Interference Management in Wireless Networks

Sibi Raj B Pillai

IIT Bombay
$1 / 21$

Jointly with: Stephen Hanly et al

- Interference Channels
- Symmetric Model with Many Links
- A Dynamic Power Allocation Problem
- Static Problem with a Peak Constraint
- Conclusion
- Interference Channels
- Symmetric Model with Many Links
- A Dynamic Power Allocation Problem
- Static Problem with a Peak Constraint
- Conclusion
- Interference Channels
- Symmetric Model with Many Links
- A Dynamic Power Allocation Problem
- Static Problem with a Peak Constraint
- Conclusion
- Interference Channels
- Symmetric Model with Many Links
- A Dynamic Power Allocation Problem
- Static Problem with a Peak Constraint
- Conclusion
- Interference Channels
- Symmetric Model with Many Links
- A Dynamic Power Allocation Problem
- Static Problem with a Peak Constraint
- Conclusion

Interference Channels

* A long standing open problem

$$
\begin{gathered}
Y_{i}=h_{i i} X_{i}+\sum_{i \neq j} h_{j i} X_{j}+Z_{i} \\
Z_{i} \sim N\left(0, \sigma^{2}\right)
\end{gathered}
$$

Interference Channels

- A long standing open problem
- Wide applications

$$
\begin{aligned}
& Y_{i}=h_{i i} X_{i}+\sum_{i \neq j} h_{j i} X_{j}+Z_{i} \\
& Z_{i} \sim N\left(0, \sigma^{2}\right)
\end{aligned}
$$

Interference Channels

* A long standing open problem
* Wide applications
* Significant progress recently ETseW'06, TelTse'07

$$
\left.\begin{array}{c}
Y_{i}=h_{i i} X_{i}+\sum_{i \neq j} h_{j i} X_{j}+Z_{i} \\
Z_{i}
\end{array}\right) N\left(0, \sigma^{2}\right)
$$

Interference Channels

* A long standing open problem
* Wide applications
* Significant progress recently

ETseW'06, TelTse'07

$$
\begin{gathered}
Y_{i}=h_{i i} X_{i}+\sum_{i \neq j} h_{j i} X_{j}+Z_{i} \\
Z_{i} \sim N\left(0, \sigma^{2}\right)
\end{gathered}
$$

Shannon's Theory

Fig. 1-Schematic diagram of a general communication system.

Shannon's Theory

Fig. 1-Schematic diagram of a general communication system.

Shannon's Theory

Fig. 1-Schematic diagram of a general communication system.
Discrete AWGN Capacity is $\log (1+S N R)$ Ash'65, Wyner'68
\square

Fig. 1-Schematic diagram of a general communication system.
Discrete AWGN Capacity is $\log (1+S N R)$ Ash'65, Wyner'68
$C(S N R)$ is an engineering quantity

- A particular kind of signals, Sampling, Receiver Structure
- It is a lower bound

Dynamic vs Static

Dynamic Schemes

- Dynamically time varying power profile for each user.
- Each user should confine to an average power constraint of $P_{\text {avg }}$.

Static Schemes

- Transmission power is chosen at the start of communication.
- Each user has a peak power constraint of $P_{\max }$.

With two users, ON-OFF strategies are optimal $\mathrm{BaEvHa}{ }^{\prime} 08$

Motivation

With two users, ON-OFF strategies are optimal $\mathrm{BaEvHa}^{\prime} 08$

With two users, ON-OFF strategies are optimal $\mathrm{BaEvHa}{ }^{\prime} 08$

With two users, ON-OFF strategies are optimal $\mathrm{BaEvHa}^{\prime} 08$

Two User Model

Mode a

Mode b

Two User Model

maximize $\quad \alpha_{a} R_{a}+\alpha_{b} R_{b}$
subject to

$$
\begin{aligned}
& \alpha_{a} P_{1}^{a}+\alpha_{b} P_{1}^{b} \leq P_{\text {avg }} \\
& \alpha_{a} P_{2}^{a}+\alpha_{b} P_{2}^{b} \leq P_{\text {avg }}
\end{aligned}
$$

Mode a

Convex or Concave

Theorem: Convexity of Sumrate $C_{\text {sum }}(\hat{P}, \epsilon, \sigma, \cdot)$
-r a concave function for $\epsilon \leq \epsilon^{*}$

- a convex function for $\epsilon \geq \epsilon^{*}$

$$
\epsilon^{*}=\sqrt{\sigma} \frac{\sqrt{\sigma+\hat{P}}-\sqrt{\sigma}}{\hat{\rho}}
$$

* a constant function for $\epsilon=\epsilon^{*}$

Dynamic Allocation

$$
\alpha_{a} R_{a}+\alpha_{b} R_{b} \leq \sum_{j \in\{a, b\}} \alpha_{j} \max \left\{2 C\left(\frac{P^{j} / 2}{1+\epsilon P^{j} / 2}\right), C\left(P^{j}\right)\right\}
$$

