

C2000™ Piccolo™ Workshop

Workshop Guide and Lab Manual

Technical Training

Organization

F28xPmdw
Revision 1.0
September 2009

Important Notice

Important Notice
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not
necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are used. TI’s publication of
information regarding any third party’s products or services does not constitute TI’s approval, warranty or
endorsement thereof.

Copyright © 2009 Texas Instruments Incorporated

Revision History
September 2009 – Revision 1.0

Mailing Address
Texas Instruments
Training Technical Organization
7839 Churchill Way
M/S 3984
Dallas, Texas 75251-1903

ii C2000 Piccolo Workshop - Introduction

 C2000™ Piccolo™ Workshop

C2000™ Piccolo™ Workshop

C2000™ Piccolo™ Workshop

Texas Instruments
Technical Training

Copyright © 2009 Texas Instruments. All rights reserved.Technical Training
Organization

T TO
C2000 and Piccolo are trademarks of Texas Instruments.

Introductions

Introductions

Name
Company
Project Responsibilities
DSP / Microcontroller Experience
TMS320 Processor Experience
Hardware / Software - Assembly / C
Interests

C2000 Piccolo Workshop - Introduction iii

C2000™ Piccolo™ Workshop

C2000™ Piccolo™ Workshop Outline

C2000™ Piccolo™ Workshop Outline
1. Architecture Overview
2. Programming Development Environment

Lab: Linker command file
3. Peripheral Register Header Files
4. Reset and Interrupts
5. System Initialization

Lab: Watchdog and interrupts
6. Analog-to-Digital Converter

Lab: Build a data acquisition system
7. Control Peripherals

Lab: Generate and graph a PWM waveform
8. Numerical Concepts and IQ Math

Lab: Low-pass filter the PWM waveform
9. Control Law Accelerator (CLA)

Lab: Use CLA to filter PWM waveform
10. System Design

Lab: Run the code from flash memory
11. Communications
12. DSP/BIOS

Lab: Run DSP/BIOS code from flash memory
13. Support Resources

C2000™ Experimenter Kit

Piccolo™ Experimenter Kit

ControlCARD

USB Docking Station

iv C2000 Piccolo Workshop - Introduction

Architecture Overview

Introduction
This architectural overview introduces the basic architecture of the C2000™ Piccolo™ series of
microcontrollers from Texas Instruments. The Piccolo™ series adds a new level of general
purpose processing ability unseen in any previous DSP/MCU chips. The C2000™ is ideal for
applications combining digital signal processing, microcontroller processing, efficient C code
execution, and operating system tasks.

Unless otherwise noted, the terms C28x, F28x and F2803x refer to TMS320F2803x devices
throughout the remainder of these notes. For specific details and differences please refer to the
device data sheet and user’s guide.

Learning Objectives
When this module is complete, you should have a basic understanding of the F28x architecture
and how all of its components work together to create a high-end, uniprocessor control system.

Learning Objectives

Review the F28x block diagram
and device features
Describe the F28x bus structure
and memory map
Identify the various memory
blocks on the F28x
Identify the peripherals available
on the F28x

C2000 Piccolo Workshop - Architecture Overview 1 - 1

Module Topics

Module Topics
Architecture Overview.. 1-1

Module Topics... 1-2
What is the TMS320C2000™?.. 1-3

TMS320C2000™ Internal Bussing .. 1-4
F28x CPU ... 1-5

Special Instructions... 1-6
Pipeline Advantage... 1-7

Memory ... 1-8
Memory Map .. 1-8
Code Security Module (CSM).. 1-9
Peripherals .. 1-9

Fast Interrupt Response ...1-10
F28x Mode ...1-11
Reset...1-12
Summary ..1-13

1 - 2 C2000 Piccolo Workshop - Architecture Overview

 What is the TMS320C2000™?

What is the TMS320C2000™?
The TMS320C2000™ is a 32-bit fixed point microcontroller that specializes in high performance
control applications such as, robotics, industrial automation, mass storage devices, lighting,
optical networking, power supplies, and other control applications needing a single processor to
solve a high performance application.

TMS320F2803x Block Diagram

32x32 bit
Multiplier

Sectored
Flash

Program Bus

Data Bus

RAM
Boot
ROM

32-bit
Auxiliary
Registers

3
32-bit

Timers

Real-Time
JTAG

Emulation CPU
Register Bus

R-M-W
Atomic

ALU

PIE
Interrupt
Manager

eQEP

12-bit ADC

Watchdog

CAN 2.0B

I2C

SCI

SPI

GPIO

ePWM

eCAP

CLA

LIN

CLA Bus

The F2803x architecture can be divided into 3 functional blocks:

• CPU and busing

• Memory

• Peripherals

C2000 Piccolo Workshop - Architecture Overview 1 - 3

What is the TMS320C2000™?

TMS320C2000™ Internal Bussing
As with many DSP-type devices, multiple busses are used to move data between the memories
and peripherals and the CPU. The F28x memory bus architecture contains:

• A program read bus (22-bit address line and 32-bit data line)

• A data read bus (32-bit address line and 32-bit data line)

• A data write bus (32-bit address line and 32-bit data line)

Program-read Data Bus (32)

F28x CPU Internal Bus Structure

Data-write Address Bus (32)

Program Address Bus (22)

Execution

R-M-W
Atomic

ALU

Real-Time
JTAG

Emulation

Program

Decoder
PC

XAR0
to

XAR7

SP
DP @X

ARAU MPY32x32

XT
P

ACC

ALU

Registers Debug

Register Bus / Result Bus

Data/Program-write Data Bus (32)

Data-read Address Bus (32)

Data-read Data Bus (32)

CLA

Program
Memory

Data
Memory

Peripherals

External
Interface

The 32-bit-wide data busses enable single cycle 32-bit operations. This multiple bus architecture,
known as a Harvard Bus Architecture enables the F28x to fetch an instruction, read a data value
and write a data value in a single cycle. All peripherals and memories are attached to the memory
bus and will prioritize memory accesses.

1 - 4 C2000 Piccolo Workshop - Architecture Overview

 F28x CPU

F28x CPU
The F28x is a highly integrated, high performance solution for demanding control applications.
The F28x is a cross between a general purpose microcontroller and a digital signal processor,
balancing the code density of a RISC processor and the execution speed of a DSP with the
architecture, firmware, and development tools of a microcontroller.

The DSP features include a modified Harvard architecture and circular addressing. The RISC
features are single-cycle instruction execution, register-to-register operations, and a modified
Harvard architecture. The microcontroller features include ease of use through an intuitive
instruction set, byte packing and unpacking, and bit manipulation.

F28x and CLA
MCU/DSP balancing code
density & execution time

16-bit instructions for
improved code density
32-bit instructions for
improved execution time

32-bit fixed-point CPU
32x32 fixed-point MAC,
doubles as dual 16x16 MAC
Parallel processing Control
Law Accelerator (CLA) adds
IEEE Single-precision 32-bit
floating point math operations
CLA algorithm execution is
independent of the main CPU
Fast interrupt service time
Single cycle read-modify-write
instructions
Unique real-time debugging
capabilities

Data Bus

3
32-bit

Timers
CPU

Register Bus

Program Bus

PIE
Interrupt
Manager32x32 bit

Multiplier

32-bit
Auxiliary
Registers

R-M-W
Atomic

ALU
CLA

CLA Bus

The F28x design supports an efficient C engine with hardware that allows the C compiler to
generate compact code. Multiple busses and an internal register bus allow an efficient and
flexible way to operate on the data. The architecture is also supported by powerful addressing
modes, which allow the compiler as well as the assembly programmer to generate compact code
that is almost one to one corresponded to the C code.

The F28x is as efficient in DSP math tasks as it is in system control tasks. This efficiency
removes the need for a second processor in many systems. The 32 x 32-bit MAC capabilities of
the F28x and its 64-bit processing capabilities, enable the F28x to efficiently handle higher
numerical resolution problems that would otherwise demand a more expensive solution. Along
with this is the capability to perform two 16 x 16-bit multiply accumulate instructions
simultaneously or Dual MACs (DMAC). Also, some devices feature a floating-point unit.

The, F28x is source code compatible with the 24x/240x devices and previously written code can
be reassembled to run on a F28x device, allowing for migration of existing code onto the F28x.

C2000 Piccolo Workshop - Architecture Overview 1 - 5

F28x CPU

Special Instructions

F28x Atomic Read/Modify/Write

Registers ALU / MPY

LOAD

STORE

WRITE

READ

CPU Mem

Atomic Instructions Benefits:

Simpler programming

Smaller, faster code

Uninterruptible (Atomic)

More efficient compiler

AND *XAR2,#1234h

2 words / 1 cycles

Atomic Read/Modify/Write

MOV AL,*XAR2
AND AL,#1234h
MOV *XAR2,AL

DINT

EINT

6 words / 6 cycles

Standard Load/Store

Atomics are small common instructions that are non-interuptable. The atomic ALU capability
supports instructions and code that manages tasks and processes. These instructions usually
execute several cycles faster than traditional coding.

1 - 6 C2000 Piccolo Workshop - Architecture Overview

 F28x CPU

Pipeline Advantage

F1 F2 D1 D2 R1 R2 E

F28x Pipeline

Protected Pipeline

Order of results are as written in
source code

Programmer need not worry about
the pipeline

8-stage pipeline
F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

F1 F2 D1 D2 R1 R2 E

A
B
C

D
E
F
G

W

W

W

W

W

W

W

W

E & G Access
same address

R1 R2 E W

D2 R1 R2 E W

F1: Instruction Address
F2: Instruction Content
D1: Decode Instruction
D2: Resolve Operand Addr
R1: Operand Address
R2: Get Operand
E: CPU doing “real” work
W: store content to memory

H

The F28x uses a special 8-stage protected pipeline to maximize the throughput. This protected
pipeline prevents a write to and a read from the same location from occurring out of order.

This pipelining also enables the F28x to execute at high speeds without resorting to expensive
high-speed memories. Special branch-look-ahead hardware minimizes the latency for conditional
discontinuities. Special store conditional operations further improve performance.

C2000 Piccolo Workshop - Architecture Overview 1 - 7

Memory

Memory
The memory space on the F28x is divided into program memory and data memory. There are
several different types of memory available that can be used as both program memory and data
memory. They include the flash memory, single access RAM (SARAM), OTP, and Boot ROM
which is factory programmed with boot software routines or standard tables used in math related
algorithms.

Memory Map
The F28x CPU contains no memory, but can access memory on chip. The F28x uses 32-bit data
addresses and 22-bit program addresses. This allows for a total address reach of 4G words (1
word = 16-bits) in data memory and 4M words in program memory. Memory blocks on all F28x
designs are uniformly mapped to both program and data space.

This memory map shows the different blocks of memory available to the program and data space.

TMS320F28035 Memory Map

0x000000
0x000400
0x000800

M1 SARAM (1Kw)
M0 SARAM (1Kw)
Data Program

PIE Vectors
(256 w)

PF 0 (6Kw)
reserved

PF 1 (4Kw)
PF 2 (4Kw)

L0 SARAM (2Kw)
L1 DPSARAM (1Kw)
L2 DPSARAM (1Kw)
L3 DPSARAM (4Kw)

0x000D00

0x002000
0x006000
0x007000
0x008000
0x008800
0x008C00

0x00A000

0x000E00

0x009000

0x3D7800
0x3D7C00
0x3D7C80

reserved

Data Program

FLASH (64Kw)

PASSWORDS (8w)

User OTP (1Kw)

0x3D8000
0x3D7C80

0x3E8000

Boot ROM (8Kw)

L0 SARAM (2Kw)
reserved

0x3F7FF8
0x3F8000
0x3F8800
0x3FE000

0x3FFFFF

Dual Mapped: L0

CSM Protected:
L0, L1, L2, L3, OTP
FLASH, ADC CAL,
Flash Regs in PF0

0x3FFFC0
BROM Vectors (64w)

reserved

reserved

ADC / OSC cal. data

Dual-Port RAM: L1, L2 & L3
(accessible by CPU & CLA)

1 - 8 C2000 Piccolo Workshop - Architecture Overview

 Memory

Code Security Module (CSM)

Code Security Module
Prevents reverse engineering and
protects valuable intellectual property

128-bit user defined password is stored in Flash
128-bits = 2128 = 3.4 x 1038 possible passwords
To try 1 password every 8 cycles at 60 MHz, it
would take at least 1.4 x 1024 years to try all
possible combinations!

L0 SARAM (2Kw)
L1 DPSARAM (1Kw)
L2 DPSARAM (1Kw)
L3 DPSARAM (4Kw)

User OTP (1Kw)

ADC / OSC cal. data

L0 SARAM (2Kw)

reserved

reserved
Dual
Mapped

FLASH (64Kw)
PASSWORDS (8w)

reserved

0x008000
0x008800
0x008C00

0x00A000
0x009000

0x3D7800
0x3D7C00
0x3D7C80
0x3D8000
0x3E8000
0x3F7FF8
0x3F8000
0x3F8800

Peripherals
The F28x comes with many built in peripherals optimized to support control applications. These
peripherals vary depending on which F28x device you choose.

• ePWM • SPI

• eCAP • SCI

• eQEP • I2C

• Analog-to-Digital Converter • LIN

• Watchdog Timer • CAN

• CLA • GPIO

C2000 Piccolo Workshop - Architecture Overview 1 - 9

Fast Interrupt Response

Fast Interrupt Response
The fast interrupt response, with automatic context save of critical registers, resulting in a device
that is capable of servicing many asynchronous events with minimal latency. F28x implements a
zero cycle penalty to do 14 registers context saved and restored during an interrupt. This feature
helps reduces the interrupt service routine overheads.

F28x Fast Interrupt Response Manager

96 dedicated PIE
vectors
No software decision
making required
Direct access to RAM
vectors
Auto flags update
Concurrent auto
context save

28x CPU Interrupt logic

28x
CPUINTMIFR IER96

P
er

ip
he

ra
l I

nt
er

ru
pt

s
 1

2x
8

=
96

12 interrupts

INT1 to
INT12

PIE
Register

Map

PIE module
For 96

interrupts

T ST0
AH AL
PH PL
AR1 (L) AR0 (L)
DP ST1
DBSTAT IER
PC(msw) PC(lsw)

Auto Context Save

1 - 10 C2000 Piccolo Workshop - Architecture Overview

 F28x Mode

F28x Mode
The F28x is one of several members of the TMS320 microcontroller family. The F28x is source
code compatable with the 24x/240x devices and previously written code can be reassembled to
run on a F28x device. This allows for migration of existing code onto the F28x.

F28x Operating Modes

C28x Native Mode 1 0

C24x Compatible Mode 1 1

Test Mode (default) 0 0

Reserved 0 1

OBJMODE AMODE
Mode Bits Compiler OptionMode Type

Almost all uses will run in C28x Native Mode
The bootloader will automatically select C28x Native Mode after reset
C24x compatible mode is mostly for backwards compatibility with an
older processor family

-v28 –m20

-v28

C2000 Piccolo Workshop - Architecture Overview 1 - 11

Reset

Reset
Reset – Bootloader

TRST = JTAG Test Reset
EMU_KEY & EMU_BMODE located in
PIE at 0x0D00 & 0x0D01, respectively

Note:
Details of the various boot options will be
discussed in the Reset and Interrupts module

Boot Mode
Wait

The “wait” boot mode is used
and the boot mode is
determined by the debugger

Reset vector
fetched from

boot ROM
0x3F FFC0

Emulator
Connected?

Bootloader sets
OBJMODE = 1

AMODE = 0

Emulation Boot
Boot determined by

2 RAM locations:
EMU_KEY and EMU_BMODE

TRST = 1

Reset
OBJMODE = 0

AMODE = 0
ENPIE = 0
INTM = 1

YES

1 - 12 C2000 Piccolo Workshop - Architecture Overview

 Summary

Summary
Summary

High performance 32-bit CPU
32x32 bit or dual 16x16 bit MAC
Hardware Control Law Accelerator (CLA)
Atomic read-modify-write instructions
Fast interrupt response manager
64Kw on-chip flash memory
Code security module (CSM)
Control peripherals
12-bit ADC module
Comparators
Up to 44 shared GPIO pins
Communications peripherals

C2000 Piccolo Workshop - Architecture Overview 1 - 13

Summary

1 - 14 C2000 Piccolo Workshop - Architecture Overview

Programming Development Environment

Introduction
This module will explain how to use Code Composer Studio (CCS) integrated development
environment (IDE) tools to develop a program. Creating projects and setting building options
will be covered. Use and the purpose of the linker command file will be described.

Learning Objectives
Learning Objectives

Use Code Composer Studio to:
Create a Project
Set Build Options

Create a user linker command file which:
Describes a system’s available memory
Indicates where sections will be placed
in memory

C2000 Piccolo Workshop - Programming Development Environment 2 - 1

Module Topics

Module Topics
Programming Development Environment .. 2-1

Module Topics... 2-2
Code Composer Studio ... 2-3

Software Development and COFF Concepts.. 2-3
Projects ... 2-5
Build Options.. 2-6

Creating a Linker Command File ... 2-9
Sections .. 2-9
Linker Command Files (.cmd) ...2-12
Memory-Map Description ...2-12
Section Placement..2-14

Exercise 2...2-15
Summary: Linker Command File ..2-16

Lab 2: Linker Command File...2-17
Solutions...2-22

2 - 2 C2000 Piccolo Workshop - Programming Development Environment

 Code Composer Studio

Code Composer Studio

Software Development and COFF Concepts
In an effort to standardize the software development process, TI uses the Common Object File
Format (COFF). COFF has several features which make it a powerful software development
system. It is most useful when the development task is split between several programmers.

Each file of code, called a module, may be written independently, including the specification of
all resources necessary for the proper operation of the module. Modules can be written using
Code Composer Studio (CCS) or any text editor capable of providing a simple ASCII file output.
The expected extension of a source file is .ASM for assembly and .C for C programs.

Code Composer Studio

Code Composer Studio includes:
Integrated Edit/Debug GUI
Code Generation Tools
DSP/BIOS

Asm Link

Editor

Debug

Compile

Graphs,
Profiling

Code
Simulator

eZdsp™

External
Emulator

MCU
Board

Libraries

lnk.cmd
Build

Code Composer Studio includes a built-in editor, compiler, assembler, linker, and an automatic
build process. Additionally, tools to connect file input and output, as well as built-in graph
displays for output are available. Other features can be added using the plug-ins capability

Numerous modules are joined to form a complete program by using the linker. The linker
efficiently allocates the resources available on the device to each module in the system. The
linker uses a command (.CMD) file to identify the memory resources and placement of where the
various sections within each module are to go. Outputs of the linking process includes the linked
object file (.OUT), which runs on the device, and can include a .MAP file which identifies where
each linked section is located.

The high level of modularity and portability resulting from this system simplifies the processes of
verification, debug and maintenance. The process of COFF development is presented in greater
detail in the following paragraphs.

C2000 Piccolo Workshop - Programming Development Environment 2 - 3

Code Composer Studio

The concept of COFF tools is to allow modular development of software independent of
hardware concerns. An individual assembly language file is written to perform a single task and
may be linked with several other tasks to achieve a more complex total system.

Writing code in modular form permits code to be developed by several people working in parallel
so the development cycle is shortened. Debugging and upgrading code is faster, since
components of the system, rather than the entire system, is being operated upon. Also, new
systems may be developed more rapidly if previously developed modules can be used in them.

Code developed independently of hardware concerns increases the benefits of modularity by
allowing the programmer to focus on the code and not waste time managing memory and moving
code as other code components grow or shrink. A linker is invoked to allocate systems hardware
to the modules desired to build a system. Changes in any or all modules, when re-linked, create a
new hardware allocation, avoiding the possibility of memory resource conflicts.

Code Composer Studio: IDE

Integrates: edit, code generation,
and debug

Single-click access using buttons

Powerful graphing/profiling tools

Automated tasks using GEL scripts
and CCS scripting

Built-in access to BIOS functions

Supports TI and 3rd party plug-ins

2 - 4 C2000 Piccolo Workshop - Programming Development Environment

 Code Composer Studio

Projects
Code Composer works with a project paradigm. Essentially, within CCS you create a project for
each executable program you wish to create. Projects store all the information required to build
the executable. For example, it lists things like: the source files, the header files, the target
system’s memory-map, and program build options.

The CCS Project

List of files:
Source (C, assembly)
Libraries
DSP/BIOS configuration file
Linker command files

Project settings:
Build options (compiler,
Linker, assembler, and
DSP/BIOS)
Build configurations

Project (.pjt) files contain:

The project information is stored in a .PJT file, which is created and maintained by CCS. To
create a new project, you need to select the Project:New… menu item.

Along with the main Project menu, you can also manage open projects using the right-click
popup menu. Either of these menus allows you to Add Files… to a project. Of course, you can
also drag-n-drop files onto the project from Windows Explorer.

C2000 Piccolo Workshop - Programming Development Environment 2 - 5

Code Composer Studio

Build Options
Project options direct the code generation tools (i.e. compiler, assembler, linker) to create code
according to your system’s needs. When you create a new project, CCS creates two sets of build
options – called Configurations: one called Debug, the other Release (you might think of as
Optimize).

To make it easier to choose build options, CCS provides a graphical user interface (GUI) for the
various compiler options. Here’s a sample of the Debug configuration options.

Build Options GUI - Compiler

GUI has 8 pages of categories for code
generation tools
Controls many aspects of the build process,
such as:

Optimization level
Target device
Compiler/assembly/link options

There is a one-to-one relationship between the items in the text box and the GUI check and drop-
down box selections. Once you have mastered the various options, you can probably find
yourself just typing in the options.

