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ä Block-fading channel with asymmetric CSI

ä Power control with average power constraints

ä CSI of some links are protected/unrevealed (eg. Cognitive Radios).
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Single User Power-Rate Strategies

ä Channel law is Ψ(h).

ä Strategy h→
(
P(h),C (h2P(h))

)
where C (x)

4
= 1

2 log(1 + x).

ä Throughput

Csum =
1

2

∫
log(1 + h2P(h))dΨ(h) subj to

∫
P(h)dΨ(h) = Pavg .

Optimal Power [Goldsmith97]

P∗(h) =

(
1

λ
− 1

|h|2

)+

1
λ

1
h2
a

1
h2
b

Pa Pb
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Power-Rate Strategies

R1

R2

C (h2
1P1(h1))

C (h2
2P2(h2))

4

8 CMAC (h̄, P̄)

ä Full CSI: opportunistic TDMA (best user) optimal [KH95].

ä Genrl CSI: adapt rate/power + coding across blocks [DasNarayan02]

ä Individual CSI and slow Fading: Adapt rate/power + block-wise coding
and decoding [ElGamalKim11], [PillaiDey12], [Sreekumar13}].
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Adaptive Sum Capacity CΨ

+ Y

h1

h2

hLf

hLf +1

hL

Sf

Sd

ä ĥi = h̄I{hi∈Sf } + hi I{hi∈Sd}.

ä Pi (ĥi ),Ri (ĥi ) : power/rate of user i .

maxE[
L∑

i=1

Ri (ĥi )]

such that

EPi (hi ) ≤ Pavg
i ,∀i ,

and ∀h̄ ∈ RL, P̄
4
= P1(ĥ1), · · · ,P(ĥL):

R1(ĥ1), · · · ,RL(ĥL) ∈ CMAC (h̄, P̄).
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Assumptions

ä Channels are continuous-valued, admitting respective pdfs.

Ψ(h̄) =
∏
i∈Sf

Ψf (hi )
∏
i∈Sd

Ψd(hi ).

ä For simplicity: the average powers remain same within each group.

ä The paper-version has limited Ψf (·) to Rayleigh (not necessary).

ä Adaptive Sum-capacity

CΨ = max

∫
dΨ(h̄)

∑
j∈Sf

Rj(h̄) +
∑
i∈Sd

Ri (hi )
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Best User Policy

CΨ = max

∫
dΨ(h̄)

∑
j∈Sf

Rj(h̄) +
∑
i∈Sd

∫
Ri (hi )dΨd(hi ).

Claim: From the set Sf , it is sufficient to schedule arg max h2
i for

transmission, while remaining users in this group stay silent.

ä Full CSI arguments [KnoppHumblet95] cannot be invoked as such, as
the users in Sd do not know the best user.

ä The best user in Sf can improve the received signal power, and
sum-rate1.

1valid only for identical users
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Two User MAC- Degraded CSI

Theorem
∃ λ1 ≥ 0 and a threshold function γ(h2) such that

CΨ =
1

2
E
[
log(1 + h2

1P
∗
1 (h1, h2) + h2

2P
∗
2 (h2))

]
where

P∗2 (h2) =

(
γ2(h2)

λ1h2
2

− 1

h2
2

)+

I{h2 6=0} and P∗1 (h1, h2) =

(
1

λ1
− γ2(h2)

λ1h2
1

)+

ä λ1 and γ(h2) determined by
∫
dΨ(h̄)P∗i (h̄) = Pavg

i , i = 1, 2.

ä Achievability: successive cancellation, user 1 followed by user 2.

ä γ(h2) = λ1 whenever P∗(h2) = 0, ⇒ usual water-filling for user 1.
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Waterfilling Illustration
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Figure: Power allocation for User 1

The users cooperate to accommodate each other and maximize the
sum-rate.
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Comparison
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Many Users

ä CΨ̂: the sum-capacity when the power constraints for Sd are(∑
i∈Sd

Pavg
i , 0, 0, · · · , 0

)
.

Lemma
The adaptive sum-capacity obeys Cψ ≤ CΨ̂.

Proof.

CΨ =

∫ ∑
i∈Sf

Ri (h̄)dΨ(h̄) +

∫
dΨd(h)

∑
i∈Sd

Ri (h)

≤
∫ ∑

i∈Sf

Ri (h1, · · · , hLf +1, 0, · · · , 0)dΨ(h̄) +

∫
dΨd(h)

∑
i∈Sd

Ri (h)

=

∫ (∑
i∈Sf

Ri (h1, · · · , hLf
, h) +

∑
i∈Sd

Ri (h)

)
dΨ(h1, · · · , hLf

, h)
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Achievable Scheme

Lemma

CΨ ≥ CΨ̂

Proof.

ä Under TDM, let user i ∈ Sd transmit for a fraction
Pavg
i∑

i∈Sd
Pavg
i

.

ä The average rate of CΨ̂ is now achievable in each slot.

Theorem
Cψ is given by the sum-capacity of a two-user asymmetric CSI MAC with

Ψ̂f (h) =
∏
i∈Sf

Ψf (h) and Ψ̂d(h) = Ψd(h)

and the respective power constraints of |Sf |Pavg
f and

∑
i∈Sd

Pavg
i .
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Conclusion

ä We computed the power-controlled adaptive sum-capacity of some
popular Gaussian MACs with asymmetric state information at the
transmitters.

ä A threshold based power control is optimal for two users, which can
be extended to multiple users.

ä We believe that the same kind of behavior holds true even when the
informed set Sf has non-identical users.
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