Dynamic Allocation

$$
\alpha_{a} R_{a}+\alpha_{b} R_{b} \leq \sum_{j \in\{a, b\}} \alpha_{j} \max \left\{2 C\left(\frac{P^{j} / 2}{1+\epsilon P^{j} / 2}\right), C\left(P^{j}\right)\right\}
$$

Case I

$$
\alpha_{a} 2 C\left(\frac{P^{a} / 2}{1+\epsilon P^{a} / 2}\right)+\alpha_{b} 2 C\left(\frac{P^{b} / 2}{1+\epsilon P^{b} / 2}\right) \leq 2 C\left(\frac{P_{a v g}}{1+\epsilon P_{a v g}}\right)
$$

- This rate is achieved by transmitting both users at $P_{\text {avg }}$

Dynamic Allocation

$$
\alpha_{a} R_{a}+\alpha_{b} R_{b} \leq \sum_{j \in\{a, b\}} \alpha_{j} \max \left\{2 C\left(\frac{P^{j} / 2}{1+\epsilon P^{j} / 2}\right), C\left(P^{j}\right)\right\}
$$

Case I

$$
\alpha_{a} 2 C\left(\frac{P^{a} / 2}{1+\epsilon P^{a} / 2}\right)+\alpha_{b} 2 C\left(\frac{P^{b} / 2}{1+\epsilon P^{b} / 2}\right) \leq 2 C\left(\frac{P_{a v g}}{1+\epsilon P_{a v g}}\right)
$$

- This rate is achieved by transmitting both users at $P_{\text {avg }}$

Case II

$$
\alpha_{a} C\left(P^{a}\right)+\alpha_{b} C\left(P^{b}\right) \leq C\left(2 P_{a v g}\right)
$$

- This rate is achieved by FDM with the active user at $2 P_{\text {avg }}$

Case III

Case III

Case III

Many Modes, N Users

Theorem: Dynamic Power Allocation
At most $N+1$ modes are required to achieve the maximal sum-rate.

- For $\epsilon \leq \epsilon^{*}$, transmit full blast, with all users at $P_{\text {avg }}$.
* For $\epsilon \geq \epsilon^{* *}$, use FDM/TDM with the active user at $N P_{\text {avg }}$.
* Otherwise, time-share between the above two.

Static Allocation

- Useful to constrain the peak power in many situations
- Power allocation is chosen at the start of transmission

Static Allocation

- Useful to constrain the peak power in many situations
- Power allocation is chosen at the start of transmission

> Concave

Static Allocation

- Useful to constrain the peak power in many situations
- Power allocation is chosen at the start of transmission

Concave

Static Allocation

- Useful to constrain the peak power in many situations
- Power allocation is chosen at the start of transmission

Static Allocation

- Useful to constrain the peak power in many situations
- Power allocation is chosen at the start of transmission

Static Allocation

- Useful to constrain the peak power in many situations
- Power allocation is chosen at the start of transmission

Static Allocation

- Useful to constrain the peak power in many situations
- Power allocation is chosen at the start of transmission

Majorization $(x \succeq y) \quad \sum x_{i}=\sum y_{i} \quad$ and $\quad x_{1}+\cdots+x_{j} \geq y_{1}+\cdots+y_{j}$

Static Allocation

- Useful to constrain the peak power in many situations
- Power allocation is chosen at the start of transmission

Majorization $(x \succeq y) \quad \sum x_{i}=\sum y_{i} \quad$ and $\quad x_{1}+\cdots+x_{j} \geq y_{1}+\cdots+y_{j}$

- For a Schur-convex function $f(\cdot, \cdot)$, if $x \succeq y$, then $f(x) \geq f(y)$

$$
\sum_{i}^{p_{i}}=\sum_{C}^{c}\left(\frac{p_{i}}{1+\sum_{i \neq i}^{p_{i}}}\right)
$$

$$
\sum_{i}^{p_{i}}=\sum_{C}^{c}\left(\frac{p_{i}}{1+\sum_{i \neq i}^{p_{i}}}\right)
$$

$$
\sum_{i}^{p_{i}}=\sum_{i}^{c}\left(\frac{p_{i}}{1+\sum_{i \neq}^{p_{i}}}\right)
$$

Many Users

$$
\sum_{i} R_{i}=\sum_{i} C\left(\frac{P_{i}}{1+\epsilon \sum_{j \neq i} P_{j}}\right)
$$

- At most two non-zero power levels to maximize the sum-rate

Two Power Levels

$$
\begin{gathered}
J(P, k, l)=k C\left(\frac{P_{\max }}{1+\epsilon(k-1) P_{\max }+\epsilon I P}\right)+I C\left(\frac{P}{1+\epsilon k P_{\max }+\epsilon(I-1) P}\right) \\
J^{\prime}(P, k, l)=\frac{a P^{2}+b P+c}{\operatorname{Poly}(P)} \quad ; \quad J^{\prime}\left(P_{\max }, k, l\right) \geq 0
\end{gathered}
$$