2 - 6 C2000 Piccolo Workshop - Programming Development Environment

 Code Composer Studio

Build Options GUI - Linker

GUI has 3 categories
for linking

Specify various link
options

.\Debug
means the directory
called Debug one
level below the .pjt
file directory
$(Proj_dir)\Debug
is an equivalent
expression

There are many linker options but these four handle all of the basic needs.
• -o <filename> specifies the output (executable) filename.
• -m <filename> creates a map file. This file reports the linker’s results.
• -c tells the compiler to autoinitialize your global and static variables.

• -x tells the compiler to exhaustively read the libraries. Without this option libraries are
searched only once, and therefore backwards references may not be resolved.

C2000 Piccolo Workshop - Programming Development Environment 2 - 7

Code Composer Studio

Default Build Configurations

Add/Remove your own custom
build configurations using
Project Configurations
Edit a configuration:

1. Set it active
2. Modify build options
3. Save project

For new projects, CCS automatically
creates two build configurations:

Debug (unoptimized)
Release (optimized)

Use the drop-down menu to quickly
select the build configuration

To help make sense of the many compiler options, TI provides two default sets of options
(configurations) in each new project you create. The Release (optimized) configuration invokes
the optimizer with –o3 and disables source-level, symbolic debugging by omitting –g (which
disables some optimizations to enable debug).

2 - 8 C2000 Piccolo Workshop - Programming Development Environment

 Creating a Linker Command File

Creating a Linker Command File

Sections
Looking at a C program, you'll notice it contains both code and different kinds of data (global,
local, etc.).

Sections

All code consists of
different parts called
sections
All default section
names begin with “.”
The compiler has
default section
names for initialized
and uninitialized
sections

int x = 2;

int y = 7;

void main(void)

{

long z;

z = x + y;

}

Global vars (.ebss) Init values (.cinit)

Local vars (.stack) Code (.text)

In the TI code-generation tools (as with any toolset based on the COFF – Common Object File
Format), these various parts of a program are called Sections. Breaking the program code and
data into various sections provides flexibility since it allows you to place code sections in ROM
and variables in RAM. The preceding diagram illustrated four sections:
• Global Variables
• Initial Values for global variables
• Local Variables (i.e. the stack)
• Code (the actual instructions)

C2000 Piccolo Workshop - Programming Development Environment 2 - 9

Creating a Linker Command File

Following is a list of the sections that are created by the compiler. Along with their description,
we provide the Section Name defined by the compiler.

Compiler Section Names

Name Description Link Location
.text code FLASH
.cinit initialization values for FLASH

global and static variables
.econst constants (e.g. const int k = 3;) FLASH
.switch tables for switch statements FLASH
.pinit tables for global constructors (C++) FLASH

Initialized Sections

Name Description Link Location
.ebss global and static variables RAM
.stack stack space low 64Kw RAM
.esysmem memory for far malloc functions RAM

Uninitialized Sections

Note: During development initialized sections could be linked to RAM since
the emulator can be used to load the RAM

Sections of a C program must be located in different memories in your target system. This is the
big advantage of creating the separate sections for code, constants, and variables. In this way,
they can all be linked (located) into their proper memory locations in your target embedded
system. Generally, they’re located as follows:

Program Code (.text)

Program code consists of the sequence of instructions used to manipulate data, initialize system
settings, etc. Program code must be defined upon system reset (power turn-on). Due to this basic
system constraint it is usually necessary to place program code into non-volatile memory, such as
FLASH or EPROM.

Constants (.cinit – initialized data)

Initialized data are those data memory locations defined at reset.It contains constants or initial
values for variables. Similar to program code, constant data is expected to be valid upon reset of
the system. It is often found in FLASH or EPROM (non-volatile memory).

Variables (.ebss – uninitialized data)

Uninitialized data memory locations can be changed and manipulated by the program code during
runtime execution. Unlike program code or constants, uninitialized data or variables must reside
in volatile memory, such as RAM. These memories can be modified and updated, supporting the
way variables are used in math formulas, high-level languages, etc. Each variable must be
declared with a directive to reserve memory to contain its value. By their nature, no value is
assigned, instead they are loaded at runtime by the program

2 - 10 C2000 Piccolo Workshop - Programming Development Environment

 Creating a Linker Command File

Placing Sections in Memory

.ebss

.cinit

.text

Memory
M0SARAM

(0x400)
0x00 0000

0x3E 8000

0x00 0400 M1SARAM
(0x400)

FLASH
(0x10000)

Sections

.stack

Linking code is a three step process:

1. Defining the various regions of memory (on-chip SARAM vs. FLASH vs. External Memory).

2. Describing what sections go into which memory regions

3. Running the linker with “build” or “rebuild”

C2000 Piccolo Workshop - Programming Development Environment 2 - 11

Creating a Linker Command File

Linker Command Files (.cmd)
The linker concatenates each section from all input files, allocating memory to each section based
on its length and location as specified by the MEMORY and SECTIONS commands in the linker
command file.

Linking

Linker

Link.cmd

.map

.obj .out

Memory description
How to place s/w into h/w

Memory-Map Description
The MEMORY section describes the memory configuration of the target system to the linker.

The format is: Name: origin = 0x????, length = 0x????

For example, if you placed a 64Kw FLASH starting at memory location 0x3E8000, it would read:

MEMORY
{
 FLASH: origin = 0x3E8000 , length = 0x010000
}

Each memory segment is defined using the above format. If you added M0SARAM and
M1SARAM, it would look like:

MEMORY
{
 M0SARAM: origin = 0x000000 , length = 0x0400
 M1SARAM: origin = 0x000400 , length = 0x0400
}

2 - 12 C2000 Piccolo Workshop - Programming Development Environment

 Creating a Linker Command File

Remember that the DSP has two memory maps: Program, and Data. Therefore, the MEMORY
description must describe each of these separately. The loader uses the following syntax to
delineate each of these:

Linker Page TI Definition

Page 0 Program

Page 1 Data

Linker Command File
MEMORY
{
PAGE 0: /* Program Memory */
FLASH: origin = 0x3E8000, length = 0x10000

PAGE 1: /* Data Memory */
M0SARAM: origin = 0x000000, length = 0x400
M1SARAM: origin = 0x000400, length = 0x400

}

C2000 Piccolo Workshop - Programming Development Environment 2 - 13

Creating a Linker Command File

Section Placement
The SECTIONS section will specify how you want the sections to be distributed through
memory. The following code is used to link the sections into the memory specified in the
previous example:

SECTIONS
{
 .text:> FLASH PAGE 0
 .ebss:> M0SARAM PAGE 1
 .cinit:> FLASH PAGE 0
 .stack:> M1SARAM PAGE 1
}

The linker will gather all the code sections from all the files being linked together. Similarly, it
will combine all ‘like’ sections.

Beginning with the first section listed, the linker will place it into the specified memory segment.

Linker Command File
MEMORY
{
PAGE 0: /* Program Memory */
FLASH: origin = 0x3E8000, length = 0x10000

PAGE 1: /* Data Memory */
M0SARAM: origin = 0x000000, length = 0x400
M1SARAM: origin = 0x000400, length = 0x400

}
SECTIONS
{

.text:> FLASH PAGE = 0

.ebss:> M0SARAM PAGE = 1

.cinit:> FLASH PAGE = 0

.stack:> M1SARAM PAGE = 1
}

2 - 14 C2000 Piccolo Workshop - Programming Development Environment

 Exercise 2

Exercise 2
Looking at the following block diagram, and create a linker command file.

Exercise 2

Generic F28x device

M0SARAM
(0x400)

M1SARAM
(0x400)

L0SARAM
(0x800)

0x00 0000 0x00 0400

0x00 8000 FLASH
(0x10000)

0x3E 8000

Create the linker command file for the given memory
map by filling in the blanks on the following slide

Fill in the blanks:

MEMORY
{
PAGE__: /* Program Memory */
_____: origin = ____ ___, length = ___ ___
______: /* Data Memory */
_______: origin = __ ____, length = _____
_______: origin = ____ ___, length = _____
_______: origin = ___ ____, length = __ __

}
SECTIONS
{

.text: > FLASH PAGE = 0

.ebss: > M0SARAM PAGE = 1

.cinit: > FLASH PAGE = 0

.stack: > M1SARAM PAGE = 1
}

Exercise 2 - Command File

C2000 Piccolo Workshop - Programming Development Environment 2 - 15

Exercise 2

Summary: Linker Command File
The linker command file (.cmd) contains the inputs — commands — for the linker. This
information is summarized below:

Linker Command File Summary

Memory Map Description
Name
Location
Size

Sections Description
Directs software sections into named
memory regions
Allows per-file discrimination
Allows separate load/run locations

2 - 16 C2000 Piccolo Workshop - Programming Development Environment

 Lab 2: Linker Command File

Lab 2: Linker Command File
 Objective

Create a linker command file and link the C program file (Lab2.c) into the system described
below.

Lab 2: Linker Command File

System Description:
• TMS320F28035
• All internal RAM

blocks allocated

Placement of Sections:
• .text into RAM Block L0SARAM on PAGE 0 (program memory)
• .cinit into RAM Block L0SARAM on PAGE 0 (program memory)
• .ebss into RAM Block M0SARAM on PAGE 1 (data memory)
• .stack into RAM Block M1SARAM on PAGE 1 (data memory)

F28035

Memory

on-chip
memory

0x00 8000 L0SARAM
(0x800)

0x00 0400 M1SARAM
(0x400)

0x00 8C00 L2DPSARAM
(0x400)

0x00 8800 L1DPSARAM
(0x400)

0x00 0000 M0SARAM
(0x400)

0x00 9000 L3DPSARAM
(0x1000)

System Description
• TMS320F28035
• All internal RAM blocks allocated

Placement of Sections:
• .text into RAM Block L0SARAM on PAGE 0 (program memory)
• .cinit into RAM Block L0SARAM on PAGE 0 (program memory)
• .ebss into RAM Block M0SARAM on PAGE 1 (data memory)
• .stack into RAM Block M1SARAM on PAGE 1 (data memory)

 Procedure

Create a New Project
1. Double click on the Code Composer Studio icon on the desktop. Maximize Code

Composer Studio to fill your screen. Code Composer Studio has a Connect/Disconnect
feature which allows the target to be dynamically connected and disconnected. This will
reset the JTAG link and also enable “hot swapping” a target board.

C2000 Piccolo Workshop - Programming Development Environment 2 - 17

Lab 2: Linker Command File

2. Connect to the target.

Click: Debug Connect

The menu bar (at the top) lists File ... Help. Note the horizontal tool bar below the menu
bar and the vertical tool bar on the left-hand side. The window on the left is the project
window and the large right-hand window is your workspace.

3. A project contains all the files you will need to develop an executable output file (.out)
which can be run on the MCU hardware. Let’s create a new project for this lab. On the
menu bar click:

Project New

type Lab2 in the project name field and make sure the save in location is:
C:\C28x\Labs\Lab2, then click Finish. This will create a .pjt file which will
invoke all the necessary tools (compiler, assembler, linker) to build your project. It will
also create a debug folder that will hold immediate output files.

4. Add the C file to the new project. Click:

 Project Add Files to Project…

 and make sure you’re looking in C:\C28x\Labs\Lab2. Change the “files of type” to
view C source files (*.c) and select Lab2.c and click OPEN. This will add the file
Lab2.c to your newly created project.

5. Add Lab2.cmd to the project using the same procedure. This file will be edited during
the lab exercise.

6. In the project window on the left, click the plus sign (+) to the left of Project. Now,
click on the plus sign next to Lab2.pjt. Notice that the Lab2.cmd file is listed.
Click on the plus sign next to Source to see the current source file list (i.e. Lab2.c).

Project Build Options
7. There are numerous build options in the project. The default option settings are sufficient

for getting started. We will inspect a couple of the default linker options at this time.

Click: Project Build Options…

8. Select the Linker tab. Notice that .out and .map files are being created. The .out file is
the executable code that will be loaded into the MCU. The .map file will contain a linker
report showing memory usage and section addresses in memory.

9. Set the Stack Size to 0x200.

10. Next, setup the compiler run-time support library. In the Libraries Category, find the
Include Libraries (-l) box and enter: rts2800_ml.lib. Select OK and the
Build Options window will close.

Edit the Linker Command File - Lab2a.cmd
11. To open and edit Lab2.cmd, double click on the filename in the project window.

2 - 18 C2000 Piccolo Workshop - Programming Development Environment

 Lab 2: Linker Command File

12. Edit the Memory{} declaration by describing the system memory shown on the “Lab2:
Linker Command File” slide in the objective section of this lab exercise. Place the
L0SARAM and L3DPSARAM memory blocks into program memory on page 0. Place
the other memory blocks into data memory on page 1.

13. In the Sections{} area, notice that a section called .reset has already been allocated.
The .reset section is part of the rts2800_ml.lib, and is not needed. By putting the TYPE =
DSECT modifier after its allocation, the linker will ignore this section and not allocate it.

14. Place the sections defined on the slide into the appropriate memories via the
Sections{} area. Save your work and close the file.

Build and Load the Project
15. The top four buttons on the horizontal toolbar control code generation. Hover your

mouse over each button as you read the following descriptions:

 Button Name Description

 1 Compile File Compile, assemble the current open file
 2 Incremental Build Compile, assemble only changed files, then link
 3 Rebuild All Compile, assemble all files, then link
 4 Stop Build Stop code generation

16. Code Composer Studio can automatically load the output file after a successful build. On
the menu bar click: Option Customize… and select the
“Program/Project/CIO” tab, then check “Load Program After Build”.

Also, Code Composer Studio can automatically connect to the target when started. Select
the “Debug Properties” tab, check “Connect to the target at
startup”, then click OK.

17. Click the “Build” button and watch the tools run in the build window. Check for
errors (we have deliberately put an error in Lab2.c). When you get an error, scroll the
build window at the bottom of the Code Composer Studio screen until you see the error
message (in red), and simply double-click the error message. The editor will
automatically open the source file containing the error, and position the mouse cursor at
the correct code line.

18. Fix the error by adding a semicolon at the end of the "z = x + y" statement. For
future knowlege, realize that a single code error can sometimes generate multiple error
messages at build time. This was not the case here.

19. Rebuild the project (there should be no errors this time). The output file should
automatically load. The Program Counter should be pointing to _c_int00 in the
Disassembly Window.

20. Under Debug on the menu bar click “Go Main”. This will run through the
C-environment initialization routine in the rts2800_ml.lib and stop at main() in
Lab2.c.

C2000 Piccolo Workshop - Programming Development Environment 2 - 19

Lab 2: Linker Command File

Debug Enviroment Windows
It is standard debug practice to watch local and global variables while debugging code. There
are various methods for doing this in Code Composer Studio. We will examine two of them
here: memory windows, and watch windows.

21. Open a memory window to view the global variable “z”.

Click: View Memory on the menu bar.

Type “&z” into the address field and then enter. Note that you must use the ampersand
(meaning "address of") when using a symbol in a memory window address box. Also
note that Code Composer Studio is case sensitive.

Set the properties format to “Hex 16 Bit – TI style” at the bottom of the window. This
will give you more viewable data in the window. You can change the contents of any
address in the memory window by double-clicking on its value. This is useful during
debug.

22. Open the watch window to view the local variables x and y.

Click: View Watch Window on the menu bar.

Click the “Watch Locals” tab and notice that the local variables x and y are already
present. The watch window will always contain the local variables for the code function
currently being executed.

(Note that local variables actually live on the stack. You can also view local variables in
a memory window by setting the address to “SP” after the code function has been
entered).

23. We can also add global variables to the watch window if desired. Let's add the global
variable “z”.

Click the “Watch 1” tab at the bottom of the watch window. In the empty box in the
“Name” column, type “z” and then enter. An ampersand is not used here. The watch
window knows you are specifying a symbol.

Check that the watch window and memory window both report the same value for “z”.
Trying changing the value in one window, and notice that the value also changes in the
other window.

Single-stepping the Code
24. Click the “Watch Locals” tab at the bottom of the watch window. Single-step through

main() by using the <F11> key (or you can use the Single Step button on the
vertical toolbar). Check to see if the program is working as expected. What is the value
for “z” when you get to the end of the program?

End of Exercise

2 - 20 C2000 Piccolo Workshop - Programming Development Environment

 Lab 2: Linker Command File

C2000 Piccolo Workshop - Programming Development Environment 2 - 21

Solutions

Solutions

MEMORY
{
PAGE 0: /* Program Memory */
FLASH: origin = 0x3E8000, length = 0x10000
PAGE 1: /* Data Memory */
M0SARAM: origin = 0x000000, length = 0x400
M1SARAM: origin = 0x000400, length = 0x400
L0SARAM: origin = 0x008000, length = 0x800

}
SECTIONS
{

.text: > FLASH PAGE = 0

.ebss: > M0SARAM PAGE = 1

.cinit: > FLASH PAGE = 0

.stack: > M1SARAM PAGE = 1
}

Exercise 2 - Solution

Lab 2: Solution - lab2.cmd
MEMORY
{

PAGE 0: /* Program Memory */
L0SARAM: origin = 0x008000, length = 0x0800
L3DPSARAM: origin = 0x009000, length = 0x1000
PAGE 1: /* Data Memory */
M0SARAM: origin = 0x000000, length = 0x0400
M1SARAM: origin = 0x000400, length = 0x0400
L1DPSARAM: origin = 0x008800, length = 0x0400
L2DPSARAM: origin = 0x008C00, length = 0x0400

}

SECTIONS
{

.text: > L0SARAM PAGE = 0

.ebss: > M0SARAM PAGE = 1

.cinit: > L0SARAM PAGE = 0

.stack: > M1SARAM PAGE = 1

.reset: > L0SARAM PAGE = 0, TYPE = DSECT
}

2 - 22 C2000 Piccolo Workshop - Programming Development Environment

Peripherial Registers Header Files

Introduction
The purpose of the DSP2803x C-code header files is to simplify the programming of the many
peripherals on the F28x device. Typically, to program a peripheral the programmer needs to
write the appropriate values to the different fields within a control register. In its simplest form,
the process consists of writing a hex value (or masking a bit field) to the correct address in
memory. But, since this can be a burdensome and repetitive task, the C-code header files were
created to make this a less complicated task.

The DSP2803x C-code header files are part of a library consisting of C functions, macros,
peripheral structures, and variable definitions. Together, this set of files is known as the ‘header
files.’

Registers and the bit-fields are represented by structures. C functions and macros are used to
initialize or modify the structures (registers).

In this module, you will learn how to use the header files and C programs to facilitate
programming the peripherals.

 Learning Objectives
Learning Objectives

Understand the usage of the F2803x
C-Code Header Files
Be able to program peripheral
registers
Understand how the structures are
mapped with the linker command file

C2000 Piccolo Workshop - Peripheral Registers Header Files 3 - 1

Module Topics

Module Topics
Peripherial Registers Header Files .. 3-1

Module Topics... 3-2
Traditional and Structure Approach to C Coding .. 3-3
Naming Conventions... 3-6
F2803x C-Code Header Files ... 3-7

Peripheral Structure .h File ... 3-7
Global Variable Definitions File .. 3-9
Mapping Structures to Memory...3-10
Linker Command File..3-10
Peripheral Specific Routines..3-11

Summary ..3-12

3 - 2 C2000 Piccolo Workshop - Peripheral Registers Header Files

 Traditional and Structure Approach to C Coding

Traditional and Structure Approach to C Coding
Traditional Approach to C Coding

#define ADCCTL1 (volatile unsigned int *)0x00007100

...

void main(void)

{

*ADCCTL1 = 0x1234; //write entire register

*ADCCTL1 |= 0x4000; //enable ADC module

}

Disadvantages - Requires individual masks to be generated to
manipulate individual bits

- Cannot easily display bit fields in Watch window
- Will generate less efficient code in many cases

Advantages - Simple, fast and easy to type
- Variable names exactly match register names (easy

to remember)

Structure Approach to C Coding
void main(void)

{

AdcRegs.ADCCTL1.all = 0x1234; //write entire register

AdcRegs.ADCCTL1.bit.ADCENABLE = 1; //enable ADC module

}

Disadvantages - Can be difficult to remember the structure names
(Editor Auto Complete feature to the rescue!)

- More to type (again, Editor Auto Complete feature
to the rescue)

Advantages - Easy to manipulate individual bits.
- Watch window is amazing! (next slide)
- Generates most efficient code (on C28x)

C2000 Piccolo Workshop - Peripheral Registers Header Files 3 - 3

Traditional and Structure Approach to C Coding

The CCS Watch Window using #define

The CCS Watch Window using Structures

3 - 4 C2000 Piccolo Workshop - Peripheral Registers Header Files

 Traditional and Structure Approach to C Coding

Is the Structure Approach Efficient?

You could not have coded this example any more efficiently with hand assembly!

