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hii = 1, h2ij = ε
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Dynamic vs Static

Dynamic Schemes

Dynamically time varying power profile for each user.

Each user should confine to an average power constraint of Pavg .

Static Schemes

Transmission power is chosen at the start of communication.

Each user has a peak power constraint of Pmax .
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Convex or Concave
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Dynamic Allocation
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Case II

αaC (Pa) + αbC (Pb) ≤ C (2Pavg )

This rate is achieved by FDM with the active user at 2Pavg
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Many Modes, N Users

Theorem: Dynamic Power Allocation

At most N + 1 modes are required to achieve the maximal sum-rate.

û For ε ≤ ε∗, transmit full blast, with all users at Pavg .

û For ε ≥ ε∗∗, use FDM/TDM with the active user at NPavg .

û Otherwise, time-share between the above two.



Static Allocation

Useful to constrain the peak power in many situations

Power allocation is chosen at the start of transmission
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∑

yi and x1 + · ·+xj ≥ y1 + · ·+yj

For a Schur-convex function f (·, ·), if x � y, then f (x) ≥ f (y)
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Two Power Levels

J(P, k, l) = kC

(
Pmax

1 + ε(k − 1)Pmax + εlP
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+ lC

(
P

1 + εkPmax + ε(l − 1)P

)

J ′(P, k, l) =
aP2 + bP + c

Poly(P)
; J ′(Pmax , k, l) ≥ 0

We can find the maximum in 0(N) steps.

Let us assume that there are only two power levels, i.e., P ∈ {0,Pmax}.

How many active users are there in the optimal scheme ?
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All or One

Theorem: Optimal Active Users (Nopt)

If P ∈ {0,Pmax}, then

I Nopt = N whenever ε ≤ εN1.

I Nopt = 1 whenever ε > εN1.

εN1 =
(1 + Pmax)− (1 + Pmax)

1
n

(n − 1)Pmax [(1 + Pmax)
1
n − 1]

.

Much more simple to understand the
limiting behaviour

lim
N→∞

εN1 =
1

log(1 + Pmax)
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Power Level P
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Conclusion

The interference channel is a model of fundamental significance in
multi-user networks.

The capacity region is unknown even in the Gaussian setting.

We proposed an optimal power allocation strategy when each user
treats other transmissions as Gaussian noise.

Even if dynamic time-varying transmit powers are allowed, at most
N + 1 modes are sufficient for maximizing the sum-rate.
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