On Fading MACs with Asymmetric CSI

Sibi Raj B. Pillai

Department of Electrical Engineering Indian Institute of Technology, Bombay

Kamal Singh, B. K. Dey

Bharti Center for Telecommunications, IIT Bombay

Block-fading channel with asymmetric CSI

Power control with average power constraints

CSI of some links are *protected/unrevealed* (eg. Cognitive Radios).

Block-fading channel with asymmetric CSI

> Power control with average power constraints

CSI of some links are *protected/unrevealed* (eg. Cognitive Radios).

- Block-fading channel with asymmetric CSI
- > Power control with average power constraints
- > CSI of some links are *protected/unrevealed* (eg. Cognitive Radios).

- Block-fading channel with asymmetric CSI
- > Power control with average power constraints
- > CSI of some links are *protected/unrevealed* (eg. Cognitive Radios).

Single User Power-Rate Strategies

> Channel law is $\Psi(h)$.

➤ Strategy
$$h \to (P(h), C(h^2 P(h)))$$
 where $C(x) \stackrel{\triangle}{=} \frac{1}{2} \log(1+x)$.

> Throughput

$$C_{sum} = rac{1}{2}\int \log(1+h^2P(h))d\Psi(h)$$
 subj to $\int P(h)d\Psi(h) = P^{avg}$.

Optimal Power [Goldsmith97]

$${{P}^{st}(h)=\left(rac{1}{\lambda}-rac{1}{|h|^{2}}
ight)^{+}}$$

Power-Rate Strategies

► Full CSI: opportunistic TDMA (best user) optimal [KH95].

Genrl CSI: adapt rate/power + coding across blocks [DasNarayan02]

Individual CSI and slow Fading: Adapt rate/power + block-wise coding and decoding [ElGamalKim11], [PillaiDey12], [Sreekumar13}].

► Full CSI: opportunistic TDMA (best user) optimal [KH95].

Genrl CSI: adapt rate/power + coding across blocks [DasNarayan02]

Individual CSI and slow Fading: Adapt rate/power + block-wise coding and decoding [ElGamalKim11], [PillaiDey12], [Sreekumar13}].

Power-Rate Strategies

- ► Full CSI: opportunistic TDMA (best user) optimal [KH95].
- Genrl CSI: adapt rate/power + coding across blocks [DasNarayan02]
- Individual CSI and slow Fading: Adapt rate/power + block-wise coding and decoding [ElGamalKim11], [PillaiDey12], [Sreekumar13}].

Adaptive Sum Capacity C_{Ψ}

$$\triangleright \hat{h}_i = \bar{h}\mathbb{I}_{\{h_i \in S_f\}} + h_i\mathbb{I}_{\{h_i \in S_d\}}.$$

> $P_i(\hat{h}_i), R_i(\hat{h}_i)$: power/rate of user *i*.

> Channels are continuous-valued, admitting respective pdfs.

$$\Psi(\bar{h}) = \prod_{i \in S_f} \Psi_f(h_i) \prod_{i \in S_d} \Psi_d(h_i).$$

> For simplicity: the average powers remain same within each group.

> The paper-version has limited $\Psi_f(\cdot)$ to Rayleigh (*not necessary*).

Adaptive Sum-capacity

$$C_{\Psi} = \max \int d\Psi(\bar{h}) \left(\sum_{j \in S_{f}} R_{j}(\bar{h}) + \sum_{i \in S_{d}} R_{i}(h_{i}) \right)$$

> Channels are continuous-valued, admitting respective pdfs.

$$\Psi(\bar{h}) = \prod_{i \in S_f} \Psi_f(h_i) \prod_{i \in S_d} \Psi_d(h_i).$$

For simplicity: the average powers remain same within each group.

> The paper-version has limited $\Psi_f(\cdot)$ to Rayleigh (*not necessary*).

Adaptive Sum-capacity

$$C_{\Psi} = \max \int d\Psi(\bar{h}) \left(\sum_{j \in S_f} R_j(\bar{h}) + \sum_{i \in S_d} R_i(h_i) \right)$$

$$C_{\Psi} = \max \int d\Psi(ar{h}) \sum_{j \in S_f} R_j(ar{h}) + \sum_{i \in S_d} \int R_i(h_i) d\Psi_d(h_i).$$

> Full CSI arguments [KnoppHumblet95] cannot be invoked as such, as the users in S_d do not know the best user.

The best user in S_f can improve the received signal power, and sum-rate¹.

$$C_\Psi = \max \int d\Psi(ar{h}) \sum_{j \in S_f} R_j(ar{h}) + \sum_{i \in S_d} \int R_i(h_i) d\Psi_d(h_i).$$

Claim: From the set S_f , it is sufficient to schedule arg max h_i^2 for transmission, while remaining users in this group stay silent.

Full CSI arguments [KnoppHumblet95] cannot be invoked as such, as the users in S_d do not know the best user.