The structure approach enables efficient compiler use of
DP addressing mode and C28x atomic operations

C Source Code
// Stop CPU Timer0
CpuTimer0Regs.TCR.bit.TSS = 1;

// Load new 32-bit period value
CpuTimer0Regs.PRD.all = 0x00010000;

// Start CPU Timer0
CpuTimer0Regs.TCR.bit.TSS = 0;

Generated Assembly Code*
MOVW DP, #0030
OR @4, #0x0010

MOVL XAR4, #0x010000
MOVL @2, XAR4

AND @4, #0xFFEF

5 words, 5 cycles- Easy to read the code w/o comments
- Bit mask built-in to structure

* C28x Compiler v5.0.1 with -g and either -o1, -o2, or -o3 optimization level

Compare with the #define Approach
The #define approach relies heavily on less-efficient pointers for
random memory access, and often does not take advantage of
C28x atomic operations

C Source Code
// Stop CPU Timer0
*TIMER0TCR |= 0x0010;

// Load new 32-bit period value
*TIMER0TPRD32 = 0x00010000;

// Start CPU Timer0
*TIMER0TCR &= 0xFFEF;

Generated Assembly Code*
MOV @AL,*(0:0x0C04)
ORB AL, #0x10
MOV *(0:0x0C04), @AL

MOVL XAR5, #0x010000
MOVL XAR4, #0x000C0A
MOVL *+XAR4[0], XAR5

MOV @AL, *(0:0x0C04)
AND @AL, #0xFFEF
MOV *(0:0x0C04), @AL

9 words, 9 cycles- Hard to read the code w/o comments
- User had to determine the bit mask

* C28x Compiler v5.0.1 with -g and either -o1, -o2, or -o3 optimization level

C2000 Piccolo Workshop - Peripheral Registers Header Files 3 - 5

Naming Conventions

Naming Conventions
The header files use a familiar set of naming conventions. They are consistent with the Code
Composer Studio configuration tool, and generated file naming conventions

Structure Naming Conventions

The DSP2803x header files define:
All of the peripheral structures
All of the register names
All of the bit field names
All of the register addresses

PeripheralName.RegisterName.all // Access full 16 or 32-bit register

PeripheralName.RegisterName.half.LSW // Access low 16-bits of 32-bit register

PeripheralName.RegisterName.half.MSW // Access high 16-bits of 32-bit register

PeripheralName.RegisterName.bit.FieldName // Access specified bit fields of register

Notes: [1] “PeripheralName” are assigned by TI and found in the DSP2803x header files.
They are a combination of capital and small letters (i.e. CpuTimer0Regs).

[2] “RegisterName” are the same names as used in the data sheet.
They are always in capital letters (i.e. TCR, TIM, TPR,..).

[3] “FieldName” are the same names as used in the data sheet.
They are always in capital letters (i.e. POL, TOG, TSS,..).

Editor Auto Complete to the Rescue!

3 - 6 C2000 Piccolo Workshop - Peripheral Registers Header Files

 F2803x C-Code Header Files

F2803x C-Code Header Files
The C-code header files consists of .h, c source files, linker command files, and other useful
example programs, documentations and add-ins for Code Composer Studio.

DSP2803x Header File Package
(http://www.ti.com, literature # SPRC892)

Contains everything needed to use the
structure approach
Defines all peripheral register bits and
register addresses
Header file package includes:

\DSP2803x_headers\include .h files
\DSP2803x_headers\cmd linker .cmd files
\DSP2803x_headers\gel .gel files for CCS
\DSP2803x_examples CCS3 examples
\DSP2803x_examples_ccsv4 CCS4 examples
\doc documentation

A peripheral is programmed by writing values to a set of registers. Sometimes, individual fields
are written to as bits, or as bytes, or as entire words. Unions are used to overlap memory
(register) so the contents can be accessed in different ways. The header files group all the
registers belonging to a specific peripheral.

A DSP2803x_Peripheral.gel GEL file can provide a pull down menu to load peripheral data
structures into a watch window. Code Composer Studio can load a GEL file automatically. To
include fuctions to the standard F28035.gel that is part of Code Composer Studio, add:

GEL_LoadGel(“base_path/gel/DSP2803x_Peripheral.gel”)

The GEL file can also be loaded during a Code Composer Studio session by clicking:

File Load GEL…

Peripheral Structure .h File
The DSP2803x_Device.h header file is the main include file. By including this file in the .c
source code, all of the peripheral specific .h header files are automatically included. Of course,
each specific .h header file can be included individually in an application that does not use all the
header files, or you can comment out the ones you do not need. (Also includes typedef
statements).

C2000 Piccolo Workshop - Peripheral Registers Header Files 3 - 7

F2803x C-Code Header Files

Peripheral Structure .h files (1 of 2)

DSP2803x_Adc.h

#include "DSP2803x_Device.h"

Void InitAdc(void)
{

/* Reset the ADC module */
AdcRegs.ADCCTL1.bit.RESET = 1;

/* configure the ADC register */
AdcRegs.ADCCTL1.all = 0x00E4;

};

Your C-source file (e.g., Adc.c)

Contain bits field structure definitions for each peripheral register

// ADC Individual Register Bit Definitions:
struct ADCCTL1_BITS { // bits description

Uint16 TEMPCONV:1; // 0 Temperature sensor connection
Uint16 VREFLOCONV:1; // 1 VSSA connection
Uint16 INTPULSEPOS:1; // 2 INT pulse generation control
Uint16 ADCREFSEL:1; // 3 Internal/external reference select
Uint16 rsvd1:1; // 4 reserved
Uint16 ADCREFPWD:1; // 5 Reference buffers powerdown
Uint16 ADCBGPWD:1; // 6 ADC bandgap powerdown
Uint16 ADCPWDN:1; // 7 ADC powerdown
Uint16 ADCBSYCHN:5; // 12:8 ADC busy on a channel
Uint16 ADCBSY:1; // 13 ADC busy signal
Uint16 ADCENABLE:1; // 14 ADC enable
Uint16 RESET:1; // 15 ADC master reset

};
// Allow access to the bit fields or entire register:
union ADCCTL1_REG {

Uint16 all;
struct ADCCTL1_BITS bit;

};
// ADC External References & Function Declarations:
extern volatile struct ADC_REGS AdcRegs;

Peripheral Structure .h files (2 of 2)

The header file package contains a .h file
for each peripheral in the device

DSP2803x_Device.h
Main include file
Will include all other .h files
Include this file (directly or indirectly)
in each source file:

#include “DSP2803x_Device.h”

DSP2803x_Adc.h DSP2803x_BootVars.h DSP2803x_Cla.h
DSP2803x_Comp.h DSP2803x_CpuTimers.h DSP2803x_DevEmu.h
DSP2803x_Device.h DSP2803x_ECan.h DSP2803x_ECap.h
DSP2803x_EPwm.h DSP2803x_EQep.h DSP2803x_Gpio.h
DSP2803x_I2c.h DSP2803x_Lin.h DSP2803x_NmiIntrupt.h
DSP2803x_PieCtrl.h DSP2803x_PieVect.h DSP2803x_Sci.h
DSP2803x_Spi.h DSP2803x_SysCtrl.h DSP2803x_XIntrupt.h

3 - 8 C2000 Piccolo Workshop - Peripheral Registers Header Files

 F2803x C-Code Header Files

Global Variable Definitions File
With DSP2803x_GlobalVariableDefs.c included in the project all the needed variable definitions
are globally defined.

Global Variable Definitions File
DSP2803x_GlobalVariableDefs.c

Declares a global instantiation of the structure
for each peripheral
Each structure is placed in its own section
using a DATA_SECTION pragma to allow
linking to the correct memory (see next slide)

Add this file to your CCS project:
DSP2803x_GlobalVariableDefs.c

#include "DSP2803x_Device.h"
…
#pragma DATA_SECTION(AdcRegs,"AdcRegsFile");
volatile struct ADC_REGS AdcRegs;
…

DSP2803x_GlobalVariableDefs.c

C2000 Piccolo Workshop - Peripheral Registers Header Files 3 - 9

F2803x C-Code Header Files

Mapping Structures to Memory
The data structures describe the register set in detail. And, each instance of the data type (i.e.,
register set) is unique. Each structure is associated with an address in memory. This is done by
(1) creating a new section name via a DATA_SECTION pragma, and (2) linking the new section
name to a specific memory in the linker command file.

Linker Command Files for the Structures
DSP2803x_nonBIOS.cmd and DSP2803x_BIOS.cmd

Links each structure to
the address of the
peripheral using the
structures named
section

non-BIOS and BIOS
versions of the .cmd file

Add one of these files to
your CCS project:
DSP2803x_nonBIOS.cmd

or
DSP2803x_BIOS.cmd

MEMORY
{

PAGE1:
...
ADC: origin=0x007100, length=0x000080
...

}

SECTIONS
{

...
AdcRegsFile: > ADC PAGE = 1
...

}

DSP2803x_Headers_nonBIOS.cmd

#include "DSP2803x_Device.h"
…
#pragma DATA_SECTION(AdcRegs,"AdcRegsFile");
volatile struct ADC_REGS AdcRegs;
…

DSP2803x_GlobalVariableDefs.c

Linker Command File
When using the header files, the user adds the MEMORY regions that correspond to the
CODE_SECTION and DATA_SECTION pragmas found in the .h and global-definitons.c file.

The user can modify their own linker command file, or use a pre-configured linker command file
such as F28035.cmd. This file has the peripheral memory regions defined and tied to the
individual peripheral.

3 - 10 C2000 Piccolo Workshop - Peripheral Registers Header Files

 F2803x C-Code Header Files

Peripheral Specific Routines
Peripheral Specific C functions are used to initialize the peripherals. They are used by adding the
appropriate .c file to the project.

Peripheral Specific Examples

Example projects for each peripheral
Helpful to get you started

C2000 Piccolo Workshop - Peripheral Registers Header Files 3 - 11

Summary

Summary
Peripheral Register Header Files

Summary
Easier code development
Easy to use
Generates most efficient code
Increases effectiveness of CCS watch window
TI has already done all the work!

Use the correct header file package for your device:
F2803x # SPRC892
F2802x # SPRC832
F2833x and F2823x # SPRC530
F280x and F2801x # SPRC191
F2804x # SPRC324
F281x # SPRC097

Go to http://www.ti.com and enter the literature number in the keyword search box

3 - 12 C2000 Piccolo Workshop - Peripheral Registers Header Files

Reset and Interrupts

Introduction
This module describes the interrupt process and explains how the Peripheral Interrupt Expansion
(PIE) works.

Learning Objectives
Learning Objectives

Describe the C28x reset process
List the event sequence during an
interrupt
Describe the C28x interrupt structure

C2000 Piccolo Workshop - Reset and Interrupts 4 - 1

Module Topics

Module Topics
Reset and Interrupts ... 4-1

Module Topics... 4-2
Reset.. 4-3

Reset - Bootloader .. 4-3
Emulation Boot Mode .. 4-4
Stand-Alone Boot Mode... 4-4
Reset Code Flow – Summary ... 4-5

Interrupts .. 4-6
Interrupt Processing.. 4-6
Interrupt Flag Register (IFR) .. 4-7
Interrupt Enable Register (IER).. 4-7
Interrupt Global Mask Bit (INTM)... 4-8
Peripheral Interrupt Expansion (PIE) ... 4-8
PIE Interrupt Vector Table ..4-10
Interrupt Response and Latency ..4-11

4 - 2 C2000 Piccolo Workshop - Reset and Interrupts

 Reset

Reset
Reset Sources

POR – Power-On Rest generates a device reset during
power-up conditions
BOR – Brown-Out Reset generates a device reset if the
power supply drops below specification for the device

Note: Devices support an on-chip regulator (VREG) to generate
the core voltage

Watchdog Timer

XRS pin active
To XRS pin

C28x core

XRSPower-on Reset

Brown-out Reset

Missing Clock Detect

Logic shown is functional representation, not actual implementation

Reset - Bootloader

Reset – Bootloader

TRST = JTAG Test Reset EMU_KEY & EMU_BMODE located in PIE at 0x0D00 & 0x0D01, respectively
OPT_KEY & OTP_BMODE located in OTP at 0x3D78FE & 0x3D78FF, respectively

Reset vector
fetched from

boot ROM
0x3F FFC0

Bootloader sets
OBJMODE = 1

AMODE = 0

Emulation Boot
Boot determined by

2 RAM locations:
EMU_KEY and EMU_BMODE

Stand-alone Boot
Boot determined by

2 GPIO pins and
2 OTP locations:

OTP_KEY and OTP_BMODE

TRST = 1 TRST = 0

Reset
OBJMODE = 0

AMODE = 0
ENPIE = 0
INTM = 1

YES NOEmulator
Connected ?

C2000 Piccolo Workshop - Reset and Interrupts 4 - 3

Reset

Emulation Boot Mode

Emulation Boot Mode (TRST = 1)

If either EMU_KEY or EMU_BMODE
are invalid, the “wait” boot mode is
used. These values can then be
modified using the debugger and a
reset issued to restart the boot process

Emulation Boot
Boot determined by

2 RAM locations:
EMU_KEY and EMU_BMODE

Emulator Connected

EMU_KEY = 0x55AA ? Boot Mode
Wait

Boot Mode
Parallel I/O
SCI
Wait
GetMode
SPI
I2C
OTP
CAN
M0 SARAM
FLASH
Wait

EMU_BMODE =
0x0000
0x0001
0x0002
0x0003
0x0004
0x0005
0x0006
0x0007
0x000A
0x000B
other

Boot Mode
FLASH

Boot Mode
SCI
FLASH
SPI
I2C
OTP
CAN
FLASH

OTP_BMODE =
0x0001
0x0003
0x0004
0x0005
0x0006
0x0007
other

NO

NO

YES

YES

OTP_KEY = 0x55AA ?

Stand-Alone Boot Mode

Stand-Alone Boot Mode (TRST = 0)

Stand-alone Boot
Boot determined by

2 GPIO pins and
2 OTP locations:

OTP_KEY and OTP_BMODE

Emulator Not Connected

Boot Mode
Parallel I/O
SCI
Wait
GetMode

GPIO GPIO
37 34
0 0
0 1
1 0
1 1

Boot Mode
FLASH

Boot Mode
SCI
FLASH
SPI
I2C
OTP
CAN
FLASH

OTP_BMODE =
0x0001
0x0003
0x0004
0x0005
0x0006
0x0007
other

NO

YES

Note that the boot behavior for
unprogrammed OTP is the
“FLASH” boot mode

OTP_KEY = 0x55AA ?

4 - 4 C2000 Piccolo Workshop - Reset and Interrupts

 Reset

Reset Code Flow – Summary

Reset Code Flow - Summary

M0 SARAM (1Kw)

FLASH (64Kw)
0x3F7FF6

0x3D7800

0x3E8000

0x000000

0x3FE000

0x3FFFC0

Boot ROM (8Kw)

BROM vector (64w)
0x3FF7BB

Boot Code

•
•

•
•

RESET

Execution Entry
determined by

Emulation Boot Mode or
Stand-Alone Boot Mode

Bootloading
Routines

(SCI, SPI, I2C,
Parallel I/O)

0x3FF7BB

0x000000

OTP (1Kw)
0x3D7800

C2000 Piccolo Workshop - Reset and Interrupts 4 - 5

Interrupts

Interrupts
Interrupt Sources

ePWM, eCAP,
eQEP, ADC, SCI,
SPI, I2C, eCAN,
LIN, CLA, WD

Internal Sources

External Sources

XINT1 – XINT3

TZx

XRS

NMI

C28x CORE

INT1

INT13

INT2
INT3

INT12

INT14

XRS

•••

PIE
(Peripheral

Interrupt
Expansion)

TINT2
TINT1
TINT0

Interrupt Processing

A valid signal on a specific interrupt line causes the latch
to display a “1” in the appropriate bit

Maskable Interrupt Processing
Conceptual Core Overview

1

0

1

(IFR)
“Latch”

INT1

INT2

INT14

Core
Interrupt

C28x
Core

(INTM)
“Global Switch”

(IER)
“Switch”

If the individual and global switches are turned “on” the
interrupt reaches the core

4 - 6 C2000 Piccolo Workshop - Reset and Interrupts

 Interrupts

Interrupt Flag Register (IFR)

Interrupt Flag Register (IFR)

RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9
89101112131415

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1
01234567

Pending : IFR Bit = 1
Absent : IFR Bit = 0

Compiler generates atomic instructions (non-interruptible) for setting/clearing IFR
If interrupt occurs when writing IFR, interrupt has priority
IFR(bit) cleared when interrupt is acknowledged by CPU
Register cleared on reset

/*** Manual setting/clearing IFR ***/
extern cregister volatile unsigned int IFR;

IFR |= 0x0008; //set INT4 in IFR
IFR &= 0xFFF7; //clear INT4 in IFR

Interrupt Enable Register (IER)

Interrupt Enable Register (IER)

RTOSINT DLOGINT INT14 INT13 INT12 INT11 INT10 INT9
89101112131415

INT8 INT7 INT6 INT5 INT4 INT3 INT2 INT1
01234567

Enable: Set IER Bit = 1
Disable: Clear IER Bit = 0

Compiler generates atomic instructions (non-interruptible)
for setting/clearing IER
Register cleared on reset

/*** Interrupt Enable Register ***/
extern cregister volatile unsigned int IER;

IER |= 0x0008; //enable INT4 in IER
IER &= 0xFFF7; //disable INT4 in IER

C2000 Piccolo Workshop - Reset and Interrupts 4 - 7

Interrupts

Interrupt Global Mask Bit (INTM)

Interrupt Global Mask Bit

INTM used to globally enable/disable interrupts:
Enable: INTM = 0
Disable: INTM = 1 (reset value)

INTM modified from assembly code only:

INTMST1
Bit 0

/*** Global Interrupts ***/
asm(“ CLRC INTM”); //enable global interrupts
asm(“ SETC INTM”); //disable global interrupts

Peripheral Interrupt Expansion (PIE)

Peripheral Interrupt Expansion - PIE

Pe
ri

ph
er

al
 In

te
rr

up
ts

12

x8
 =

 9
6

IF
R

IE
R

IN
TM 28x

Core

28x Core Interrupt logic

PIE module for 96 Interrupts

INT1.x interrupt group
INT2.x interrupt group
INT3.x interrupt group
INT4.x interrupt group
INT5.x interrupt group
INT6.x interrupt group
INT7.x interrupt group
INT8.x interrupt group
INT9.x interrupt group
INT10.x interrupt group
INT11.x interrupt group
INT12.x interrupt group

INT1 – INT12

12 Interrupts

96

INT1.1

INT1.2

INT1.8

1

0

1

•
••

•
••

INT1

PIEIFR1 PIEIER1
Interrupt Group 1

(TINT1)
(TINT2)

4 - 8 C2000 Piccolo Workshop - Reset and Interrupts

 Interrupts

F2803x PIE Interrupt Assignment Table
INTx.8 INTx.7 INTx.6 INTx.5 INTx.4 INTx.3 INTx.2 INTx.1

INT1 WAKEINT TINT0 ADCINT9 XINT2 XINT1 ADCINT2 ADCINT1

INT2 EPWM7
_TZINT

EPWM6
_TZINT

EPWM5
_TZINT

EPWM4
_TZINT

EPWM3
_TZINT

EPWM2
_TZINT

EPWM1
_TZINT

INT3 EPWM7
_INT

EPWM6
_INT

EPWM5
_INT

EPWM4
_INT

EPWM3
_INT

EPWM2
_INT

EPWM1
_INT

INT4 ECAP1
_INT

INT5 EQEP1
_INT

INT6 SPITX
INTB

SPIRX
INTB

SPITX
INTA

SPIRX
INTA

INT7

INT8 I2CINT2A I2CINT1A

INT9 LIN1
INTA

LIN0
INTA

SCITX
INTA

SCIRX
INTA

INT10 ADCINT8 ADCINT7 ADCINT6 ADCINT5 ADCINT4 ADCINT3 ADCINT2 ADCINT1

INT11 CLA1
_INT8

CLA1
_INT7

CLA1
_INT6

CLA1
_INT5

CLA1
_INT4

CLA1
_INT3

CLA1
_INT2

CLA1
_INT1

INT12 LUF LVF XINT3

ECAN0
INTA

ECAN1
INTA

PIE Registers

INTx.2INTx.3INTx.4INTx.5INTx.6INTx.7INTx.8 INTx.1
0123456715 - 8

reserved

PIEIFRx register (x = 1 to 12)

INTx.2INTx.3INTx.4INTx.5INTx.6INTx.7INTx.8 INTx.1
0123456715 - 8

reserved

PIEIERx register (x = 1 to 12)

reserved PIEACKx

PIE Interrupt Acknowledge Register (PIEACK)
124 356789 0101115 - 12

ENPIEPIEVECT

PIECTRL register 015 - 1

#include “DSP2803x_Device.h”
PieCtrlRegs.PIEIFR1.bit.INTx4 = 1; //manually set IFR for XINT1 in PIE group 1
PieCtrlRegs.PIEIER3.bit.INTx2 = 1; //enable EPWM2_INT in PIE group 3
PieCtrlRegs.PIEACK.all = 0x0004; //acknowledge the PIE group 3
PieCtrlRegs.PIECTRL.bit.ENPIE = 1; //enable the PIE

C2000 Piccolo Workshop - Reset and Interrupts 4 - 9

Interrupts

PIE Interrupt Vector Table

Vector Offset

Default Interrupt Vector Table at Reset

Memory
0

BROM Vectors
64w

ENPIE = 0

0x3F FFC0

0x3F FFFF

PIE Vectors
256w

0x00 0D00

DATALOG
RTOSINT
EMUINT
NMI

02
04
06
08
0A
0C
0E
10
12
14
16
18
1A
1C
1E
20
22
24
26
28-3E

ILLEGAL
USER 1-12

INT1
INT2
INT3
INT4
INT5
INT6
INT7
INT8
INT9
INT10
INT11
INT12
INT13
INT14

RESET 00 Default Vector Table
Re-mapped when

ENPIE = 1

PieVectTableInit{ }
Used to initialize PIE vectors

PIE Vector Mapping (ENPIE = 1)

PIE vector location – 0x00 0D00 – 256 words in data memory
RESET and INT1-INT12 vector locations are re-mapped
CPU vectors are re-mapped to 0x00 0D00 in data memory

PIE INT12.8 Interrupt Vector0x00 0DFEINT12.8
………
PIE INT12.1 Interrupt Vector0x00 0DF0INT12.1
………
PIE INT1.8 Interrupt Vector0x00 0D4EINT1.8
………
PIE INT1.1 Interrupt Vector0x00 0D40INT1.1
User Defined Trap0x00 0D3EUSER12
………
CPU Data Logging Interrupt0x00 0D1EDATALOG
CPU Timer 20x00 0D1CINT14
CPU Timer 10x00 0D1AINT13
INT12 remapped to PIE group below0x00 0D18INT12
INTx remapped to PIE group below……
INT1 remapped to PIE group below0x00 0D02INT1
Reset fetched from Boot ROM 0x3F FFC00x00 0D00Reset
PIE Vector DescriptionPIE AddressVector Name

R
em

ap
pe

d

4 - 10 C2000 Piccolo Workshop - Reset and Interrupts

 Interrupts

Device Vector Mapping - Summary

_c_int00:
. . .

