transmitter i.

- Incoming load:

$$
\sum_{i=1}^{L} G_{i}=G
$$

- Throughput:

$$
\begin{aligned}
& \sum_{i=1}^{L} G_{i}\left(1-G_{i}\right)^{L-1} \rightarrow G e^{-G} \\
& \text { Maximum }=\frac{1}{e}
\end{aligned}
$$

Distributed Multiple Access

El Gamal et al, " Energy efficient scheduling of packet transmissions over wireless networks", INFOCOM 2002.
1)Is it possible?
2)What is the cost?

Flush packets within the delay + high success-rate using distributed info.

Single User Scheduling

- Bit Scheduler ensures the delay constraint, example max-delay.
- Encoder is also a power scheduler, i.e. for B bits per channel use

$$
P(B)=\frac{2^{2 B}-1}{\alpha^{2}}
$$

- In other words, a $\left(n, 2^{n B}\right)$ channel code with average power $P(B)$ is employed in that block (Zero Outage Scheduler).

Time Division Multiple Access

- Assume $\alpha_{i}=\alpha, \forall i$.

- User i requires rate $B_{i} \in \mathcal{B}$,

$$
\frac{1}{L} \cdot \frac{1}{2} \log \left(1+L \alpha^{2} P_{i}\right)=B_{i}
$$

- The required power is

$$
P_{i}\left(B_{i}\right)=\frac{2^{2 L B_{i}}-1}{\alpha^{2}}
$$

Uncoordinated Access

Figure: Symmetric MAC

- User i employs a rate B_{i} codebook of blocklength n and average power

$$
P_{i}\left(B_{i}\right)=\frac{2^{2 L B_{i}}-1}{\alpha^{2}}
$$

- Transmissions interfere with each other.
- Can we still decode everyone?

Two User Capacity Region $C_{\text {MAC }}\left(P_{1}, P_{2}\right)$

$$
\frac{1}{2} \log \left(1+P_{2}\right) R_{1} \leq \frac{1}{2} \log (1-1 \text { R2 }
$$

The region also includes TDMA rates, i.e. our power choice works!

Two User Capacity Region $C_{\text {MAC }}\left(P_{1}, P_{2}\right)$

The region also includes TDMA rates, i.e. our power choice works!

Optimality

Lemma

With identical link gains and arrival statistics

$$
P_{\text {sum }}^{\min }=\frac{1}{\alpha^{2}} \mathbb{E}\left[2^{2 L B}-1\right]
$$

Proof.

$$
\begin{aligned}
\mathbb{E} \sum_{i=1}^{L} P_{i}\left(B_{i}\right) & =\mathbb{E} \sum_{i=1}^{L} P_{i}(B) \\
& =\frac{1}{\alpha^{2}} \mathbb{E}\left(2^{\log \left(1+\alpha^{2} \sum_{i=1}^{L} P_{i}(B)\right)}-1\right) \\
& \geq \frac{1}{\alpha^{2}} \mathbb{E}\left(2^{2 L B}-1\right) .
\end{aligned}
$$

- Minimize average power by choosing $\left(P_{i}\left(B_{i}\right), 1 \leq i \leq N\right)$:

$$
\min \mathbb{E} \sum_{i=1}^{N} w_{i} P_{i}\left(B_{i}\right)
$$

such that $\forall\left(b_{1}, \cdots, b_{N}\right)$

$$
\sum_{i \in S} b_{i} \leq \frac{1}{2} \log \left(1+\sum_{i \in S} \alpha_{i}^{2} P_{i}\left(b_{i}\right)\right), \forall S \subseteq\{1, \cdots, N\}
$$

- $\bar{w}=w_{1}, \cdots, w_{N}$ is any positive weight vector.

