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Shannon’s Theory | Shannon'48
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Fig. 1—Schematic diagram of a general communication system.
Discrete AWGN Capacity is log(1 + SNR) Ash'65, Wyner'68
C(SNR) is an engineering quantity

@ A particular kind of signals, Sampling, Receiver Structure
@ It is a lower bound




Dynamic vs Static |

@ Dynamically time varying power profile for each user.

@ Each user should confine to an average power constraint of Pjy,.

@ Transmission power is chosen at the start of communication.

@ Each user has a peak power constraint of Pp,.x.
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Xo

X1

Py
Ru(Py, Py) =
Y1 = 1(P1, P2) C<1+€P2>

maximize

subject to

PB
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Theorem: Convexity of Sumrate Coym(P, €, 0, ")

*» a concave function for e < €*

€ = /o YT 7 a+§_ﬁ

*» a convex function for € > €*

*» a constant function for € = €*
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aaRy+ Ry <Y aJmax{2C<l+ PJ/2> C(P)}

je{a,b}

P2 /2 Pb/2 P
20—t Yol (g I Yol L S
@2C (1 +eP3/2> tan <1+6Pb/2) = (1+6Pavg

Case Il

@2C(P?) 4+ apC(P?) < C(2P.y)
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Many Modes, N Users |

Theorem: Dynamic Power Allocation

At most N 4+ 1 modes are required to achieve the maximal sum-rate.

*+ For € < €*, transmit full blast, with all users at P,,.
*+ For e > €**, use FDM/TDM with the active user at NP,g.

o+ Otherwise, time-share between the above two.
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@ Useful to constrain the peak power in many situations

@ Power allocation is chosen at the start of transmission

Concave Convex

@ For a Schur-convex function f(-,-), if x =y, then f(x) > f(y)
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Many Users |
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@ At most two non-zero power levels to maximize the sum-rate

==
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Two Power Levels

Prax P
Pk 1) = ke (1 + e(k — 1) Prmax + elP> e (1 + kPmax + €(/ — 1)P>

aP?> + bP + ¢

J(P k1) = oy (P) :

I (Pmax, k, 1) > 0

@ We can find the maximum in O(/N) steps.
@ Let us assume that there are only two power levels, i.e., P € {0, Ppnax}.

@ How many active users are there in the optimal scheme 7




All or One |

Theorem: Optimal Active Users (Nop:)
If P € {0, Pyax}, then

> Nope = N whenever € < epy.

> Nopr = 1 whenever € > epj.

(1 + Prax) = (14 Prmax)"

N = D) P+ Po) s — 1
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Theorem: Optimal Active Users (Nop:)
If P € {0, Pyax}, then

> Nop: = N whenever € < ep;.

> Nopt =1 whenever € > ey;.

(1 + Pmax) - (1 + Pmax)%
(1 — 1) Prmax[(1 + Prax)s — 1]

ENL —

Much more simple to understand the
limiting behaviour

1
li =
NE)noo Nt log(1 + Ppmax)
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Phase Transition |

No. of active users

€N1
Crossover Gain (e)




Power Level P |

PmaX P
J(P,k, 1) = kC
( ) (l—i-e(k—l)Pmax—l-elP) +/C<1+ekPmax+e(l—1)P>

aP?> + bP + ¢

TPk D) = 5oy iy

J'(Prmax, k, 1) >0
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Local Maximas

J(P, k,I): sum-rate

k=2,1=1,Ppa =50 k users at P,y
| users at P
J(P, k1) —e=0.332
— e =0.345
— ¢=0.350
J =0
Pmax

Power P —

@ The local maxima prevails when € > €4
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@ The local maxima has little effect on the global solution




Conclusion |

The interference channel is a model of fundamental significance in
multi-user networks.

The capacity region is unknown even in the Gaussian setting.

We proposed an optimal power allocation strategy when each user
treats other transmissions as Gaussian noise.

Even if dynamic time-varying transmit powers are allowed, at most
N + 1 modes are sufficient for maximizing the sum-rate.
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