CALL main()

main()
{ initialization();

. . .
}

Initialization()
{
Load PIE Vectors
Enable the PIE
Enable PIEIER
Enable Core IER
Enable INTM

}

PIE Vector Table
256 Word RAM

0x00 0D00 – 0DFF

RESET
<0x3F FFC0>

Reset Vector <0x3F F7BB> = Boot Code
Flash Entry Point <0x3F 7FF6 > = LB _c_int00
User Code Start < _c_int00 >

Interrupt Response and Latency

Interrupt Response - Hardware Sequence

Note: some actions occur simultaneously, none are interruptible

CPU Action Description

T ST0
AH AL
PH PL
AR1 AR0
DP ST1
DBSTAT IER
PC(msw) PC(lsw)

Registers → stack 14 Register words auto saved
0 → IFR (bit) Clear corresponding IFR bit
0 → IER (bit) Clear corresponding IER bit
1 → INTM/DBGM Disable global ints/debug events
Vector → PC Loads PC with int vector address
Clear other status bits Clear LOOP, EALLOW, IDLESTAT

C2000 Piccolo Workshop - Reset and Interrupts 4 - 11

Interrupts

Interrupt Latency

Latency

Depends on wait states, INTM, etc.Maximum latency:

Recognition
delay (3), SP
alignment (1),

interrupt
placed in
pipeline

4

Minimum latency (to when real work occurs in the ISR):
Internal interrupts: 14 cycles

External interrupts: 16 cycles

Get vector
and place

in PC
(3 reg.
pairs

saved)

3
F1/F2/D1 of

ISR
instruction

(3 reg. pairs
saved)

3
Save
return

address

1
D2/R1/R2 of

ISR
instruction

3
Sync ext.

signal
(ext.

interrupt
only)

2
cycles

Assumes ISR in
internal RAM

Internal
interrupt
occurs
here

ext.
interrupt
occurs
here

ISR
instruction
executed
on next
cycle

4 - 12 C2000 Piccolo Workshop - Reset and Interrupts

System Initialization

Introduction
This module discusses the operation of the OSC/PLL-based clock module and watchdog timer.
Also, the general-purpose digital I/O ports, external interrups, various low power modes and the
EALLOW protected registers will be covered.

Learning Objectives
Learning Objectives

OSC/PLL Clock Module

Watchdog Timer

General Purpose Digital I/O

External Interrupts

Low Power Modes

Register Protection

C2000 Piccolo Workshop - System Initialization 5 - 1

Module Topics

Module Topics
System Initialization.. 5-1

Module Topics... 5-2
Oscillator/PLL Clock Module... 5-3
Watchdog Timer.. 5-6
General-Purpose Digital I/O ...5-10
External Interrupts...5-13
Low Power Modes..5-14
Register Protection ..5-16
Lab 5: System Initialization ...5-18

5 - 2 C2000 Piccolo Workshop - System Initialization

 Oscillator/PLL Clock Module

Oscillator/PLL Clock Module
F2803x Oscillator / PLL Clock Module

(lab file: SysCtrl.c)

XCLKINOFF

X2 XT
AL

 O
SC

X1

XT
AL

0*
10

XCLKIN

Internal
OSC 1

(10 MHz)

Internal
OSC 2

(10 MHz)

OSCCLKSRC2

0*
1

WDCLKSRCSEL

0*
1

OSCCLKSRCSEL

0*
1

10
11
01
00* CPU

Timer 2
SYSCLKOUT

TMR2CLKSRCSEL

PLL VCOCLK

OSCCLK

C28x
Core

CLKIN

SYSCLKOUT

LOSPCP

LSPCLK

(PLL bypass)

LSPCLK

DIV

SCI, SPI
All other peripherals

clocked by SYSCLKOUT

M
U

X

1/n

DIVSEL

OSC1CLK

OSC2CLK

EXTCLK

Watchdog
Module

WDCLK

CPUTMR2CLK

* = default

The on-chip oscillator and phase-locked loop (PLL) block provide all the necessary clocking
signals for the F2803x devices. The two internal oscillators (INTOSC1 and INTOSC2) need no
external components.

F2803x PLL and LOSPCP
(lab file: SysCtrl.c)

DIV CLKIN
0 0 0 0 OSCCLK / n * (PLL bypass)
0 0 0 1 OSCCLK x 1 / n
0 0 1 0 OSCCLK x 2 / n
0 0 1 1 OSCCLK x 3 / n
0 1 0 0 OSCCLK x 4 / n
0 1 0 1 OSCCLK x 5 / n
0 1 1 0 OSCCLK x 6 / n
0 1 1 1 OSCCLK x 7 / n
1 0 0 0 OSCCLK x 8 / n
1 0 0 1 OSCCLK x 9 / n
1 0 1 0 OSCCLK x 10 / n
1 0 1 1 OSCCLK x 11 / n
1 1 0 0 OSCCLK x 12 / n

Input Clock Fail Detect Circuitry
PLL will issue a “limp mode” clock (1-4 MHz) if input
clock is removed after PLL has locked.
An internal device reset will also be issued (XRSn
pin not driven).

DIVSEL n

0x /4 *
10 /2
11 /1

* default
Note: /1 mode can
only be used when
PLL is bypassed

LSPCLK Peripheral Clk Freq
0 0 0 SYSCLKOUT / 1
0 0 1 SYSCLKOUT / 2
0 1 0 SYSCLKOUT / 4 *
0 1 1 SYSCLKOUT / 6
1 0 0 SYSCLKOUT / 8
1 0 1 SYSCLKOUT / 10
1 1 0 SYSCLKOUT / 12
1 1 1 SYSCLKOUT / 14

PLL VCOCLK

OSCCLK

C28x
Core

CLKIN SYSCLKOUT

LOSPCP

(PLL bypass)

LSPCLKM
UX 1/n

SysCtrlRegs.PLLCR.bit.DIV

SysCtrlRegs.PLLSTS.bit.DIVSEL

SysCtrlRegs.LOSPCP.bit.LSPCLK

C2000 Piccolo Workshop - System Initialization 5 - 3

Oscillator/PLL Clock Module

The PLL has a 4-bit ratio control to select different CPU clock rates. In addition to the on-chip
oscillators, two external modes of operation are supported – crystal operation, and external clock
source operation. Crystal operation allows the use of an external crystal/resonator to provide the
time base to the device. External clock source operation allows the internal (crystal) oscillator to
be bypassed, and the device clocks are generated from an external clock source input on the
XCLKIN pin. The C28x core provides a SYSCLKOUT clock signal. This signal is prescaled to
provide a clock source for some of the on-chip communication peripherals through the low-speed
peripheral clock prescaler. Other peripherals are clocked by SYSCLKOUT and use their own
clock prescalers for operation.

Clock Control Register
(lab file: SysCtrl.c)

15 14 13 11 10 9 812
NMIRESET

SEL
XTAL

OSCOFF
INTOSC2

HALTI
INTOSC2

OFF
INTOSC1

HALTI
INTOSC1

OFFWDHALTIXCLKIN
OFF

Upper Register:

Internal
Oscillator 1 Off
0 = on
1 = off

Internal Oscillator 1
HALT Mode Ignore
0 = automatic turn on/off
1 = ignores HALT Mode

Internal
Oscillator 2 Off
0 = on
1 = off

Internal Oscillator 2
HALT Mode Ignore
0 = automatic turn on/off
1 = ignores HALT Mode

Watchdog
HALT Mode Ignore
0 = automatic turn on/off
1 = ignores HALT Mode

XCLKIN
Off
0 = on
1 = off

Crystal
Oscillator
Off
0 = on
1 = off

NMI
Reset
0 = no delay
1 = delay

0 = default

5 - 4 C2000 Piccolo Workshop - System Initialization

 Oscillator/PLL Clock Module

Clock Control Register
(lab file: SysCtrl.c)

7 - 5 4 - 3 2 1 0

TMR2CLKSRCSEL WDCLK
SRCSEL

OSCCLK
SRC2SEL

OSCCLK
SRCSELTMR2CLKPRESCALE

Oscillator
Clock Source
0 = internal OSC1
1 = external or

internal OSC2

Oscillator 2
Clock Source
0 = external
1 = internal OSC2

Lower Register:

Watchdog
Clock Source
0 = internal OSC1
1 = external or

internal OSC2

CPU Timer 2
Clock Source
00 = SYSCLKOUT
01 = external
10 = internal OSC1
11 = internal OSC2

CPU Timer 2
Clock Prescale
000 = /1
001 = /2
010 = /4
011 = /8
100 = /16
1xx = reserved 0 = default

The peripheral clock control register allows individual peripheral clock signals to be enabled or
disabled. If a peripheral is not being used, its clock signal could be disabled, thus reducing power
consumption.

Peripheral Clock Control Registers
(lab file: SysCtrl.c)

15 14 13 11 10 9 812

7 6 5 4 3 2 1 0

SysCtrlRegs.PCLKCR0

SysCtrlRegs.PCLKCR1

SysCtrlRegs.PCLKCR3

15 14 13 11 10 9 812

7 6 5 4 3 2 1 0

ECANA
ENCLK

SCIA
ENCLK

SPIA
ENCLK

I2CA
ENCLK

ADC
ENCLK

TBCLK
SYNC

EQEP1
ENCLK

ECAP1
ENCLK

EPWM6
ENCLK

EPWM5
ENCLK

EPWM4
ENCLK

EPWM3
ENCLK

EPWM2
ENCLK

EPWM1
ENCLK

reservedreserved

reserved

Module Enable Clock Bit
0 = disable (default) 1 = enable

HRPWM
ENCLK

15 14 13 11 10 9 812
CPUTIMER2

ENCLK
CPUTIMER1

ENCLK
CPUTIMER0

ENCLK
GPIOIN
ENCLKreserved reserved reserved

7 6 5 4 3 2 1 0

reserved reserved reserved reserved reserved COMP1
ENCLK

COMP2
ENCLK

EPWM7
ENCLK

COMP3
ENCLK

SPIA
ENCLKreserved reserved reserved reserved

LINA
ENCLKreserved

reserved reserved reserved reserved reserved reserved

CLA1
ENCLK

C2000 Piccolo Workshop - System Initialization 5 - 5

Watchdog Timer

Watchdog Timer
Watchdog Timer

Resets the C28x if the CPU crashes
Watchdog counter runs independent of CPU
If counter overflows, a reset or interrupt is
triggered (user selectable)
CPU must write correct data key sequence to
reset the counter before overflow

Watchdog must be serviced or disabled
within 131,072 WDCLK cycles after reset
This translates to 13.11 ms with a 10 MHz
WDCLK

The watchdog timer provides a safeguard against CPU crashes by automatically initiating a reset
if it is not serviced by the CPU at regular intervals. In motor control applications, this helps
protect the motor and drive electronics when control is lost due to a CPU lockup. Any CPU reset
will revert the PWM outputs to a high-impedance state, which should turn off the power
converters in a properly designed system.

The watchdog timer is running immediately after system power-up/reset, and must be dealt with
by software soon after. Specifically, you have 13.11 ms (for a 60 MHz device) after any reset
before a watchdog initiated reset will occur. This translates into 131,072 WDCLK cycles, which
is a seemingly tremendous amount! Indeed, this is plenty of time to get the watchdog configured
as desired and serviced. A failure of your software to properly handle the watchdog after reset
could cause an endless cycle of watchdog initiated resets to occur.

5 - 6 C2000 Piccolo Workshop - System Initialization

 Watchdog Timer

Watchdog Timer Module (lab file: Watchdog.c)

WDCLK

System
Reset

8-bit Watchdog
Counter

CLR

Watchdog
Reset Key
Register

55 + AA
Detector

1 0 1
/
/3

3

WDDIS

WDCHK 2-0

Bad WDCHK Key

/512

Output
Pulse

WDRST

WDINT

WDOVERRIDE

Good Key

Watchdog
Prescaler

WDPS

WDPS FRC WD timeout period
Bits rollover @ 10 MHz WDCLK

00x: 1 13.11 ms *
010: 2 26.22 ms
011: 4 52.44 ms
100: 8 104.88 ms
101: 16 209.76 ms
110: 32 419.52 ms
111: 64 839.04 ms

Watchdog Period Selection

Remember: Watchdog starts counting immediately
after reset is released!
Reset default with WDCLK = 10 MHz computed as

(1/10 MHz) * 512 * 256 = 13.11 ms

* reset default

C2000 Piccolo Workshop - System Initialization 5 - 7

Watchdog Timer

Watchdog Timer Control Register
SysCtrlRegs.WDCR (lab file: Watchdog.c)

WDFLAG WDDIS

7 6 5 - 3 2 - 0

WDPSWDCHK

Logic Check Bits
Write as 101 or reset
immediately triggered

WD Prescale
Selection Bits

Watchdog Disable Bit
Write 1 to disable

(Functions only if WD OVERRIDE
bit in SCSR is equal to 1)

reserved

15 - 8

WD Flag Bit
Gets set when the WD causes a reset

• Writing a 1 clears this bit
• Writing a 0 has no effect

WDPS WDCLK =
0 0 0 OSCCLK / 512 / 1
0 0 1 OSCCLK / 512 / 1
0 1 0 OSCCLK / 512 / 2
0 1 1 OSCCLK / 512 / 4
1 0 0 OSCCLK / 512 / 8
1 0 1 OSCCLK / 512 / 16
1 1 0 OSCCLK / 512 / 32
1 1 1 OSCCLK / 512 / 64

Resetting the Watchdog
SysCtrlRegs.WDKEY (lab file: Watchdog.c)

WDKEY write values:
55h - counter enabled for reset on next AAh write
AAh - counter set to zero if reset enabled

Writing any other value has no effect
Watchdog should not be serviced solely in
an ISR

If main code crashes, but interrupt continues to
execute, the watchdog will not catch the crash
Could put the 55h WDKEY in the main code, and
the AAh WDKEY in an ISR; this catches main
code crashes and also ISR crashes

reserved
7 - 015 - 8

WDKEY

5 - 8 C2000 Piccolo Workshop - System Initialization

 Watchdog Timer

WDKEY Write Results

Sequential
Step

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Value Written
to WDKEY

AAh
AAh
55h
55h
55h
AAh
AAh
55h
AAh
55h
23h
AAh
55h
AAh

Result

No action
No action
WD counter enabled for reset on next AAh write
WD counter enabled for reset on next AAh write
WD counter enabled for reset on next AAh write
WD counter is reset
No action
WD counter enabled for reset on next AAh write
WD counter is reset
WD counter enabled for reset on next AAh write
No effect; WD counter not reset on next AAh write
No action due to previous invalid value
WD counter enabled for reset on next AAh write
WD counter is reset

System Control and Status Register
SysCtrlRegs.SCSR (lab file: Watchdog.c)

WD Override (protect bit)
Protects WD from being disabled

0 = WDDIS bit in WDCR has no effect (WD cannot be disabled)
1 = WDDIS bit in WDCR can disable the watchdog

• This bit is a clear-only bit (write 1 to clear)
• The reset default of this bit is a 1

01215 - 3

WDOVERRIDEWDENINTWDINTSreserved

WD Enable InterruptWD Interrupt Status
(read only)

0 = active
1 = not active

0 = WD generates a DSP reset
1 = WD generates a WDINT interrupt

C2000 Piccolo Workshop - System Initialization 5 - 9

General-Purpose Digital I/O

General-Purpose Digital I/O
F2803x GPIO Grouping Overview

(lab file: Gpio.c)

GPIO Port A Mux1
Register (GPAMUX1)

[GPIO 0 to 15] GPIO Port A
Direction Register

(GPADIR)
[GPIO 0 to 31]

G
PIO

 Port A
G

PIO
 P

ort B

Internal B
us

GPIO Port A Mux2
Register (GPAMUX2)

[GPIO 16 to 31]

GPIO Port B Mux1
Register (GPBMUX1)

[GPIO 32 to 44]

GPIO Port B
Direction Register

(GPBDIR)
[GPIO 32 to 44]

AN
A

LO
G

 Port

ANALOG I/O Mux1
Register (AIOMUX1)

[AIO 0 to 15]

ANALOG Port
Direction Register

(AIODIR)
[AIO 0 to 15]

Input
Qual

Input
Qual

•

F2803x GPIO Pin Block Diagram
(lab file: Gpio.c)

• •
01

00
MUX Control Bits *
00 = GPIO
01 = Peripheral 1
10 = Peripheral 2
11 = Peripheral 3

Peripheral
1

I/O DAT
Bit (R/W) In

Out

I/O DIR Bit
0 = Input
1 = Output

GPxMUX1
GPxMUX2

GPxDIR

GPxDAT

GPxSET
GPxCLEAR

GPxTOGGLE

•• 10

11

Peripheral
2

Peripheral
3

Pin

Internal Pull-Up
0 = enable (default GPIO 12-44)
1 = disable (default GPIO 0-11)

GPxPUD

Input
Qualification

(GPIO 0-44) GPxQSEL1
GPxQSEL2
GPxCTRL

* See device datasheet for pin function selection matrices

5 - 10 C2000 Piccolo Workshop - System Initialization

 General-Purpose Digital I/O

Qualification available on ports A & B (GPIO 0 - 44) only
Individually selectable per pin

no qualification (peripherals only)
sync to SYSCLKOUT only
qualify 3 samples
qualify 6 samples

AIO pins are fixed as
‘sync to SYSCLKOUT’

F2803x GPIO Input Qualification

Input
Qualificationpin

to GPIO and
peripheral
modules

SYSCLKOUT

T T T

samples taken

T = qual period

F2803x GPIO Input Qual Registers
GpioCtrlRegs.register (lab file: Gpio.c)

00 = sync to SYSCLKOUT only *
01 = qual to 3 samples
10 = qual to 6 samples
11 = no sync or qual (for peripheral only; GPIO same as 00)

00h no qualification (SYNC to SYSCLKOUT) *
01h QUALPRD = SYSCLKOUT/2
02h QUALPRD = SYSCLKOUT/4
… … …

FFh QUALPRD = SYSCLKOUT/510

GPAQSEL1 / GPAQSEL2 / GPBQSEL1
16 pins configured per register

031

QUALPRD0QUALPRD1QUALPRD2QUALPRD3

GPACTRL / GPBCTRL
31 24 16 8 0

B: reserved reserved GPIO44-40 GPIO39-32
A: GPIO31-24 GPIO23-16 GPIO15-8 GPIO7-0

* reset default

C2000 Piccolo Workshop - System Initialization 5 - 11

General-Purpose Digital I/O

F2803x GPIO Control Registers
GpioCtrlRegs.register (lab file: Gpio.c)

Register Description
GPACTRL GPIO A Control Register [GPIO 0 – 31]
GPAQSEL1 GPIO A Qualifier Select 1 Register [GPIO 0 – 15]
GPAQSEL2 GPIO A Qualifier Select 2 Register [GPIO 16 – 31]
GPAMUX1 GPIO A Mux1 Register [GPIO 0 – 15]
GPAMUX2 GPIO A Mux2 Register [GPIO 16 – 31]
GPADIR GPIO A Direction Register [GPIO 0 – 31]
GPAPUD GPIO A Pull-Up Disable Register [GPIO 0 – 31]
GPBCTRL GPIO B Control Register [GPIO 32 – 44]
GPBQSEL1 GPIO B Qualifier Select 1 Register [GPIO 32 – 44]
GPBMUX1 GPIO B Mux1 Register [GPIO 32 – 44]
GPBDIR GPIO B Direction Register [GPIO 32 – 44]
GPBPUD GPIO B Pull-Up Disable Register [GPIO 32 – 44]
AIOMUX1 ANALOG I/O Mux1 Register [AIO 0 – 15]
AIODIR ANALOG I/O Direction Register [AIO 0 – 15]

F2803x GPIO Data Registers
GpioDataRegs.register (lab file: Gpio.c)

Register Description
GPADAT GPIO A Data Register [GPIO 0 – 31]
GPASET GPIO A Data Set Register [GPIO 0 – 31]
GPACLEAR GPIO A Data Clear Register [GPIO 0 – 31]
GPATOGGLE GPIO A Data Toggle [GPIO 0 – 31]
GPBDAT GPIO B Data Register [GPIO 32 – 44]
GPBSET GPIO B Data Set Register [GPIO 32 – 44]
GPBCLEAR GPIO B Data Clear Register [GPIO 32 – 44]
GPBTOGGLE GPIO B Data Toggle [GPIO 32 – 44]
AIODAT ANALOG I/O Data Register [AIO 0 – 15]
AIOSET ANALOG I/O Data Set Register [AIO 0 – 15]
AIOCLEAR ANALOG I/O Data Clear Register [AIO 0 – 15]
AIOTOGGLE ANALOG I/O Data Toggle [AIO 0 – 15]

5 - 12 C2000 Piccolo Workshop - System Initialization

 External Interrupts

External Interrupts
External Interrupts

3 external interrupt signals: XINT1, XINT2
and XINT3

XINT1, XINT2 and XINT3 can be mapped to
any of GPIO0-31

XINT1, XINT2 and XINT3 also each have a
free-running 16-bit counter that measures
the elapsed time between interrupts

The counter resets to zero each time the
interrupt occurs

External Interrupt Registers

Interrupt Pin Selection Register Configuration Register Counter Register
(GpioIntRegs.register) (XIntruptRegs.register) (XIntruptRegs.register)

XINT1 GPIOXINT1SEL XINT1CR XINT1CTR
XINT2 GPIOXINT2SEL XINT2CR XINT2CTR
XINT3 GPIOXINT3SEL XINT3CR XINT3CTR

Pin Selection Register chooses which pin(s) the signal comes out on
Configuration Register controls the enable/disable and polarity
Counter Register holds the interrupt counter

C2000 Piccolo Workshop - System Initialization 5 - 13

Low Power Modes

Low Power Modes
Low Power Modes

Low Power
Mode

CPU Logic
Clock

Peripheral
Logic Clock

Watchdog
Clock

PLL /
OSC

Normal Run

IDLE

STANDBY

HALT

on

off

off

off

on

on

off

off

on

on

on

off

on

on

on

off

See device datasheet for power consumption in each mode

Low Power Mode Control Register 0
SysCtrlRegs.LPMCR0 (lab file: SysCtrl.c)

1 - 07 - 214 - 8

LPM0WDINTE QUALSTDBYreserved

Low Power Mode Selection
00 = Idle (default)
01 = Standby
1x = Halt

Wake from STANDBY
GPIO signal qualification *

000000 = 2 OSCCLKs
000001 = 3 OSCCLKs

111111 = 65 OSCCLKS (default)

...