Non-identical Arrivals

Non-identical Arrivals

Non-identical Arrivals

Non-identical Arrivals

Non-identical Arrivals

Non-identical Arrivals

Non-identical Arrivals

- Allocation not only successful, but also Power Optimal for

$$
\min \sum_{i=1}^{L} \mathbb{E} P_{i}\left(B_{i}\right):\left(P_{i}\left(B_{i}\right), P_{j}\left(B_{j}\right)\right) \in \operatorname{PoMa}^{c}\left(B_{i}, B_{j}\right) \forall i, j .
$$

- S. Sreekumar, SRBP, BKD, Energy efficient random access under strict delay constraints, ISIT 2014

Non-identical Arrivals

Figure: Optimal Sum-power Allocation

Non-identical Arrivals

Figure: Optimal Sum-power Allocation

$$
P_{s u m}^{\min }=\int_{0}^{1} \frac{2^{2\left(b_{1}(x)+b_{2}(x)\right)}-1}{\alpha^{2}} d x, \text { where } b_{i}(x)=\sup \left\{b \mid \Psi_{i}(b) \leq x\right\}
$$

Asymmetric Links

- To support a packet-rate pair of $\left(b_{1}, b_{2}\right)$,

$$
\beta P_{1}\left(b_{1}\right)+P_{2}\left(b_{2}\right) \geq 2^{2\left(b_{1}+b_{2}\right)}-1
$$

- Difficulty: This does not parse into a suitable constraint on $P_{1}+P_{2}$.

Asymmetric Links

- To support a packet-rate pair of $\left(b_{1}, b_{2}\right)$,

$$
\beta P_{1}\left(b_{1}\right)+P_{2}\left(b_{2}\right) \geq 2^{2\left(b_{1}+b_{2}\right)}-1
$$

- Difficulty: This does not parse into a suitable constraint on $P_{1}+P_{2}$.

CDF Transformations

Figure: Optimal Power-allocation for $\beta=0.75$

CDF Transformations

Figure: Optimal Power-allocation for $\beta=0.75$
Theorem
The minimum sum-power for our MAC model is

$$
P_{s u m}^{\min }=\int_{0}^{1-\beta} \frac{2^{2 b_{1}(x)}-1}{\beta} d x+\int_{0}^{\beta} \frac{2^{2\left(b_{1}(v+1-\beta)+b_{2}\left(\frac{v}{\beta}\right)\right)}-1}{\beta} d v
$$

Power-Savings

Figure : Power savings for rates in $\{1,2\}$ with $p(1)=0.75, \alpha_{1}=\beta, \alpha_{2}=1$

Bit Scheduling

- Source IID + bit scheduler memoryless $\Rightarrow \mathrm{o} / \mathrm{p}$ stationary.
- Now use the optimal unit-delay power scheduler.

Zero Outage Bit Schedulers

- Deterministic scheduling policies form a basis. [Rajan, Sabharwal, Aazhang, "Delay bounded packet scheduling of bursty traffic over wireless channels", Trans IT 2004].

- Optimal power allocations under strict delay constraints were proposed for a MAC with random arrivals.
- The approach can also solve the weighted power minimization problem.
- An iterative algorithm quickly finds the optimal scheduler (observation).
- A dual result can solve the so called adaptive capacity region of distributed CSI MACs Chapter 23 of El Gamal and Kim, Network Information Theory, Cambirige 2011.
- Joint work with Sakshi Kapoor, Sreejith Sreekumar and B K Dey.
- Optimal power allocations under strict delay constraints were proposed for a MAC with random arrivals.
- The approach can also solve the weighted power minimization problem.
- An iterative algorithm quickly finds the optimal scheduler (observation).
- A dual result can solve the so called adaptive capacity region of distributed CSI MACs Chapter 23 of El Gamal and Kim, Network Information Theory, Cambridge 2011.
- Joint work with Sakshi Kapoor, Sreejith Sreekumar and B K Dey.
- Optimal power allocations under strict delay constraints were proposed for a MAC with random arrivals.
- The approach can also solve the weighted power minimization problem.
- An iterative algorithm quickly finds the optimal scheduler (observation).
- A dual result can solve the so called adaptive capacity region of distributed CSI MACs Chapter 23 of El Gamal and Kim, Network Information Theory, Cambridge 2011.
- Joint work with Sakshi Kapoor, Sreejith Sreekumar and B K Dey.