Two Power Levels

$$
\begin{gathered}
J(P, k, l)=k C\left(\frac{P_{\max }}{1+\epsilon(k-1) P_{\max }+\epsilon I P}\right)+I C\left(\frac{P}{1+\epsilon k P_{\max }+\epsilon(I-1) P}\right) \\
J^{\prime}(P, k, l)=\frac{a P^{2}+b P+c}{\operatorname{Poly}(P)} ; \quad J^{\prime}\left(P_{\max }, k, l\right) \geq 0
\end{gathered}
$$

- We can find the maximum in $0(N)$ steps.

Two Power Levels

$$
\begin{gathered}
J(P, k, l)=k C\left(\frac{P_{\max }}{1+\epsilon(k-1) P_{\max }+\epsilon I P}\right)+I C\left(\frac{P}{1+\epsilon k P_{\max }+\epsilon(I-1) P}\right) \\
J^{\prime}(P, k, l)=\frac{a P^{2}+b P+c}{\operatorname{Poly}(P)} ; \quad J^{\prime}\left(P_{\max }, k, l\right) \geq 0
\end{gathered}
$$

- We can find the maximum in $0(N)$ steps.
- Let us assume that there are only two power levels, i.e., $P \in\left\{0, P_{\max }\right\}$.

Two Power Levels

$$
\begin{gathered}
J(P, k, l)=k C\left(\frac{P_{\max }}{1+\epsilon(k-1) P_{\max }+\epsilon I P}\right)+I C\left(\frac{P}{1+\epsilon k P_{\max }+\epsilon(I-1) P}\right) \\
J^{\prime}(P, k, l)=\frac{a P^{2}+b P+c}{\operatorname{Poly}(P)} ; \quad J^{\prime}\left(P_{\max }, k, l\right) \geq 0
\end{gathered}
$$

- We can find the maximum in $0(N)$ steps.
- Let us assume that there are only two power levels, i.e., $P \in\left\{0, P_{\max }\right\}$.
- How many active users are there in the optimal scheme ?

Theorem: Optimal Active Users ($N_{\text {opt }}$)
If $P \in\left\{0, P_{\max }\right\}$, then

- $N_{\text {opt }}=N$ whenever $\epsilon \leq \epsilon_{N 1}$.
- $N_{\text {opt }}=1$ whenever $\epsilon>\epsilon_{N 1}$.

$$
\epsilon_{N 1}=\frac{\left(1+P_{\max }\right)-\left(1+P_{\max }\right)^{\frac{1}{n}}}{(n-1) P_{\max }\left[\left(1+P_{\max }\right)^{\frac{1}{n}}-1\right]} .
$$

All or One

Theorem: Optimal Active Users ($N_{\text {opt }}$)
If $P \in\left\{0, P_{\max }\right\}$, then

- $N_{\text {opt }}=N$ whenever $\epsilon \leq \epsilon_{N 1}$.
- $N_{\text {opt }}=1$ whenever $\epsilon>\epsilon_{N 1}$.

$$
\epsilon_{N 1}=\frac{\left(1+P_{\max }\right)-\left(1+P_{\max }\right)^{\frac{1}{n}}}{(n-1) P_{\max }\left[\left(1+P_{\max }\right)^{\frac{1}{n}}-1\right]} .
$$

Much more simple to understand the limiting behaviour

$$
\lim _{N \rightarrow \infty} \epsilon_{N 1}=\frac{1}{\log \left(1+P_{\max }\right)}
$$

Phase Transition

Phase Transition

Phase Transition

Phase Transition

Power Level P

$$
\begin{gathered}
J(P, k, l)=k C\left(\frac{P_{\max }}{1+\epsilon(k-1) P_{\max }+\epsilon I P}\right)+I C\left(\frac{P}{1+\epsilon k P_{\max }+\epsilon(I-1) P}\right) \\
J^{\prime}(P, k, l)=\frac{a P^{2}+b P+c}{\operatorname{Poly}(P)} \quad ; \quad J^{\prime}\left(P_{\max }, k, l\right) \geq 0
\end{gathered}
$$

Local Maximas

Power $P \rightarrow$

- The local maxima prevails when $\epsilon>\epsilon_{d}$

Maximas but?

Maximas but?

Maximas but?

- The local maxima has little effect on the global solution

The interference channel is a model of fundamental significance in multi-user networks.

The capacity region is unknown even in the Gaussian setting.

We proposed an optimal power allocation strategy when each user treats other transmissions as Gaussian noise.

Even if dynamic time-varying transmit powers are allowed, at most $N+1$ modes are sufficient for maximizing the sum-rate.

For details
S. R. B. et al,'Maximizing the sum-rate in symmetric n / w of interfering links", IEEE Trans on Information Theory, September 2010.