15

Watchdog Interrupt
wake device from

STANDBY
0 = disable (default)
1 = enable

Low Power Mode Entering
1. Set LPM bits
2. Enable desired exit interrupt(s)
3. Execute IDLE instruction
4. The power down sequence of the hardware

depends on LP mode

* QUALSTDBY will qualify the GPIO wakeup signal in series with the GPIO port qualification.
This is useful when GPIO port qualification is not available or insufficient for wake-up purposes.

5 - 14 C2000 Piccolo Workshop - System Initialization

 Low Power Modes

Low Power Mode Exit

IDLE

STANDBY

HALT

RESET

yes

yes

yes

Any
Enabled
Interrupt

yes

no

no

yes

yes

no

Exit
Interrupt

Low Power
Mode

Watchdog
Interrupt

GPIO
Port A
Signal

yes

yes

yes

GPIO Low Power Wakeup Select
SysCtrlRegs.GPIOLPMSEL

Wake device from
HALT and STANDBY mode

(GPIO Port A)
0 = disable (default)
1 = enable

0

GPIO2

GPIO14 GPIO8GPIO11

GPIO5
1234567

89101112131415

GPIO0GPIO1GPIO4 GPIO3

GPIO9

GPIO6

GPIO10

GPIO7

GPIO12GPIO13GPIO15

16

GPIO18

GPIO30 GPIO24GPIO27

GPIO21
17181920212223

2425262728293031

GPIO16GPIO17GPIO20 GPIO19

GPIO25

GPIO22

GPIO26

GPIO23

GPIO28GPIO29GPIO31

C2000 Piccolo Workshop - System Initialization 5 - 15

Register Protection

Register Protection

CPU pipeline protects W-R order for the same address
Write-Read protection mechanism protects W-R order
for different addresses

Peripheral Frame 1 and Peripheral Frame 2 zones protected
Write-read protection mode bit ENPROT located in the
DEVICECNF register is enabled by default

Write-Read Protection
DevEmuRegs.DEVICECNF.bit.ENPROT

Suppose you need to write to a peripheral register and
then read a different register for the same peripheral
(e.g., write to control, read from status register)?

Peripheral Frame Registers
PF0

eCAN
COMP
ePWM
eCAP
eQEP
LIN

GPIO

PF1
System Control

SPI
SCI

Watchdog
XINT
ADC
I2C

Protected address:
0x4000 - 0x7FFF

EALLOW Protection (1 of 2)

EALLOW stands for Emulation Allow
Code access to protected registers allowed
only when EALLOW = 1 in the ST1 register
The emulator can always access protected
registers
EALLOW bit controlled by assembly level
instructions

‘EALLOW’ sets the bit (register access enabled)
‘EDIS’ clears the bit (register access disabled)

EALLOW bit cleared upon ISR entry, restored
upon exit

5 - 16 C2000 Piccolo Workshop - System Initialization

 Register Protection

EALLOW Protection (2 of 2)

asm(" EALLOW"); // enable protected register access

SysCtrlRegs.WDKEY=0x55; // write to the register

asm(" EDIS"); // disable protected register access

EALLOW register access C-code example:

Device Emulation
Flash
Code Security Module
PIE Vector Table
LIN (some registers)
eCANA/B (control registers only; mailbox RAM not protected)
ePWM1-7 and COMP1-3 (some registers)
GPIO (control registers only)
System Control

See device datasheet and peripheral users guides for detailed listings

The following registers are protected:

C2000 Piccolo Workshop - System Initialization 5 - 17

Lab 5: System Initialization

Lab 5: System Initialization
 Objective

The objective of this lab is to perform the processor system initialization. Additionally, the
peripheral interrupt expansion (PIE) vectors will be initialized and tested using the information
discussed in the previous module. This initialization process will be used again in all of the lab
exercises throughout this workshop. The system initialization for this lab will consist of the
following:

• Setup the clock module – PLL, LOSPCP = /4, low-power modes to default values, enable all
module clocks

• Disable the watchdog – clear WD flag, disable watchdog, WD prescale = 1
• Setup watchdog system and control register – DO NOT clear WD OVERRIDE bit, WD

generate a CPU reset
• Setup shared I/O pins – set all GPIO pins to GPIO function (e.g. a "00" setting for GPIO

function, and a “01”, “10”, or “11” setting for a peripheral function.)

The first part of the lab exercise will setup the system initialization and test the watchdog
operation by having the watchdog cause a reset. In the second part of the lab exercise the PIE
vectors will be added and tested by using the watchdog to generate an interrupt. This lab will
make use of the DSP2803x C-code header files to simplify the programming of the device, as
well as take care of the register definitions and addresses. Please review these files, and make use
of them in the future, as needed.

 Procedure

Create Project File
1. Create a new project called Lab5.pjt in C:\C28x\Labs\Lab5 and add the

following files to it:

CodeStartBranch.asm Lab_5_6_7.cmd
DelayUs.asm Main_5.c
DSP2803x_GlobalVariableDefs.c SysCtrl.c
DSP2803x_Headers_nonBIOS.cmd Watchdog.c
Gpio.c

Note that include files, such as DSP2803x_Device.h and Lab.h, are automatically
added at project build time. (Also, DSP2803x_DefaultIsr.h is automatically
added and will be used with the interrupts in the second part of this lab exercise).

5 - 18 C2000 Piccolo Workshop - System Initialization

 Lab 5: System Initialization

Project Build Options
2. We need to setup the search path to include the peripheral register header files. Click:

Project Build Options…

Select the Compiler tab. In the Preprocessor Category, find the Include Search
Path (-i) box and enter:

..\DSP2803x_headers\include

This is the path for the header files.

3. Select the Linker tab and set the Stack Size to 0x200.

4. Setup the compiler run-time support library. In the Libraries Category, find the
Include Libraries (-l) box and enter: rts2800_ml.lib. Select OK and the
Build Options window will close.

Modify Memory Configuration
5. Open and inspect the linker command file Lab_5_6_7.cmd. Notice that the user

defined section “codestart” is being linked to a memory block named BEGIN_M0.
The codestart section contains code that branches to the code entry point of the project.
The bootloader must branch to the codestart section at the end of the boot process. Recall
that the "Jump to M0 SARAM" bootloader mode branches to address 0x000000 upon
bootloader completion.

Modify the linker command file Lab_5_6_7.cmd to create a new memory block
named BEGIN_M0: origin = 0x000000, length = 0x0002, in program memory. You will
also need to modify the existing memory block M0SARAM in data memory to avoid any
overlaps with this new memory block.

Setup System Initialization
6. Modify SysCtrl.c and Watchdog.c to implement the system initialization as

described in the objective for this lab.

7. Open and inspect Gpio.c. Notice that the shared I/O pins have been set to the GPIO
function. Save your work and close the modified files.

Build and Load
8. Click the “Build” button and watch the tools run in the build window. The output

file should automatically load.

9. Under Debug on the menu bar click “Reset CPU”.

C2000 Piccolo Workshop - System Initialization 5 - 19

Lab 5: System Initialization

10. Under GEL on the menu bar click:
EMU Boot Mode Select EMU_BOOT_SARAM.
This has the debugger load values into EMU_KEY and EMU_BMODE so that the
bootloader will jump to "M0 SARAM" at 0x000000.

11. Under Debug on the menu bar click “Go Main”. You should now be at the start of
Main().

Run the Code – Watchdog Reset
12. Place the cursor in the “main loop” section (on the asm(“ NOP”); instruction

line) and right click the mouse key and select Run To Cursor. This is the same as
setting a breakpoint on the selected line, running to that breakpoint, and then removing
the breakpoint.

13. Place the cursor on the first line of code in main() and set a breakpoint by right
clicking the mouse key and select Toggle Software Breakpoint. Notice that
line is highlighted with a red dot indicating that the breakpoint has been set. Alternately,
you can double-click in the gray field to the left of the code line to set the breakpoint.
The breakpoint is set to prove that the watchdog is disabled. If the watchdog causes a
reset, code execution will stop at this breakpoint.

14. Run your code for a few seconds by using the <F5> key, or using the Run button on the
vertical toolbar, or using Debug Run on the menu bar. After a few seconds halt
your code by using Shift <F5>, or the Halt button on the vertical toolbar. Where did your
code stop? Are the results as expected? If things went as expected, your code should be
in the “main loop”.

15. Modify the InitWatchdog() function to enable the watchdog (WDCR). This will
enable the watchdog to function and cause a reset. Save the file and click the “Build”
button.

16. Reset the CPU by performing the following steps:
Click on Debug Reset CPU
Next click Debug Go Main

17. Like before, place the cursor in the “main loop” section (on the asm(“ NOP”);
instruction line) and right click the mouse key and select Run To Cursor..

18. Run your code. Where did your code stop? Are the results as expected? If things went
as expected, your code should have stopped at the breakpoint. What happened is as
follows. While the code was running, the watchdog timed out and reset the processor.
The reset vector was then fetched and the ROM bootloader began execution. Since the
device is in emulation boot mode (i.e. the emulator is connected) the bootloader read the
EMU_KEY and EMU_BMODE values from the PIE RAM. These values were
previously set for boot to M0 SARAM bootmode when we invoked the
EMU_BOOT_SARAM GEL function earlier in this lab. Since these values did not change
and are not affected by reset, the bootloader transferred execution to the beginning of our
code at address 0x000000 in the M0SARAM, and execution continued until the
breakpoint was hit in main().

5 - 20 C2000 Piccolo Workshop - System Initialization

 Lab 5: System Initialization

Setup PIE Vector for Watchdog Interrupt
The first part of this lab exercise used the watchdog to generate a CPU reset. This was tested
using a breakpoint set at the beginning of main(). Next, we are going to use the watchdog
to generate an interrupt. This part will demonstrate the interrupt concepts learned in the
previous module.

19. Add the following files to the project:

DefaultIsr_5.c
PieCtrl_5_6_7_8_9_10.c
PieVect_5_6_7_8_9_10.c

Check your files list to make sure the files are there.

20. In Main_5.c, add code to call the InitPieCtrl() function. There are no passed
parameters or return values, so the call code is simply:

 InitPieCtrl();

21. Using the “PIE Interrupt Assignment Table” shown in the previous module find the
location for the watchdog interrupt, “WAKEINT”. This will be used in the next step.

PIE group #: # within group:

22. Modify main() to do the following:
- Enable global interrupts (INTM bit)

Then modify InitWatchdog() to do the following:
- Enable the "WAKEINT" interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

23. In Watchdog.c modify the system control and status register (SCSR) to cause the
watchdog to generate a WAKEINT rather than a reset. Save all changes to the files.

24. Open and inspect DefaultIsr_5.c. This file contains interrupt service routines. The
ISR for WAKEINT has been trapped by an emulation breakpoint contained in an inline
assembly statement using “ESTOP0”. This gives the same results as placing a breakpoint
in the ISR. We will run the lab exercise as before, except this time the watchdog will
generate an interrupt. If the registers have been configured properly, the code will be
trapped in the ISR.

25. Open and inspect PieCtrl_5_6_7_8_9_10.c. This file is used to initialize the PIE
RAM and enable the PIE. The interrupt vector table located in
PieVect_5_6_7_8_9_10.c is copied to the PIE RAM to setup the vectors for the
interrupts. Close the modified and inspected files.

Build and Load
26. Click the “Build” button. Next reset the CPU, and then “Go Main”.

C2000 Piccolo Workshop - System Initialization 5 - 21

Lab 5: System Initialization

Run the Code – Watchdog Interrupt
27. Place the cursor in the “main loop” section, right click the mouse key and select

Run To Cursor.

28. Run your code. Where did your code stop? Are the results as expected? If things went
as expected, your code should stop at the “ESTOP0” instruction in the WAKEINT ISR.

End of Exercise

Note: By default, the watchdog timer is enabled out of reset. Code in the file
CodeStartBranch.asm has been configured to disable the watchdog. This can be
important for large C code projects (ask your instructor if this has not already been
explained). During this lab exercise, the watchdog was actually re-enabled (or disabled
again) in the file Watchdog.c.

5 - 22 C2000 Piccolo Workshop - System Initialization

Analog-to-Digital Converter and Comparator

Introduction
This module explains the operation of the analog-to-digital converter and comparator. The ADC
system consists of a 12-bit analog-to-digital converter with up to 16 analog input channels. The
analog input channels have a full range analog input of 0 to 3.3 volts or VREFHI/VREFLO
ratiometric. Two input analog multiplexers are available, each supporting up to 8 analog input
channels. Each multiplexer has its own dedicated sample and hold circuit. Therefore, sequential,
as well as simultaneous sampling is supported. The ADC system is start-of-conversion (SOC)
based where each independent SOCx (where x = 0 to 15) register configures the trigger source
that starts the conversion, the channel to convert, and the acquisition (sample) window size. Up
to 16 results registers are used to store the conversion values. Conversion triggers can be
performed by an external trigger pin, software, an ePWM or CPU timer interrupt event, or a
generated ADCINT1/2 interrupt.

Learning Objectives
Learning Objectives

Understand the operation of the
Analog-to-Digital converter (ADC)
and Comparator
Use the ADC to perform data acquisition

C2000 Piccolo Workshop - Analog-to-Digital Converter 6 - 1

Module Topics

Module Topics
Analog-to-Digital Converter and Comparator ... 6-1

Module Topics... 6-2
Analog-to-Digital Converter... 6-3

ADC Block and Functional Diagrams .. 6-3
ADC Triggering.. 6-4
ADC Conversion Priority ... 6-5
ADC Clock and Timing.. 6-7
ADC Converter Registers ... 6-8
ADC Calibration and Reference..6-13

Comparator..6-15
Comparator Block Diagram...6-15
Comparator Registers ..6-16

Lab 6: Analog-to-Digital Converter ..6-17

6 - 2 C2000 Piccolo Workshop - Analog-to-Digital Converter

 Analog-to-Digital Converter

Analog-to-Digital Converter

ADC Block and Functional Diagrams

ADC Module Block Diagram

12-bit A/D
Converter

SOC

EOCx

ADCINA0
ADCINA1

ADCINA7

ADCINB0
ADCINB1

ADCINB7

S/H
A

S/H
B

M
UX

MUX
A

RESULT0
RESULT1
RESULT2

RESULT15

Result
MUX

MUX
B

ADC
Generation

Logic
ADC full-scale
input range is

0 to 3.3V

CHSEL ADC
Interrupt

Logic

SOC0 TRIGSEL CHSEL ACQPS
SOC1 TRIGSEL CHSEL ACQPS
SOC2 TRIGSEL CHSEL ACQPS
SOC3 TRIGSEL CHSEL ACQPS

SOC15 TRIGSEL CHSEL ACQPS SO
C

x
Tr

ig
ge

rs

ADCINT1-9

Software

External Pin
(GPIO/XINT2_ADCSOC)

EPWMxSOCA (x = 1 to 7)
EPWMxSOCB (x = 1 to 7)

CPU Timer (0,1,2)

SOCx Signal ADCINT1
ADCINT2

SOCx Configuration Registers

ADC SOCx Functional Diagram

This block diagram is replicated 16 times

Software Trigger
TINT0 (CPU Timer 0)
TINT1 (CPU Timer 1)
TINT2 (CPU Timer 2)

XINT2_ADCSOC (GPIO)
SOCA (ePWM1)
SOCB (ePWM1)

SOCA (ePWM7)
SOCB (ePWM7)

T
r
i
g
g
e
r

none
ADCINT1
ADCINT2

Re-
Trigger

ADCINT1
ADCINT2
ADCINT3
ADCINT4
ADCINT5
ADCINT6
ADCINT7
ADCINT8
ADCINT9

Channel
Select

Sample
Window

Result
RegisterS

O
C
x

E
O
C
x

ADCSOCxCTL

ADCSOCFRC1

ADCINTSOCSEL1
ADCINTSOCSEL2

INTSELxNy

ADCRESULTx

C2000 Piccolo Workshop - Analog-to-Digital Converter 6 - 3

Analog-to-Digital Converter

ADC Triggering

Example – ADC Triggering (1 of 2)

Sample A2 B3 A7 when ePWM1 SOCB is generated and then generate ADCINT1n:

Channel
A2

Sample
7 cycles Result0

Channel
B3

Sample
10 cycles Result1

Channel
A7

Sample
4 cycles Result2

SOC0

SOC1

SOC2

no interrupt

no interrupt

ADCINT1n

SOCB (ETPWM1)

As above, but also sample A0 B0 A5 continuously and generate ADCINT2n:

Channel
A2

Sample
7 cycles Result0

Channel
B3

Sample
10 cycles Result1

Channel
A7

Sample
4 cycles Result2

SOC0

SOC1

SOC2

no interrupt

no interrupt

ADCINT1n

SOCB (ETPWM1)

Channel
A0

Sample
10 cycles Result3

Channel
B0

Sample
15 cycles Result4

Channel
A5

Sample
12 cycles Result5

SOC3

SOC4

SOC5

no interrupt

no interrupt

ADCINT2n

ADCINT2n

Software Trigger

Example – ADC Triggering (2 of 2)

Sample all channels continuously and provide Ping-Pong interrupts to CPU/system:

Channel
A0:B0

Sample
7 cycles

SOC0 no interrupt
ADCINT2n

Software Trigger Result0
Result1

Channel
A1:B1

Sample
7cycles

SOC2 no interruptResult2
Result3

Channel
A2:B2

Sample
7 cycles

SOC4 no interruptResult4
Result5

Channel
A3:B3

Sample
7 cycles

SOC6 Result6
Result7

Channel
A4:B4

Sample
7 cycles

SOC8 no interruptResult8
Result9

Channel
A5:B5

Sample
7 cycles

SOC10 no interruptResult10
Result11

Channel
A6:B6

Sample
7 cycles

SOC12 no interruptResult12
Result13

Channel
A7:B7

Sample
7 cycles

SOC14 Result14
Result15

ADCINT1n

ADCINT2n

6 - 4 C2000 Piccolo Workshop - Analog-to-Digital Converter

 Analog-to-Digital Converter

ADC Conversion Priority

ADC Conversion Priority

When multiple SOC flags are set at the
same time – priority determines the
order in which they are converted

Round Robin Priority (default)
No SOC has an inherent higher priority than
another
Priority depends on the round robin pointer

High Priority
High priority SOC will interrupt the round robin
wheel after current conversion completes and
insert itself as the next conversion
After its conversion completes, the round robin
wheel will continue where it was interrupted

Conversion Priority Functional Diagram

Round Robin Pointer
Points to the last converted

round robin SOCx and
determines order

of conversions

SOC Priority
Determines cutoff point

for high priority and
round robin mode

SOC0
SOC1
SOC2
SOC3
SOC4
SOC5
SOC6
SOC7
SOC8
SOC9

SOC10
SOC11
SOC12
SOC13
SOC14
SOC15

R
ou

nd
 R

ob
in

H
ig

h
Pr

io
rit

y

SOCPRIORITY

RRPOINTER

AdcRegs.SOCPRICTL

C2000 Piccolo Workshop - Analog-to-Digital Converter 6 - 5

Analog-to-Digital Converter

Round Robin Priority Example

SOC
0 SOC

1
SOC

2

SOC
3

SOC
4

SOC
5

SOC
6

SOC
7SOC

8

SOC
9

SOC
10

SOC
11

SOC
12

SOC
13

SOC
14

SOC
15

RRPOINTER

SOC7 trigger received

SOC7 is converted;
RRPOINTER now points to SOC7;
SOC8 is now highest RR priority

SOC2 & SOC12 triggers received
simultaneously

SOC12 is converted;
RRPOINTER points to SOC12;
SOC13 is now highest RR priority

SOC2 is converted;
RRPOINTER points to SOC2;
SOC3 is now highest RR priority

SOCPRIORITY configured as 0;
RRPOINTER configured as 15;
SOC0 is highest RR priority

High Priority Example

SOC
4 SOC

5

SOC
0 SOC

6

SOC
7

SOC
8

SOC
9SOC

10

SOC
11

SOC
12

SOC
13

SOC
14

SOC
15

RRPOINTER

SOC
1

SOC
2

SOC
3

High PrioritySOC7 trigger received

SOC7 is converted;
RRPOINTER points to SOC7;
SOC8 is now highest RR priority

SOC2 is converted;
RRPOINTER stays pointing to SOC7

SOC12 is converted;
RRPOINTER points to SOC12;
SOC13 is now highest RR priority

SOCPRIORITY configured as 4;
RRPOINTER configured as 15;
SOC4 is highest RR priority