The best user in S_f can improve the received signal power, and sum-rate¹.

$$C_\Psi = \max \int d\Psi(ar{h}) \sum_{j \in S_f} R_j(ar{h}) + \sum_{i \in S_d} \int R_i(h_i) d\Psi_d(h_i).$$

Claim: From the set S_f , it is sufficient to schedule arg max h_i^2 for transmission, while remaining users in this group stay silent.

➤ Full CSI arguments [KnoppHumblet95] cannot be invoked as such, as the users in S_d do not know the best user.

The best user in S_f can improve the received signal power, and sum-rate¹.

$$C_\Psi = \max \int d\Psi(ar{h}) \sum_{j \in S_f} R_j(ar{h}) + \sum_{i \in S_d} \int R_i(h_i) d\Psi_d(h_i).$$

Claim: From the set S_f , it is sufficient to schedule arg max h_i^2 for transmission, while remaining users in this group stay silent.

- ➤ Full CSI arguments [KnoppHumblet95] cannot be invoked as such, as the users in S_d do not know the best user.
- The best user in S_f can improve the received signal power, and sum-rate¹.

Theorem

 $\exists \ \lambda_1 \geq 0$ and a threshold function $\gamma(h_2)$ such that

$$C_{\Psi} = rac{1}{2}\mathbb{E}\left[\log(1+h_1^2P_1^*(h_1,h_2)+h_2^2P_2^*(h_2))
ight]$$

where

$$P_2^*(h_2) = \left(\frac{\gamma^2(h_2)}{\lambda_1 h_2^2} - \frac{1}{h_2^2}\right)^+ \mathbb{I}_{\{h_2 \neq 0\}} \text{ and } P_1^*(h_1, h_2) = \left(\frac{1}{\lambda_1} - \frac{\gamma^2(h_2)}{\lambda_1 h_1^2}\right)^+$$

> λ_1 and $\gamma(h_2)$ determined by $\int d\Psi(\bar{h}) P_i^*(\bar{h}) = P_i^{avg}, i = 1, 2.$

> Achievability: successive cancellation, user 1 followed by user 2.

► $\gamma(h_2) = \lambda_1$ whenever $P^*(h_2) = 0$, \Rightarrow usual water-filling for user 1.

Theorem

 $\exists \ \lambda_1 \geq 0$ and a threshold function $\gamma(h_2)$ such that

$$C_{\Psi} = rac{1}{2}\mathbb{E}\left[\log(1+h_1^2P_1^*(h_1,h_2)+h_2^2P_2^*(h_2))
ight]$$

where

$$P_2^*(h_2) = \left(\frac{\gamma^2(h_2)}{\lambda_1 h_2^2} - \frac{1}{h_2^2}\right)^+ \mathbb{I}_{\{h_2 \neq 0\}} \text{ and } P_1^*(h_1, h_2) = \left(\frac{1}{\lambda_1} - \frac{\gamma^2(h_2)}{\lambda_1 h_1^2}\right)^+$$

> λ_1 and $\gamma(h_2)$ determined by $\int d\Psi(\bar{h}) P_i^*(\bar{h}) = P_i^{avg}, i = 1, 2.$

Achievability: successive cancellation, user 1 followed by user 2.

► $\gamma(h_2) = \lambda_1$ whenever $P^*(h_2) = 0$, \Rightarrow usual water-filling for user 1.

Theorem

 $\exists \ \lambda_1 \geq 0$ and a threshold function $\gamma(h_2)$ such that

$$C_{\Psi} = rac{1}{2}\mathbb{E}\left[\log(1+h_1^2P_1^*(h_1,h_2)+h_2^2P_2^*(h_2))
ight]$$

where

$$P_2^*(h_2) = \left(\frac{\gamma^2(h_2)}{\lambda_1 h_2^2} - \frac{1}{h_2^2}\right)^+ \mathbb{I}_{\{h_2 \neq 0\}} \text{ and } P_1^*(h_1, h_2) = \left(\frac{1}{\lambda_1} - \frac{\gamma^2(h_2)}{\lambda_1 h_1^2}\right)^+$$

> λ_1 and $\gamma(h_2)$ determined by $\int d\Psi(\bar{h}) P_i^*(\bar{h}) = P_i^{avg}, i = 1, 2.$

> Achievability: successive cancellation, user 1 followed by user 2.

► $\gamma(h_2) = \lambda_1$ whenever $P^*(h_2) = 0$, \Rightarrow usual water-filling for user 1.