SOC2 & SOC12 triggers received
simultaneously

6 - 6 C2000 Piccolo Workshop - Analog-to-Digital Converter

 Analog-to-Digital Converter

ADC Clock and Timing

ADC Clocking Flow
Internal
OSC1

(10 MHz)

ADCCLK (60 MHz)
To ADC
pipeline

sampling
windowACQ_PS

bits

ADCSOCxCTL

0110b

SYSCLKOUT
(60 MHz)

PLLSTS

DIVSEL
bits

10b (/2)

To CPU

sampling window = (ACQ_PS + 1)*(1/ADCCLK)

PCLKCR0.ADCENCLK = 1

PLLCR

DIV
bits

1100b (x12)

ADC Timing – Sequential Sampling

7 Clocks
Sample

6 Clocks 7 Clocks
Convert

2 Clocks
Write

2 Clocks
Latch

Generate Early
Interrupt

Generate Late
Interrupt

Start Sampling Next Channel

Max Continuous Sampling:

60 MHz
13 cycles / 1 sample = 4.62 MSPS

40 MHz
13 cycles / 1 sample = 3.08 MSPS

C2000 Piccolo Workshop - Analog-to-Digital Converter 6 - 7

Analog-to-Digital Converter

ADC Timing – Simultaneous Sampling

7 Clocks
Sample

13 Clocks
Convert “A” Channel

2 Clocks
Write

2 Clocks
Latch

Generate Early
Interrupt “A” Channel Generate Late

Interrupt “A” Channel

Start Sampling Next Channel
&

Generate Early
Interrupt “B” Channel

6 Clocks 7 Clocks
Convert “B” Channel

2 Clocks
Write

Generate Late
Interrupt “B” Channel

Max Continuous Sampling:

60 MHz
26 cycles / 2 sample = 4.62 MSPS

40 MHz
26 cycles / 2 sample = 3.08 MSPS

ADC Converter Registers

Analog-to-Digital Converter Registers
AdcRegs.register (lab file: Adc.c)

ADCCTL1 Control 1 Register
ADCSOCxCTL SOC0 to SOC15 Control Registers
ADCINTSOCSELx Interrupt SOC Selection 1 and 2 Registers
ADCSAMPLEMODE Sampling Mode Register
ADCSOCFLG1 SOC Flag 1 Register
ADCSOCFRC1 SOC Force 1 Register
ADCSOCOVF1 SOC Overflow 1 Register
ADCSOCOVFCLR1 SOC Overflow Clear 1 Register
INTSELxNy Interrupt x and y Selection Registers
ADCINTFLG Interrupt Flag Register
ADCINTFLGCLR Interrupt Flag Clear Register
ADCINTOVF Interrupt Overflow Register
ADCINTOVFCLR Interrupt Overflow Clear Register
SOCPRICTL SOC Priority Control Register
ADCREFTRIM Reference Trim Register
ADCOFFTRIM Offset Trim Register
ADCREV Revision Register – reserved
ADCRESULTx ADC Result 0 to 15 Registers

Register Description

Note: ADCRESULTx is located in AdcResult.register and not in AdcRegs

6 - 8 C2000 Piccolo Workshop - Analog-to-Digital Converter

 Analog-to-Digital Converter

ADC Control Register 1
AdcRegs.ADCCTL1

ADC Enable
0 = ADC disable
1 = ADC enable

ADC Module Reset
0 = no effect
1 = reset (set back to 0

by ADC logic)

ADCENABLE ADCBSY ADCBSYCHNRESET
12 - 815

Upper Register:

14 13

ADC Busy
0 = ADC busy
1 = ADC available

ADC Busy Channel
When ADCBSY =
0: last channel converted
1: channel currently processing

00h = ADCINA0 08h = ADCINB0
01h = ADCINA1 09h = ADCINB1
02h = ADCINA2 0Ah = ADCINB2
03h = ADCINA3 0Bh = ADCINB3
04h = ADCINA4 0Ch = ADCINB4
05h = ADCINA5 0Dh = ADCINB5
06h = ADCINA6 0Eh = ADCINB6
07h = ADCINA7 0Fh = ADCINB7

ADC Control Register 1
AdcRegs.ADCCTL1

ADC Power Down
0 = analog circuitry

powered down
1 = analog circuitry

powered up

ADC Reference
Select
0 = internal
1 = external

(VREFHI/VREFLO)

ADCBGPWN ADCREFPWDADCPWN reserved
7

Lower Register:

VREFLO
CONV

INTPULSE
POS

6 5 4 3 2 0

ADC Bandgap
Power Down
0 = bandgap circuitry

powered down
1 = bandgap circuitry

powered up

ADC Reference
Power Down
0 = reference circuitry

powered down
1 = reference circuitry

powered up

TEMP
CONV

ADCREF
SEL

1

Temperature
Sensor Convert
currently not used
0 = only valid setting

INT Pulse
Generation Control
0 = beginning of

conversion
1 = one cycle prior

to result

VREFLO Convert
0 = not connected
1 = connected (B5)

C2000 Piccolo Workshop - Analog-to-Digital Converter 6 - 9

Analog-to-Digital Converter

ADC SOC0 – SOC15 Control Registers
AdcRegs.ADCSOCxCTL

TRIGSEL reserved
15 - 11 10 9 - 6 5 - 0

CHSEL ACQPS

SOCx Trigger
Source Select

SOCx Channel
Select

SOCx Acquisition
Prescale (S/H window)

0h = ADCINA0 0h = ADCINA0/B0
1h = ADCINA1 1h = ADCINA1/B1
2h = ADCINA2 2h = ADCINA2/B2
3h = ADCINA3 3h = ADCINA3/B3
4h = ADCINA4 4h = ADCINA4/B4
5h = ADCINA5 5h = ADCINA5/B5
6h = ADCINA6 6h = ADCINA6/B6
7h = ADCINA7 7h = ADCINA7/B7
8h = ADCINB0 8h – Fh = invalid
9h = ADCINB1
Ah = ADCINB2
Bh = ADCINB3
Ch = ADCINB4
Dh = ADCINB5
Eh = ADCINB6
Fh = ADCINB7

Sequential S/M
(SIMULENx=0)

Simultaneous S/M
(SIMULENx=1)

00h = software
01h = CPU Timer 0
02h = CPU Timer 1
03h = CPU Timer 2
04h = XINT2SOC
05h = ePWM1SOCA
06h = ePWM1SOCB
07h = ePWM2SOCA
08h = ePWM2SOCB
09h = ePWM3SOCA
0Ah = ePWM3SOCB
0Bh = ePWM4SOCA
0Ch = ePWM4SOCB
0Dh = ePWM5SOCA
0Eh = ePWM5SOCB
0Fh = ePWM6SOCA
10h = ePWM6SOCB
11h = ePWM7SOCA
12h = ePWM7SOCB

00h – 05h = invalid
06h = 7 cycles long
07h = 8 cycles long
08h = 9 cycles long
09h = 10 cycles long

3Fh = 64 cycles long

Sampling Window

ADC Interrupt Trigger SOC Select
Registers 1 & 2
AdcRegs.ADCINTSOCSELx

15 - 14
SOC15 SOC14 SOC13 SOC12 SOC11 SOC10 SOC9 SOC8

13 - 12 11 - 10 9 - 8 7 - 6 5 - 4 3 - 2 1 - 0

15 - 14
SOC7 SOC6 SOC5 SOC4 SOC3 SOC2 SOC1 SOC0

13 - 12 11 - 10 9 - 8 7 - 6 5 - 4 3 - 2 1 - 0

ADCINTSOCSEL2

ADCINTSOCSEL1

SOCx ADC Interrupt Select
Selects which, if any, ADCINT triggers SOCx
00 = no ADCINT will trigger SOCx (TRIGSEL field determines SOCx trigger)
01 = ADCINT1 will trigger SOCx (TRIGSEL field ignored)
10 = ADCINT2 will trigger SOCx (TRIGSEL field ignored)
11 = invalid selection

6 - 10 C2000 Piccolo Workshop - Analog-to-Digital Converter

 Analog-to-Digital Converter

ADC Sample Mode Register
AdcRegs.ADCSAMPLEMODE

reserved

15 - 8

7
SIMULEN14 SIMULEN12 SIMULEN10 SIMULEN8 SIMULEN6 SIMULEN4 SIMULEN2 SIMULEN0

6 5 4 3 2 1 0

Simultaneous Sampling Enable
Couples SOCx and SOCx+1 in simultaneous sampling mode
0 = single sample mode for SOCx and SOCx+1
1 = simultaneous sample mode for SOCx and SOCx+1

SOC Priority Control Register
AdcRegs.SOCPRICTL

reserved
15 - 11 10 - 5 4 - 0

RRPOINTER SOCPRIORITY

Round Robin Pointer
Points to the last converted

round robin SOCx and
determines order

of conversions

SOC Priority
Determines cutoff point

for high priority and
round robin mode

00h = round robin mode for all channels
01h = SOC0 high priority, SOC1-15 round robin
02h = SOC0-1 high priority, SOC2-15 round robin
03h = SOC0-2 high priority, SOC3-15 round robin
04h = SOC0-3 high priority, SOC4-15 round robin
05h = SOC0-4 high priority, SOC5-15 round robin
06h = SOC0-5 high priority, SOC6-15 round robin
07h = SOC0-6 high priority, SOC7-15 round robin
08h = SOC0-7 high priority, SOC8-15 round robin
09h = SOC0-8 high priority, SOC9-15 round robin
0Ah = SOC0-9 high priority, SOC10-15 round robin
0Bh = SOC0-10 high priority, SOC11-15 round robin
0Ch = SOC0-11 high priority, SOC12-15 round robin
0Dh = SOC0-12 high priority, SOC13-15 round robin
0Eh = SOC0-13 high priority, SOC14-15 round robin
0Fh = SOC0-14 high priority, SOC15 round robin
10h = all SOCs high priority (arbitrated by SOC #)
1xh = invalid selection

00h = SOC0 last converted, SOC1 highest priority
01h = SOC1 last converted, SOC2 highest priority
02h = SOC2 last converted, SOC3 highest priority
03h = SOC3 last converted, SOC4 highest priority
04h = SOC4 last converted, SOC5 highest priority
05h = SOC5 last converted, SOC6 highest priority
06h = SOC6 last converted, SOC7 highest priority
07h = SOC7 last converted, SOC8 highest priority
08h = SOC8 last converted, SOC9 highest priority
09h = SOC9 last converted, SOC11 highest priority
0Ah = SOC10 last converted, SOC11 highest priority
0Bh = SOC11 last converted, SOC12 highest priority
0Ch = SOC12 last converted, SOC13 highest priority
0Dh = SOC13 last converted, SOC14 highest priority
0Eh = SOC14 last converted, SOC15 highest priority
0Fh = SOC15 last converted, SOC0 highest priority
1xh = invalid selection
20h = reset value (no SOC has been converted)

C2000 Piccolo Workshop - Analog-to-Digital Converter 6 - 11

Analog-to-Digital Converter

Interrupt Select x and y Register
AdcRegs.INTSELxNy

INTxE INTxSELINTxCONTreserved

7 456 - 0

INTyE INTySELINTyCONTreserved
15 12 - 81314

Where x/y = 1/2, 3/4, 5/6, 7/8, 9/10 and 10 is reserved

00h = EOC0 is trigger for ADCINTx/y
01h = EOC1 is trigger for ADCINTx/y
02h = EOC2 is trigger for ADCINTx/y
03h = EOC3 is trigger for ADCINTx/y
04h = EOC4 is trigger for ADCINTx/y
05h = EOC5 is trigger for ADCINTx/y
06h = EOC6 is trigger for ADCINTx/y
07h = EOC7 is trigger for ADCINTx/y
08h = EOC8 is trigger for ADCINTx/y
09h = EOC9 is trigger for ADCINTx/y
0Ah = EOC10 is trigger for ADCINTx/y
0Bh = EOC11 is trigger for ADCINTx/y
0Ch = EOC12 is trigger for ADCINTx/y
0Dh = EOC13 is trigger for ADCINTx/y
0Eh = EOC14 is trigger for ADCINTx/y
0Fh = EOC15 is trigger for ADCINTx/y
1xh = invalid value

ADCINTx/y EOC Source Select

ADCINTx/y
Interrupt Enable
0 = disable
1 = enable

ADCINTx/y
Continuous
Mode Enable
0 = one-shot pulse

generated (until flag
cleared by user)

1 = pulse generated for
each EOC

ADC Conversion Result Registers

Sequential Sampling Mode (SIMULENx = 0)
After ADC completes a conversion of an SOCx, the digital
result is placed in the corresponding ADCRESULTx register

Simultaneous Sampling Mode (SIMULENx = 1)
After ADC completes a conversion of a channel pair, the
digital results are found in the corresponding ADCRESULTx
and ADCRUSULTx+1 registers

Input Digital AdcResult.
Voltage Result ADCRESULTx

3.3 FFFh 0000|1111|1111|1111
1.65 7FFh 0000|0111|1111|1111
0.00081 1h 0000|0000|0000|0001
0 0h 0000|0000|0000|0000

LSBMSB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AdcResult.ADCRESULTx, x = 0 - 15

6 - 12 C2000 Piccolo Workshop - Analog-to-Digital Converter

 Analog-to-Digital Converter

How Can We Handle Signed Input Voltages?
Example: -1.65 V ≤ Vin ≤ +1.65 V

1) Add 1.65 volts to the
analog input

Vin

1.65V ADCINx

GND

ADCLO

-
+

R

R

R
-
+

R

R
C28x

#include “DSP2803x_Device.h”
#define offset 0x07FF
void main(void)
{

int16 value; // signed

value = AdcResult.ADCRESULT0 – offset;
}

2) Subtract “1.65” from the digital result

ADC Calibration and Reference

Built-In ADC Calibration
TI reserved OTP contains device specific calibration
data for the ADC and internal oscillators
The Boot ROM contains a Device_cal() routine that
copies the calibration data to their respective registers
Device_cal() must be run to meet the ADC and oscillator
specs in the datasheet

The Bootloader automatically calls Device_cal() such that no
action is normally required by the user
If the bootloader is bypassed (e.g., during development)
Device_cal() should be called by the application:

A GEL function using CCS is also available as part of the
Peripheral Register Header Files to accomplish this

#define Device_cal (void (*)(void))0x3D7C80

void main(void)

{

(*Device_cal)(); // call Device_cal()

}

C2000 Piccolo Workshop - Analog-to-Digital Converter 6 - 13

Analog-to-Digital Converter

If the offset and gain errors in the datasheet* are unacceptable for
your application, or you want to also compensate for board level
errors (e.g., sensor or amplifier offset), you can manually calibrate
Offset error

Compensated in analog with
the ADCOFFTRIM register
No reduction in full-scale range
Configure input B5 to VREFLO,
set ADCOFFTRIM to maximum
offset error, and take a reading
Re-adjust ADCOFFTRIM to
make result zero

Gain error
Compensated in software
Some loss in full-scale range
Requires use of a second ADC input pin and an upper-range reference
voltage on that pin; see “TMS320280x and TMS320F2801x ADC
Calibration” appnote #SPRAAD8 for more information

Tip: To minimize mux-to-mux variation effects, put your most critical
signals on a single mux and use that mux for calibration inputs

Manual ADC Calibration

* +/-15 LSB offset, +/-30 LSB gain. See device datasheet for exact specifications

CH

CH

M
UX

VREFLOCONV
VREFLO

B5

ADCOFFTRIM

12-bit
ADC

ADC Reference Selection
AdcRegs.ADCREFSEL

The internal reference has temperature stability of ~50 PPM/°C*
The internal reference (default) will convert an applied input
voltage to a fixed scale of 0 to 3.3 V range
If this is not sufficient for your application, there is the option to
use an external reference*

External reference will scale an input voltage range from VREFLO to
VREFHI (ratiometric)
The reference value changes the 0 - 3.3 V full-scale range of the ADC

The ADCREFSEL in ADCCTL1 controls the reference choice

* See device datasheet for exact specifications and ADC reference hardware connections

2 - 015 - 5
ADCREFSEL

ADC Reference Selection
0 = internal (default)
1 = external VREFHI/VREFLO pins

used for reference generation

reserved
4 3

6 - 14 C2000 Piccolo Workshop - Analog-to-Digital Converter

 Comparator

Comparator

Comparator Block Diagram

Comparator

COMP110-bit
DAC

AIO2
AIO10

COMP1OUT

COMP310-bit
DAC

AIO6
AIO14

COMP3OUT

COMP210-bit
DAC

AIO4
AIO12

COMP2OUT
ADC

A0

A1

A2

A3

A4

A5

A6

A7

B0

B1

B2

B3

B4

B5

B6

B7

Comparator Block Diagram

DACVAL * (VDDA – VSSA)
1023

V =

DAC Reference Comparator Truth Table
Voltages Output
Voltage A < Voltage B 0
Voltage A > Voltage B 1

0

1
0

1

+

COMPx

-

ePWM
Event

Trigger
&

GPIO
MUX

Sync/
Qual

10-bit
DAC

COMPSTS

VDDA

VSSA

Input Pin B

Input Pin A

1

0

COMPSOURCEDACVAL CMPINV

COMPDACE

SYNCSEL

QUALSEL

SYSCLKOUT COMPxTRIP
V

C2000 Piccolo Workshop - Analog-to-Digital Converter 6 - 15

Comparator

Comparator Registers

Comparator Registers

reserved
15 - 10

DACVAL
9 - 0

DAC Value
Scales output of DAC from 0 – 1023

Value = 0 – 3FFh

AdcRegs.DACVAL – DAC Value Register

reserved
15 - 1

COMPSTS
0

AdcRegs.COMPSTS – Compare Output Status Register

Logical latched value of the comparator

reserved
15 - 9 7 - 3

SYNCSEL QUALSEL CMPINV COMPSOURCE COMPDACE
8 2 1

AdcRegs.COMPCTL – Compare Control Register

Synchronization Select
Output before being feed
to ETPWM/GPIO blocks
0 = Asynchronous
1 = Synchronous

Comparator/
DAC Enable
0 = disable
1 = enable

Comparator
Source
0 = DAC
1 = pin

Invert
0 = passed
1 = inverted

Qualification
Period
0h = passed
1h = 2 clocks
2h = 3 clocks… …
Fh = 15 clocks

0

6 - 16 C2000 Piccolo Workshop - Analog-to-Digital Converter

 Lab 6: Analog-to-Digital Converter

Lab 6: Analog-to-Digital Converter
 Objective

The objective of this lab is to become familiar with the programming and operation of the on-chip
analog-to-digital converter. The MCU will be setup to sample a single ADC input channel at a
prescribed sampling rate and store the conversion result in a memory buffer. This buffer will
operate in a circular fashion, such that new conversion data continuously overwrites older results
in the buffer.

Lab 6: ADC Sampling

ADC

ADCINA0

RESULT0

...

data
memory

po
in

te
r

re
w

in
d

CPU copies result
to buffer during
ADC ISR

ePWM2

ePWM2 triggering
ADC on period match
using SOCA trigger every
20 µs (50 kHz)

GND
+3.3 V

(GPIO20)
Toggle

(GPIO18)

connector
wire

View ADC
buffer PWM
Samples

Code Composer
Studio

Recall that there are three basic ways to initiate an ADC start of conversion (SOC):
1. Using software

a. SOCx bit (where x = 0 to 15) in the ADC SOC Force 1 Register (ADCSOCFRC1) causes a
software initiated conversion

2. Automatically triggered on user selectable conditions
a. CPU Timer 0/1/2 interrupt
b. ePWMxSOCA / ePWMxSOCB (where x = 1 to 7)

- ePWM underflow (CTR = 0)
- ePWM period match (CTR = PRD)
- ePWM underflow or period match (CTR = 0 or PRD)

 - ePWM compare match (CTRU/D = CMPA/B)
c. ADC interrupt ADCINT1 or ADCINT2

- triggers SOCx (where x = 0 to 15) selected by the ADC Interrupt Trigger SOC Select1/2
Register (ADCINTSOCSEL1/2)

3. Externally triggered using a pin
a. ADCSOC pin (GPIO/XINT2_ADCSOC)

One or more of these methods may be applicable to a particular application. In this lab, we will
be using the ADC for data acquisition. Therefore, one of the ePWMs (ePWM2) will be

C2000 Piccolo Workshop - Analog-to-Digital Converter 6 - 17

Lab 6: Analog-to-Digital Converter

configured to automatically trigger the SOC A signal at the desired sampling rate (ePWM period
match CTR = PRD SOC method 2b above). The ADC end-of-conversion interrupt will be used
to prompt the CPU to copy the results of the ADC conversion into a results buffer in memory.
This buffer pointer will be managed in a circular fashion, such that new conversion results will
continuously overwrite older conversion results in the buffer. In order to generate an interesting
input signal, the code also alternately toggles a GPIO pin (GPIO18) high and low in the ADC
interrupt service routine. The ADC ISR will also toggle LED LD3 on the ControlCARD as a
visual indication that the ISR is running. This pin will be connected to the ADC input pin, and
sampled. After taking some data, Code Composer Studio will be used to plot the results. A flow
chart of the code is shown in the following slide.