Theorem

 $\exists \ \lambda_1 \geq 0$ and a threshold function $\gamma(h_2)$ such that

$$C_{\Psi} = rac{1}{2}\mathbb{E}\left[\log(1+h_1^2P_1^*(h_1,h_2)+h_2^2P_2^*(h_2))
ight]$$

where

$$P_2^*(h_2) = \left(\frac{\gamma^2(h_2)}{\lambda_1 h_2^2} - \frac{1}{h_2^2}\right)^+ \mathbb{I}_{\{h_2 \neq 0\}} \text{ and } P_1^*(h_1, h_2) = \left(\frac{1}{\lambda_1} - \frac{\gamma^2(h_2)}{\lambda_1 h_1^2}\right)^+$$

- > λ_1 and $\gamma(h_2)$ determined by $\int d\Psi(\bar{h})P_i^*(\bar{h}) = P_i^{avg}, i = 1, 2.$
- > Achievability: successive cancellation, user 1 followed by user 2.
- ▶ $\gamma(h_2) = \lambda_1$ whenever $P^*(h_2) = 0$, \Rightarrow usual water-filling for user 1.

Waterfilling Illustration

Figure: Power allocation for User 1

The users cooperate to accommodate each other and maximize the sum-rate.

Waterfilling Illustration

Figure: Power allocation for User 1

The users cooperate to accommodate each other and maximize the sum-rate.

Comparison

10/13

$$\left(\sum_{i\in S_d} P_i^{avg}, 0, 0, \cdots, 0\right).$$

Lemma

The adaptive sum-capacity obeys $\mathcal{C}_\psi \leq \mathcal{C}_{\hat{\Psi}}$.

$$C_{\Psi} = \int \sum_{i \in S_f} R_i(\bar{h}) d\Psi(\bar{h}) + \int d\Psi_d(h) \sum_{i \in S_d} R_i(h)$$

$$\left(\sum_{i\in S_d} P_i^{avg}, 0, 0, \cdots, 0\right).$$

Lemma

The adaptive sum-capacity obeys $\mathcal{C}_\psi \leq \mathcal{C}_{\hat{\Psi}}.$

$$C_{\Psi} = \int \sum_{i \in S_f} R_i(ar{h}) d\Psi(ar{h}) + \int d\Psi_d(h) \sum_{i \in S_d} R_i(h)$$

$$\left(\sum_{i\in S_d} P_i^{avg}, 0, 0, \cdots, 0\right).$$

Lemma

The adaptive sum-capacity obeys $\mathcal{C}_\psi \leq \mathcal{C}_{\hat{\Psi}}.$

$$egin{aligned} C_\Psi &= \int \sum_{i \in S_f} R_i(ar{h}) d\Psi(ar{h}) + \int d\Psi_d(h) \sum_{i \in S_d} R_i(h) \ &\leq \int \sum_{i \in S_f} R_i(h_1, \cdots, h_{L_f+1}, 0, \cdots, 0) d\Psi(ar{h}) + \int d\Psi_d(h) \sum_{i \in S_d} R_i(h) \end{aligned}$$

$$\left(\sum_{i\in S_d} P_i^{avg}, 0, 0, \cdots, 0\right).$$

Lemma

The adaptive sum-capacity obeys $\mathcal{C}_\psi \leq \mathcal{C}_{\hat{\Psi}}.$

$$C_{\Psi} = \int \sum_{i \in S_{f}} R_{i}(\bar{h}) d\Psi(\bar{h}) + \int d\Psi_{d}(h) \sum_{i \in S_{d}} R_{i}(h)$$

$$\leq \int \sum_{i \in S_{f}} R_{i}(h_{1}, \cdots, h_{L_{f}+1}, 0, \cdots, 0) d\Psi(\bar{h}) + \int d\Psi_{d}(h) \sum_{i \in S_{d}} R_{i}(h)$$

$$= \int \left(\sum_{i \in S_{f}} R_{i}(h_{1}, \cdots, h_{L_{f}}, h) + \sum_{i \in S_{d}} R_{i}(h) \right) d\Psi(h_{1}, \cdots, h_{L_{f}}, h)$$

Lemma

$$C_{\Psi} \geq C_{\hat{\Psi}}$$

- ► Under TDM, let user $i \in S_d$ transmit for a fraction $\frac{P_i^{\text{avg}}}{\sum_{i \in S_d} P_i^{\text{avg}}}$.
- > The average rate of $C_{\hat{\Psi}}$ is now achievable in each slot.

Lemma

$$C_{\Psi} \geq C_{\hat{\Psi}}$$

Proof.

- ► Under TDM, let user $i \in S_d$ transmit for a fraction $\frac{P_i^{avg}}{\sum_{i \in S_d} P_i^{avg}}$.
- > The average rate of $C_{\hat{\Psi}}$ is now achievable in each slot.

Theorem C_{ψ} is given by the sum-capacity of a two-user asymmetric CSI MAC with

$$\hat{\Psi}_f(h) = \prod_{i \in S_f} \Psi_f(h)$$
 and $\hat{\Psi}_d(h) = \Psi_d(h)$

and the respective power constraints of $|S_f|P_f^{avg}$ and $\sum_{i \in S_d} P_i^{avg}$.

- We computed the power-controlled adaptive sum-capacity of some popular Gaussian MACs with asymmetric state information at the transmitters.
- A threshold based power control is optimal for two users, which can be extended to multiple users.
- We believe that the same kind of behavior holds true even when the informed set S_f has non-identical users.