Lab 6: Code Flow Diagram

Start General Initialization
• PLL and clocks
• watchdog configure
• GPIO setup
• PIE initialization

ADC Initialization
• convert channel A0 on

ePWM2 period match
• send interrupt on

every conversion
• setup a results buffer

in memory

ePWM2 Initialization
• clear counter
• set period register
• set to trigger ADC on
period match

• set the clock prescaler
• enable the timer

Main Loop
while(1)
{
}

ADC ISR
• read the ADC result
• write to result buffer
• adjust the buffer pointer
• toggle the GPIO pin
• return from interrupt

ADC interrupt

return

Notes
• Program performs conversion on ADC channel A0 (ADCINA0 pin)
• ADC conversion is set at a 50 kHz sampling rate
• ePWM2 is triggering the ADC on period match using SOCA trigger
• Data is continuously stored in a circular buffer
• GPIO18 pin is also toggled in the ADC ISR
• ADC ISR will also toggle the ControlCARD LED LD3 as a visual indication that it is

running

6 - 18 C2000 Piccolo Workshop - Analog-to-Digital Converter

 Lab 6: Analog-to-Digital Converter

 Procedure

Project File
1. A project named Lab6.pjt has been created for this lab. Open the project by clicking

on Project Open… and look in C:\C28x\Labs\Lab6. All Build Options
have been configured the same as the previous lab. The files used in this lab are:
Adc.c Gpio.c
CodeStartBranch.asm Lab_5_6_7.cmd
DefaultIsr_6.c Main_6.c
DelayUs.asm PieCtrl_5_6_7_8_9_10.c
DSP2803x_GlobalVariableDefs.c PieVect_5_6_7_8_9_10.c
DSP2803x_Headers_nonBIOS.cmd SysCtrl.c
EPwm_6.c Watchdog.c

Setup ADC Initialization and Enable Core/PIE Interrupts
2. In Main_6.c add code to call InitAdc() and InitEPwm() functions. The

InitEPwm() function is used to configure ePWM2 to trigger the ADC at a 50 kHz rate.
Details about the ePWM and control peripherals will be discussed in the next module.

3. Edit Adc.c to implement the ADC initialization as described above in the objective for
the lab. Configure SOC0 for single sample mode, with an acquisition sample window of
7 cycles. Don’t use the ADCINT to trigger a SOC0, and have all SOCs handled in
round-robin mode. Enable ADCINT1 interrupt with EOC0 as the trigger for ADCINT1.
Continuously generate an ADCINT1 pulse for each EOC.

4. Using the “PIE Interrupt Assignment Table” find the location for the
ADC interrupt “ADCINT1” (high-priority) and fill in the following information:

PIE group #: # within group:

This information will be used in the next step.

5. Modify the end of Adc.c to do the following:
- Enable the "ADCINT" interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

6. Open and inspect DefaultIsr_6.c. This file contains the ADC interrupt service
routine.

Build and Load
7. Save all changes to the files and click the “Build” button.

8. Reset the CPU, select EMU_BOOT_SARAM, and then “Go Main”.

C2000 Piccolo Workshop - Analog-to-Digital Converter 6 - 19

Lab 6: Analog-to-Digital Converter

Run the Code
9. In Main_6.c place the cursor in the “main loop” section, right click on the mouse

key and select Run To Cursor.

10. Open a memory window to view some of the contents of the ADC results buffer. The
address label for the ADC results buffer is AdcBuf.

Note: Exercise care when connecting any wires, as the power to the USB Docking Station is
on, and we do not want to damage the ControlCARD!

11. Using a connector wire provided, connect the ADCINA0 (pin # ADC-A0) to “GND” (pin
GND) on the Docking Station. Then run the code again, and halt it after a few seconds.
Verify that the ADC results buffer contains the expected value of 0x0000.

12. Adjust the connector wire to connect the ADCINA0 (pin # ADC-A0) to “+3.3V” (pin #
GPIO-20) on the Docking Station. (Note: pin # GPIO-20 has been set to “1” in Gpio.c).
Then run the code again, and halt it after a few seconds. Verify that the ADC results
buffer contains the expected value of 0x0FFF.

13. Adjust the connector wire to connect the ADCINA0 (pin # ADC-A0) to GPIO18 (pin #
GPIO-18) on the Docking Station. Then run the code again, and halt it after a few
seconds. Examine the contents of the ADC results buffer (the contents should be
alternating 0x0000 and 0x0FFF values). Are the contents what you expected?

14. Open and setup a graph to plot a 50-point window of the ADC results buffer.
Click: View Graph Time/Frequency… and set the following values:

Start Address AdcBuf

Acquisition Buffer Size 50

Display Data Size 50

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 50000

Time Display Unit μs

 Select OK to save the graph options.

15. Recall that the code toggled the GPIO18 pin alternately high and low. (Also, the ADC
ISR is toggling the LED LD3 on the ControlCARD as a visual indication that the ISR is
running). If you had an oscilloscope available to display GPIO18, you would expect to
see a square-wave. Why does Code Composer Studio plot resemble a triangle wave?
What is the signal processing term for what is happening here?

6 - 20 C2000 Piccolo Workshop - Analog-to-Digital Converter

 Lab 6: Analog-to-Digital Converter

16. Recall that the program toggled the GPIO18 pin at a 50 kHz rate. Therefore, a complete
cycle (toggle high, then toggle low) occurs at half this rate, or 25 kHz. We therefore
expect the period of the waveform to be 40 μs. Confirm this by measuring the period of
the triangle wave using the graph (you may want to enlarge the graph window using the
mouse). The measurement is best done with the mouse. The lower left-hand corner of
the graph window will display the X and Y axis values. Subtract the X-axis values taken
over a complete waveform period.

Using Real-time Emulation
Real-time emulation is a special emulation feature that offers two valuable capabilities:

A. Windows within Code Composer Studio can be updated at up to a 10 Hz rate while the
MCU is running. This not only allows graphs and watch windows to update, but also
allows the user to change values in watch or memory windows, and have those
changes affect the MCU behavior. This is very useful when tuning control law
parameters on-the-fly, for example.

B. It allows the user to halt the MCU and step through foreground tasks, while specified
interrupts continue to get serviced in the background. This is useful when debugging
portions of a realtime system (e.g., serial port receive code) while keeping critical
parts of your system operating (e.g., commutation and current loops in motor control).

We will only be utilizing capability #1 above during the workshop. Capability #2 is a
particularly advanced feature, and will not be covered in the workshop.

17. Reset the CPU, and then enable real-time mode by selecting:

Debug Real-time Mode

A message box may appear. Select YES to enable debug events. This will set bit 1
(DBGM bit) of status register 1 (ST1) to a “0”. The DBGM is the debug enable mask bit.
When the DBGM bit is set to “0”, memory and register values can be passed to the host
processor for updating the debugger windows.

18. The memory and graph windows displaying AdcBuf should still be open. The connector
wire between ADCINA0 (pin # ADC-A0) and GPIO18 (pin # GPIO-18) should still be
connected. In real-time mode, we would like to have our window continuously refresh.
Click:

View Real-time Refresh Options…

and check “Global Continuous Refresh”. Use the default refresh rate of 100
ms and select OK. Alternately, we could have right clicked on each window individually
and selected “Continuous Refresh”.

C2000 Piccolo Workshop - Analog-to-Digital Converter 6 - 21

Lab 6: Analog-to-Digital Converter

Note: “Global Continuous Refresh” causes all open windows to refresh at the
refresh rate. This can be problematic when a large number of windows are open, as
bandwidth over the emulation link is limited. Updating too many windows can cause the
refresh frequency to bog down. In that case, either close some windows, or disable
global refresh and selectively enable “Continuous Refresh” for individual
windows of interest instead.

19. Run the code and watch the windows update in real-time mode. Carefully remove and
replace the connector wire from GPIO18. Are the values updating as expected?

20. Fully halting the CPU when in real-time mode is a two-step process. First, halt the
processor with Debug Halt. Then uncheck the “Real-time mode” to take
the CPU out of real-time mode (Debug Real-time Mode).

21. So far, we have seen data flowing from the MCU to the debugger in realtime. In this
step, we will flow data from the debugger to the MCU.
• Open and inspect DefaultIsr_6.c. Notice that the global variable

DEBUG_TOGGLE is used to control the toggling of the GPIO18 pin. This is the pin
being read with the ADC.

• Highlight DEBUG_TOGGLE with the mouse, right click and select “Add to
Watch Window”. The global variable DEBUG_TOGGLE should now be in the
watch window with a value of “1”.

• Run the code in real-time mode and change the value to “0”. Are the results shown
in the memory and graph window as expected? Change the value back to “1”. As
you can see, we are modifying data memory contents while the processor is running
in real-time (i.e., we are not halting the MCU nor interfering with its operation in any
way)! When done, fully halt the CPU.

22. Code Composer Studio includes GEL (General Extension Language) functions which
automate entering and exiting real-time mode. Four functions are available:
• Run_Realtime_with_Reset (reset CPU, enter real-time mode, run CPU)
• Run_Realtime_with_Restart (restart CPU, enter real-time mode, run CPU)
• Full_Halt (exit real-time mode, halt CPU)
• Full_Halt_with_Reset (exit real-time mode, halt CPU, reset CPU)
These GEL functions can be executed by clicking:
GEL Realtime Emulation Control GEL Function
In the remaining lab exercises we will be using the above GEL functions to run and halt
the code in real-time mode. If you would like, try repeating the previous step using the
following GEL functions:
GEL Realtime Emulation Control Run_Realtime_with_Reset

GEL Realtime Emulation Control Full_Halt

End of Exercise

6 - 22 C2000 Piccolo Workshop - Analog-to-Digital Converter

Control Peripherals

Introduction
This module explains how to generate PWM waveforms using the ePWM unit. Also, the eCAP
unit, and eQEP unit will be discussed.

Learning Objectives

Learning Objectives

Pulse Width Modulation (PWM) review
Generate a PWM waveform with the
Pulse Width Modulator Module (ePWM)
Use the Capture Module (eCAP) to
measure the width of a waveform
Explain the function of Quadrature
Encoder Pulse Module (eQEP)

Note: Different numbers of ePWM, eCAP, and eQEP modules are available on F2803x and
F2802x devices. See the device datasheet for more information.

C2000 Piccolo Workshop - Control Peripherals 7 - 1

Module Topics

Module Topics

Control Peripherals... 7-1

Module Topics... 7-2
PWM Review... 7-3
ePWM.. 7-5

ePWM Time-Base Sub-Module ... 7-6
ePWM Compare Sub-Module .. 7-9
ePWM Action Qualifier Sub-Module..7-11
Asymmetric and Symmetric Waveform Generation using the ePWM..7-16
PWM Computation Example...7-17
ePWM Dead-Band Sub-Module..7-18
ePWM PWM Chopper Sub-Module..7-21
ePWM Digital Compare Sub-Module ...7-24
ePWM Trip-Zone Sub-Module..7-27
ePWM Event-Trigger Sub-Module ...7-30
Hi-Resolution PWM (HRPWM) ...7-33

eCAP ..7-34
eQEP..7-40
Lab 7: Control Peripherals..7-42

7 - 2 C2000 Piccolo Workshop - Control Peripherals

 PWM Review

PWM Review

What is Pulse Width Modulation?

PWM is a scheme to represent a
signal as a sequence of pulses

fixed carrier frequency
fixed pulse amplitude
pulse width proportional to
instantaneous signal amplitude
PWM energy ≈ original signal energy

t

Original Signal
T

t

PWM representation

Pulse width modulation (PWM) is a method for representing an analog signal with a digital
approximation. The PWM signal consists of a sequence of variable width, constant amplitude
pulses which contain the same total energy as the original analog signal. This property is
valuable in digital motor control as sinusoidal current (energy) can be delivered to the motor
using PWM signals applied to the power converter. Although energy is input to the motor in
discrete packets, the mechanical inertia of the rotor acts as a smoothing filter. Dynamic motor
motion is therefore similar to having applied the sinusoidal currents directly.

C2000 Piccolo Workshop - Control Peripherals 7 - 3

PWM Review

Why use PWM with Power
Switching Devices?

Desired output currents or voltages are known
Power switching devices are transistors

Difficult to control in proportional region
Easy to control in saturated region

PWM is a digital signal ⇒ easy for DSP to output

PWM approx.
of desired
signal

DC Supply

Desired
signal to
system

?
DC Supply

Unknown Gate Signal Gate Signal Known with PWM

PWM

7 - 4 C2000 Piccolo Workshop - Control Peripherals

 ePWM

ePWM
ePWM Module Signals and Connections

ePWMx

ePWMx+1

EPWMxSYNCI

EPWMxSYNCO

PIEEPWMxINT

EPWMxTZINT

ePWMx-1

EPWMxSOCB

EPWMxSOCA

ADCCOMP COMPxOUT

EMUSTOP – TZ6

CLOCKFAIL – TZ5

EQEP1ERR – TZ4

CPU

SYSCTRL

eQEP1
EPWMxA

EPWMxB
GPIO
MUX

TZ1 – TZ3GPIO
MUX

ePWM Block Diagram

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

C2000 Piccolo Workshop - Control Peripherals 7 - 5

ePWM

ePWM Time-Base Sub-Module

ePWM Time-Base Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

ePWM Time-Base Count Modes
TBCTR

TBCTR

TBCTR

TBPRD

TBPRD

TBPRD

Count Up Mode

Count Down Mode

Count Up and Down Mode

Asymmetrical
Waveform

Asymmetrical
Waveform

Symmetrical
Waveform

7 - 6 C2000 Piccolo Workshop - Control Peripherals

 ePWM

ePWM Phase Synchronization

SyncIn

SyncOut

CTR=zero
CTR=CMPB

X

En

o
o

o

o
o

ooφ=120°
Phase . EPWM2A

EPWM2B

SyncIn

SyncOut

CTR=zero
CTR=CMPB

X

En

o
o

o

o
o

ooφ=240°
Phase . EPWM3A

EPWM3B

SyncIn

SyncOut

CTR=zero
CTR=CMPB

X

En

o
o

o

o
o

ooφ=0°
Phase . EPWM1A

EPWM1B

φ=120°

φ=120°

φ=240°

Ext. SyncIn
(optional)

To eCAP1
SyncIn

ePWM Time-Base Sub-Module Registers
(lab file: EPwm.c)

Name Description Structure
TBCTL Time-Base Control EPwmxRegs.TBCTL.all =
TBSTS Time-Base Status EPwmxRegs.TBSTS.all =
TBPHS Time-Base Phase EPwmxRegs.TBPHS =
TBCTR Time-Base Counter EPwmxRegs.TBCTR =
TBPRD Time-Base Period EPwmxRegs.TBPRD =

C2000 Piccolo Workshop - Control Peripherals 7 - 7

ePWM

ePWM Time-Base Control Register
EPwmxRegs.TBCTL

Upper Register:

FREE_SOFT PHSDIR CLKDIV HSPCLKDIV
15 - 14 13 12 - 10 9 - 7

TBCLK = SYSCLKOUT / (HSPCLKDIV * CLKDIV)

TB Clock Prescale
000 = /1 (default)
001 = /2
010 = /4
011 = /8
100 = /16
101 = /32
110 = /64
111 = /128

High Speed TB
Clock Prescale
000 = /1
001 = /2 (default)
010 = /4
011 = /6
100 = /8
101 = /10
110 = /12
111 = /14

Emulation Halt Behavior
00 = stop after next CTR inc/dec
01 = stop when:

Up Mode; CTR = PRD
Down Mode; CTR = 0
Up/Down Mode; CTR = 0

1x = free run (do not stop)

Phase Direction
0 = count down after sync
1 = count up after sync

(HSPCLKDIV is for legacy compatibility)

ePWM Time-Base Control Register
EPwmxRegs.TBCTL

Lower Register:

CTRMODESWFSYNC SYNCOSEL PRDLD PHSEN
6 5 - 4 3 1 - 02

Software Force Sync Pulse
0 = no action
1 = force one-time sync

Sync Output Select
(source of EPWMxSYNC0 signal)
00 = EPWMxSYNCI
01 = CTR = 0
10 = CTR = CMPB
11 = disable SyncOut

Counter Mode
00 = count up
01 = count down
10 = count up and down
11 = stop – freeze (default)

Period Shadow Load
0 = load on CTR = 0
1 = load immediately

Phase Reg. Enable
0 = disable
1 = CTR = TBPHS on

EPWMxSYNCI signal

7 - 8 C2000 Piccolo Workshop - Control Peripherals

 ePWM

ePWM Compare Sub-Module

ePWM Compare Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

ePWM Compare Event Waveforms
TBCTR

TBCTR

TBCTR

TBPRD

TBPRD

TBPRD

Count Up Mode

Count Down Mode

Count Up and Down Mode

Asymmetrical
Waveform

Asymmetrical
Waveform

Symmetrical
Waveform

CMPA

CMPA

CMPA

CMPB

CMPB

CMPB

.

.

..

. = compare events are fed to the Action Qualifier Sub-Module

C2000 Piccolo Workshop - Control Peripherals 7 - 9

ePWM

ePWM Compare Sub-Module Registers
(lab file: EPwm.c)

Name Description Structure
CMPCTL Compare Control EPwmxRegs.CMPCTL.all =
CMPA Compare A EPwmxRegs.CMPA =
CMPB Compare B EPwmxRegs.CMPB =

ePWM Compare Control Register
EPwmxRegs.CMPCTL

6 5 4 1 - 0
LOADBMODE LOADAMODEreserved

3 - 2
SHDWBMODE SHDWAMODE

CMPA and CMPB Operating Mode
0 = shadow mode;

double buffer w/ shadow register
1 = immediate mode;

shadow register not used

CMPA and CMPB Shadow Load Mode
00 = load on CTR = 0
01 = load on CTR = PRD
10 = load on CTR = 0 or PRD
11 = freeze (no load possible)

SHDWBFULL
15 - 10 9 8

SHDWAFULL
7

reservedreserved

CMPA and CMPB Shadow Full Flag
(bit automatically clears on load)
0 = shadow not full
1 = shadow full

7 - 10 C2000 Piccolo Workshop - Control Peripherals

 ePWM

ePWM Action Qualifier Sub-Module

ePWM Action Qualifier Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

ePWM Action Qualifier Actions
for EPWMA and EPWMB

Z
↓

Z
↑

Z
X

Z
T

CA
↓

CA
↑

CA
X

CA
T

CB
↓

CB
↑

CB
X

CB
T

P
↓

P
↑

P
X

P
T

SW
↓

SW
↑

SW
X

SW
T

Do Nothing

Clear Low

Set High

Toggle

S/W
Force

EPWM
Output
Actions

Time-Base Counter equals:

Zero CMPA CMPB TBPRD

C2000 Piccolo Workshop - Control Peripherals 7 - 11

ePWM

ePWM Count Up Asymmetric Waveform
with Independent Modulation on EPWMA / B

Z
↑

P
X

CB
X

CA
↓

Z
↑

P
X

CB
X

CA
↓

Z
↑

P
X

Z
↑

P
X

CB
↓

CA
X

Z
↑

P
X

CB
↓

CA
X

Z
↑

P
X

TBCTR

TBPRD

. . . .

EPWMA

EPWMB

ePWM Count Up Asymmetric Waveform
with Independent Modulation on EPWMA

CA
↑

CB
↓

CA
↑

CB
↓

Z
T

Z
T

Z
T

TBCTR

TBPRD

. . . .

EPWMA

EPWMB

7 - 12 C2000 Piccolo Workshop - Control Peripherals

 ePWM

ePWM Count Up-Down Symmetric
Waveform

with Independent Modulation on EPWMA / B
TBCTR

TBPRD

CA
↑

CA
↓

CA
↑

CA
↓

CB
↑

CB
↓

CB
↑

CB
↓

EPWMA

EPWMB

ePWM Count Up-Down Symmetric
Waveform

with Independent Modulation on EPWMA
TBCTR

TBPRD

. .. .

CA
↑

CB
↓

CA
↑

CB
↓

Z
↓

P
↑

Z
↓

P
↑

EPWMA

EPWMB

C2000 Piccolo Workshop - Control Peripherals 7 - 13

ePWM

ePWM Action Qualifier Sub-Module
Registers
(lab file: EPwm.c)

Name Description Structure
AQCTLA AQ Control Output A EPwmxRegs.AQCTLA.all =
AQCTLB AQ Control Output B EPwmxRegs.AQCTLB.all =
AQSFRC AQ S/W Force EPwmxRegs.AQSFRC.all =
AQCSFRC AQ Cont. S/W Force EPwmxRegs.AQCSFRC.all =

ePWM Action Qualifier Control Register
EPwmxRegs.AQCTLy (y = A or B)

ZROCBU CAD CAU PRD
1 - 0

CBD
15 - 12

reserved
3 - 25 - 47 - 69 - 811 - 10

00 = do nothing (action disabled)
01 = clear (low)
10 = set (high)
11 = toggle (low → high; high → low)

Action when
CTR = CMPB

on DOWN Count

Action when
CTR = CMPB
on UP Count

Action when
CTR = CMPA

on DOWN Count

Action when
CTR = CMPA
on UP Count

Action when
CTR = 0

Action when
CTR = PRD

7 - 14 C2000 Piccolo Workshop - Control Peripherals

 ePWM

ePWM Action Qualifier
S/W Force Register

EPwmxRegs.AQSFRC

ACTSFARLDCSF OTSFB ACTSFB OTSFA
1 - 015 - 8

reserved
24 - 357 - 6

AQSFRC Shadow Reload Options
00 = load on event CTR = 0
01 = load on event CTR = PRD
10 = load on event CTR = 0 or CTR = PRD
11 = load immediately (from active reg.)

One-Time S/W Force on Output B / A
0 = no action
1 = single s/w force event

Action on One-Time S/W Force B / A
00 = do nothing (action disabled)
01 = clear (low)
10 = set (high)
11 = toggle (low → high; high → low)

ePWM Action Qualifier Continuous
S/W Force Register

EPwmxRegs.AQCSFRC

CSFACSFB
1 - 015 - 4

reserved
3 - 2

Continuous S/W Force on Output B / A
00 = forcing disabled
01 = force continuous low on output
10 = force continuous high on output
11 = forcing disabled

C2000 Piccolo Workshop - Control Peripherals 7 - 15

ePWM

Asymmetric and Symmetric Waveform Generation using
the ePWM
PWM switching frequency:
The PWM carrier frequency is determined by the value contained in the time-base period register,
and the frequency of the clocking signal. The value needed in the period register is:

Asymmetric PWM: 1
periodtimer

period switchingregister period −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Symmetric PWM:
period)2(timer

period switchingregister period =

Notice that in the symmetric case, the period value is half that of the asymmetric case. This is
because for up/down counting, the actual timer period is twice that specified in the period register
(i.e. the timer counts up to the period register value, and then counts back down).

PWM resolution:
The PWM compare function resolution can be computed once the period register value is
determined. The largest power of 2 is determined that is less than (or close to) the period value.
As an example, if asymmetric was 1000, and symmetric was 500, then:

Asymmetric PWM: approx. 10 bit resolution since 210 = 1024 ≈ 1000

Symmetric PWM: approx. 9 bit resolution since 29 = 512 ≈ 500

PWM duty cycle:
Duty cycle calculations are simple provided one remembers that the PWM signal is initially
inactive during any particular timer period, and becomes active after the (first) compare match
occurs. The timer compare register should be loaded with the value as follows:

Asymmetric PWM: TxCMPR TxPR cycle)duty - (100% = ∗

Symmetric PWM: TxPR cycle)duty - (100% = TxCMPR ∗

Note that for symmetric PWM, the desired duty cycle is only achieved if the compare registers
contain the computed value for both the up-count compare and down-count compare portions of
the time-base period.

7 - 16 C2000 Piccolo Workshop - Control Peripherals

 ePWM

PWM Computation Example

Symmetric PWM Computation Example
Determine TBPRD and CMPA for 60 kHz, 25% duty
symmetric PWM from a 60 MHz time base clock

CMPA = (100% - duty cycle)*TBPRD = 0.75*500 = 375

TBPRD = fTBCLK
fPWM 22

11
60 kHz
60 MHz.. = 500=

Counter

Compare

Period

PWM Pin
fTBCLK = 60 MHz

CA
↑

CA
↓

fPWM = 60 kHz

..

Asymmetric PWM Computation Example
Determine TBPRD and CMPA for 60 kHz, 25% duty
asymmetric PWM from a 60 MHz time base clock

CMPA = (100% - duty cycle)*(TBPRD+1) - 1 = 0.75*(999+1) - 1 = 749

TBPRD =
fTBCLK
fPWM 60 kHz

60 MHz - 1 = 999- 1 =

Counter

Compare
Period

fPWM = 60 kHz

PWM Pin

P
↓

CA
↑

fTBCLK = 60 MHz

..

C2000 Piccolo Workshop - Control Peripherals 7 - 17

ePWM

ePWM Dead-Band Sub-Module

ePWM Dead-Band Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

Motivation for Dead-Band

to power
switching
device

supply rail

gate signals are
complementary PWM

♦ Transistor gates turn on faster than they shut off
♦ Short circuit if both gates are on at same time!

7 - 18 C2000 Piccolo Workshop - Control Peripherals

 ePWM

Dead-band control provides a convenient means of combating current shoot-through problems in
a power converter. Shoot-through occurs when both the upper and lower gates in the same phase
of a power converter are open simultaneously. This condition shorts the power supply and results
in a large current draw. Shoot-through problems occur because transistors open faster than they
close, and because high-side and low-side power converter gates are typically switched in a
complimentary fashion. Although the duration of the shoot-through current path is finite during
PWM cycling, (i.e. the closing gate will eventually shut), even brief periods of a short circuit
condition can produce excessive heating and over stress in the power converter and power supply.

ePWM Dead-Band Block Diagram

Rising
Edge
Delay

In Out
(10-bit

counter)

Falling
Edge
Delay

In Out
(10-bit

counter)

°
° °
0

1

°
° °
0

1

°
° °
0

1

°
° °
1

0
°

°

.

.

.

.

PWMxA

PWMxB

PWMxB

PWMxAS1

S0

S2

S3 FED

RED

OUT-MODEPOLSEL

°
° °
0

1

°
° °
0

1

S4

S5

IN-MODE
HALFCYCLE

Two basic approaches exist for controlling shoot-through: modify the transistors, or modify the
PWM gate signals controlling the transistors. In the first case, the opening time of the transistor
gate must be increased so that it (slightly) exceeds the closing time. One way to accomplish this
is by adding a cluster of passive components such as resistors and diodes in series with the
transistor gate, as shown in the next figure.

PWM
signal

R

by-pass diode

Shoot-through control via power circuit modification

The resistor acts to limit the current rise rate towards the gate during transistor opening, thus
increasing the opening time. When closing the transistor however, current flows unimpeded from
the gate via the by-pass diode and closing time is therefore not affected. While this passive
approach offers an inexpensive solution that is independent of the control microprocessor, it is

C2000 Piccolo Workshop - Control Peripherals 7 - 19

ePWM

imprecise, the component parameters must be individually tailored to the power converter, and it
cannot adapt to changing system conditions.

The second approach to shoot-through control separates transitions on complimentary PWM
signals with a fixed period of time. This is called dead-band. While it is possible to perform
software implementation of dead-band, the C28x offers on-chip hardware for this purpose that
requires no additional CPU overhead. Compared to the passive approach, dead-band offers more
precise control of gate timing requirements. In addition, the dead time is typically specified with
a single program variable that is easily changed for different power converters or adapted on-line.

ePWM Dead-Band Sub-Module Registers
(lab file: EPwm.c)

Rising Edge Delay = TTBCLK x DBRED
Falling Edge Delay = TTBCLK x DBFED

Name Description Structure
DBCTL Dead-Band Control EPwmxRegs.DBCTL.all =
DBRED 10-bit Rising Edge Delay EPwmxRegs.DBRED =
DBFED 10-bit Falling Edge Delay EPwmxRegs.DBFED =

7 - 20 C2000 Piccolo Workshop - Control Peripherals

 ePWM

ePWM Dead Band Control Register
EPwmxRegs.DBCTL

Polarity Select
00 = active high
01 = active low complementary (RED)
10 = active high complementary (FED)
11 = active low

Out-Mode Control
00 = disabled (DBM bypass)
01 = PWMxA = no delay

PWMxB = FED
10 = PWMxA = RED

PWMxB = no delay
11 = RED & FED (DBM fully enabled)

In-Mode Control
00 = PWMxA is source for RED and FED
01 = PWMxA is source for FED

PWMxB is source for RED
10 = PWMxA is source for RED

PWMxB is source for FED
11 = PWMxB is source for RED and FED

OUT_MODEPOLSEL
1 - 014 - 6

reserved
3 - 2

IN_MODE
5 - 4

HALFCYCLE
15

Half Cycle Clocking
0 = full cycle clocking (TBCLK rate)
1 = half cycle clocking (TBCLK*2 rate)

ePWM PWM Chopper Sub-Module

ePWM PWM Chopper Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

C2000 Piccolo Workshop - Control Peripherals 7 - 21

ePWM

Purpose of the PWM Chopper

Allows a high frequency carrier
signal to modulate the PWM
waveform generated by the Action
Qualifier and Dead-Band modules
Used with pulse transformer-based
gate drivers to control power
switching elements

ePWM Chopper Waveform
EPWMxA

EPWMxB

CHPFREQ

EPWMxA

EPWMxB

OSHT

EPWMxA

Programmable
Pulse Width
(OSHTWTH)

Sustaining
Pulses

With One-Shot Pulse on EPWMxA and/or EPWMxB

7 - 22 C2000 Piccolo Workshop - Control Peripherals

 ePWM

ePWM Chopper Sub-Module Registers
(lab file: EPwm.c)

Name Description Structure
PCCTL PWM-Chopper Control EPwmxRegs.PCCTL.all =

ePWM Chopper Control Register
EPwmxRegs.PCCTL

CHPENCHPDUTY CHPFREQ OSHTWTH
015 - 11

reserved

4 - 17 - 510 - 8

Chopper Enable
0 = disable (bypass)
1 = enable

One-Shot Pulse Width
0000 = 1 x SYSCLKOUT/8 1000 = 9 x SYSCLKOUT/8
0001 = 2 x SYSCLKOUT/8 1001 = 10 x SYSCLKOUT/8
0010 = 3 x SYSCLKOUT/8 1010 = 11 x SYSCLKOUT/8
0011 = 4 x SYSCLKOUT/8 1011 = 12 x SYSCLKOUT/8
0100 = 5 x SYSCLKOUT/8 1100 = 13 x SYSCLKOUT/8
0101 = 6 x SYSCLKOUT/8 1101 = 14 x SYSCLKOUT/8
0110 = 7 x SYSCLKOUT/8 1110 = 15 x SYSCLKOUT/8
0111 = 8 x SYSCLKOUT/8 1111 = 16 x SYSCLKOUT/8

Chopper Clk Freq.
000 = SYSCLKOUT/8 ÷ 1
001 = SYSCLKOUT/8 ÷ 2
010 = SYSCLKOUT/8 ÷ 3
011 = SYSCLKOUT/8 ÷ 4
100 = SYSCLKOUT/8 ÷ 5
101 = SYSCLKOUT/8 ÷ 6
110 = SYSCLKOUT/8 ÷ 7
111 = SYSCLKOUT/8 ÷ 8

Chopper Clk Duty Cycle
000 = 1/8 (12.5%)
001 = 2/8 (25.0%)
010 = 3/8 (37.5%)
011 = 4/8 (50.0%)
100 = 5/8 (62.5%)
101 = 6/8 (75.0%)
110 = 7/8 (87.5%)
111 = reserved

C2000 Piccolo Workshop - Control Peripherals 7 - 23

ePWM

ePWM Digital Compare Sub-Module

ePWM Digital Compare Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

Purpose of the Digital Compare
Sub-Module

Comparator module outputs (COMP1, COMP2, and
COMP3) and Trip-Zone inputs (TZ1, TZ2, and TZ3)
generate Digital Compare A and B High/Low
Signals (DCAH, DCAL, DCBH, and DCBL)

DCAH/L and DCBH/L signals trigger events which
can be filtered or fed directly to the trip-zone,
event-trigger, and time-base sub-modules to:

Generate a trip-zone interrupt
Generate an ADC start of conversion
Force an event
Generate a synchronization event for synchronizing
the ePWM module TBCNT

Event filtering can optionally blank the input
signal to remove noise

7 - 24 C2000 Piccolo Workshop - Control Peripherals

 ePWM

Digital Compare Sub-Module Signals

The Digital Compare sub-module compares signals external to the ePWM module to directly
generate events which are then feed to the Event-Trigger, Trip-Zone, and Time-Base sub-modules

TZ1

TZ2

TZ3

COMP1OUT

COMP2OUT

COMP3OUT

Digital Trip
Event A1
Compare

Digital Trip
Event A2
Compare

Digital Trip
Event B1
Compare

Digital Trip
Event B2
Compare

Generate PWM Sync
Time-Base Sub-Module

Generate SOCA
Event-Trigger Sub-Module

Trip PWMA Output
Generate Trip Interrupt

Trip-Zone Sub-Module

Generate PWM Sync
Time-Base Sub-Module

Generate SOCB
Event-Trigger Sub-Module

Trip PWMB Output
Generate Trip Interrupt

Trip-Zone Sub-Module

DCAH

DCAL

DCBH

DCBL

DCTRIPSEL TZDCSEL DCACTRL / DCBCTRL

ePWM Digital Compare Sub-Module
Registers
(lab file: EPwm.c)

Name Description Structure
DCACTL DC A Control EPwmxRegs.DCACTL.all =
DCBCTL DC B Control EPwmxRegs.DCBCTL.all =
DCTRIPSEL DC Trip Select EPwmxRegs.DCTRIPSEL.all =
DCCAPCTL Capture Control EPWMxRegs.DCCAPCTL.all =
DCCAP Counter Capture EPwmxRegs.DCCAP =
DCFCTL DC Filter Control EPwmxRegs.DCFCTL.all =
DCFOFFSETCNT Filter Offset Ctr EPwmxRegs.DCOFFSETCNT =
DCFWINDOW Filter Window EPwmxRegs.DCFWINDOW =
DCFWINDOWCNT Filter Window Ctr EPwmxRegs.DCFWINDOWCNT =

C2000 Piccolo Workshop - Control Peripherals 7 - 25

ePWM

ePWM Digital Compare Control Register
EPwmxRegs.DCyCTL (y = A or B)

9 8 2 0
reserved

17 - 415 - 10
EVT1FRC
SYNCSEL

EVT2FRC
SYNCSEL

EVT2SRC
SEL

EVT1SRC
SEL

EVT1
SYNCE

EVT1
SOCEreserved

3

DCyEVT1 Source
Signal Select
0 = DCyEVT1 signal
1 = DCEVTFILT signal

DCyEVT2 Source
Signal Select
0 = DCyEVT2 signal
1 = DCEVTFILT signal

DCyEVT1 Source Force
Sync Signal Select
0 = synchronous
1 = asynchronous

DCyEVT1 SOC
Generation
0 = disable
1 = enable

DCyEVT1 SYNC
Generation
0 = disable
1 = enable

DCyEVT2 Source Force
Sync Signal Select
0 = synchronous
1 = asynchronous

ePWM Digital Compare Trip Select
Register

EPwmxRegs.DCTRIPSEL

DCBLCOMPSEL
15 - 12 11 - 8

7 - 4 3 - 0

DCBHCOMPSEL

DCALCOMPSEL DCAHCOMPSEL

Digital Compare B
Low Input Source Select

Digital Compare B
High Input Source Select

Digital Compare A
Low Input Source Select

Digital Compare A
High Input Source Select

0000 = TZ1 input
0001 = TZ2 input
0010 = TZ3 input
1000 = COMP1OUT input
1001 = COMP2OUT input
1010 = COMP3OUT input
other values reserved

7 - 26 C2000 Piccolo Workshop - Control Peripherals

 ePWM

ePWM Trip-Zone Sub-Module

ePWM Trip-Zone Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

Trip-Zone Features
♦ Trip-Zone has a fast, clock independent logic path to high-impedance

the EPWMxA/B output pins
♦ Interrupt latency may not protect hardware when responding to over

current conditions or short-circuits through ISR software
♦ Supports: #1) one-shot trip for major short circuits or over

current conditions
#2) cycle-by-cycle trip for current limiting operation

CPU
core P

W
M

O
U
T
P
U
T
S

EPWMxTZINT

EPWM1A

TZ6
TZ5
TZ4
TZ3
TZ2
TZ1

Over
Current
Sensors

Cycle-by-Cycle
Mode

One-Shot
Mode

EPWM1B

EPWMxA
EPWMxB

COMPxOUT Digital
Compare

CPU
SYSCTRL

eQEP1

•
•
•

EMUSTOP
CLOCKFAIL
EQEP1ERR

The power drive protection is a safety feature that is provided for the safe operation of systems
such as power converters and motor drives. It can be used to inform the monitoring program of

C2000 Piccolo Workshop - Control Peripherals 7 - 27

ePWM

motor drive abnormalities such as over-voltage, over-current, and excessive temperature rise. If
the power drive protection interrupt is unmasked, the PWM output pins will be put in the high-
impedance state immediately after the pin is driven low. An interrupt will also be generated.

ePWM Trip-Zone Sub-Module Registers
(lab file: EPwm.c)

Name Description Structure
TZCTL Trip-Zone Control EPwmxRegs.TZCTL.all =
TZSEL Trip-Zone Select EPwmxRegs.TZSEL.all =
TZEINT Enable Interrupt EPwmxRegs.TZEINT.all =
TZDCSEL Digital Compare EPWMxRegs.TZDCSEL.all =
TZFLG Trip-Zone Flag EPwmxRegs.TZFLG.all =
TZCLR Trip-Zone Clear EPwmxRegs.TZCLR.all =
TZFRC Trip-Zone Force EPwmxRegs.TZFRC.all =

ePWM Trip-Zone Control Register
EPwmxRegs.TZCTL

TZATZB
1 - 015 - 12

reserved

3 - 2

TZ1 to TZ6 Action on
EPWMxB / EPWMxA

DCBEVT2 DCBEVT1 DCAEVT2 DCAEVT1
5 - 47 - 69 - 811 - 10

00 = high impedance
01 = force high
10 = force low
11 = do nothing (disable)

Digital Compare Output
Event 2 / 1 Action

on EPWMxA

Digital Compare Output
Event 2 / 1 Action

on EPWMxB

7 - 28 C2000 Piccolo Workshop - Control Peripherals

 ePWM

ePWM Trip-Zone Select Register
EPwmxRegs.TZSEL

OSHT1OSHT5 OSHT4 OSHT3 OSHT2
8

OSHT6
15 910111213

CBC1CBC5 CBC4 CBC3 CBC2
0

CBC6
7 12345

Cycle-by-Cycle Trip Zone
(event cleared when CTR = 0;
i.e. cleared every PWM cycle)
0 = disable as trip source
1 = enable as trip source

One-Shot Trip Zone
(event only cleared under S/W
control; remains latched)
0 = disable as trip source
1 = enable as trip source

14

6

DCBEVT1

DCBEVT2 DCAEVT2

DCAEVT1

ePWM Trip-Zone Enable Interrupt
Register

EPwmxRegs.TZEINT

OST CBCreserved
15 - 7 02 1

reserved

Cycle-by-Cycle
Interrupt Enable
0 = disable
1 = enable

One-Shot
Interrupt Enable
0 = disable
1 = enable

DCBEVT2 DCBEVT1 DCAEVT2 DCAEVT1

Digital Compare
Output B
Event 2 / 1 Enable
0 = disable
1 = enable

Digital Compare
Output A
Event 2 / 1 Enable
0 = disable
1 = enable

3456

C2000 Piccolo Workshop - Control Peripherals 7 - 29

ePWM

ePWM Trip-Zone Digital Compare Event
Select Register

EPwmxRegs.TZDCSEL

2 - 015 - 12

reserved

5 - 3
DCBEVT2 DCBEVT1 DCAEVT2 DCAEVT1

8 - 611 - 9

000 = event disable
001 = DCBH low, DCBL don’t care
010 = DCBH high, DCBL don’t care
011 = DCBL low, DCBH don’t care
100 = DCBL high, DCBH don’t care
101 = DCBL high, DCBH low
11x = reserved

Digital Compare Output A
Event 2 / 1 Select

Digital Compare Output B
Event 2 / 1 Select

ePWM Event-Trigger Sub-Module

ePWM Event-Trigger Sub-Module

16-Bit
Time-Base

Counter

Compare
Logic

Action
Qualifier

Dead
Band

PWM
Chopper

Trip
Zone

Shadowed

Compare
Register

Shadowed

Period
Register

Clock
Prescaler

Shadowed

Compare
Register

EPWMxA

EPWMxBSYSCLKOUT
TZy

EPWMxSYNCI EPWMxSYNCO

TBCLK

Digital
Compare

TZ1-TZ3

COMPxOUT

7 - 30 C2000 Piccolo Workshop - Control Peripherals

 ePWM

ePWM Event-Trigger Interrupts and SOC
TBCTR
TBPRD

EPWMA

EPWMB

CMPB
CMPA

CTR = 0

CTR = PRD

CTRU = CMPA

CTRD = CMPA

CTRU = CMPB

CTRD = CMPB

CTR = 0 or PRD

ePWM Event-Trigger Sub-Module
Registers
(lab file: EPwm.c)

Name Description Structure
ETSEL Event-Trigger Selection EPwmxRegs.ETSEL.all =
ETPS Event-Trigger Pre-Scale EPwmxRegs.ETPS.all =
ETFLG Event-Trigger Flag EPwmxRegs.ETFLG.all =
ETCLR Event-Trigger Clear EPwmxRegs.ETCLR.all =
ETFRC Event-Trigger Force EPwmxRegs.ETFRC.all =

C2000 Piccolo Workshop - Control Peripherals 7 - 31

ePWM

ePWM Event-Trigger Selection Register
EPwmxRegs.ETSEL

15 11 7 - 4 2 - 0
INTEN INTSELreserved

3
SOCBSEL SOCASELSOCAENSOCBEN

10 - 814 - 12

Enable SOCB / A
0 = disable
1 = enable

EPWMxSOCB / A Select
000 = DCBEVT1 / DCAEVT1
001 = CTR = 0
010 = CTR = PRD
011 = CTR = 0 or PRD
100 = CTRU = CMPA
101 = CTRD = CMPA
110 = CTRU = CMPB
111 = CTRD = CMPB

Enable EPWMxINT
0 = disable
1 = enable

EPWMxINT Select
000 = reserved
001 = CTR = 0
010 = CTR = PRD
011 = CTR = 0 or PRD
100 = CTRU = CMPA
101 = CTRD = CMPA
110 = CTRU = CMPB
111 = CTRD = CMPB

ePWM Event-Trigger Prescale Register
EPwmxRegs.ETPS

15 - 14 11 - 10 7 - 4 1 - 0
INTCNT INTPRDreserved

2 - 3
SOCBPRD SOCAPRDSOCACNTSOCBCNT

9 - 813 - 12

EPWMxSOCB / A Counter
(number of events have occurred)
00 = no events
01 = 1 event
10 = 2 events
11 = 3 events

EPWMxSOCB / A Period
(number of events before SOC)
00 = disabled
01 = SOC on first event
10 = SOC on second event
11 = SOC on third event

EPWMxINT Counter
(number of events have occurred)
00 = no events
01 = 1 event
10 = 2 events
11 = 3 events

EPWMxINT Period
(number of events before INT)
00 = disabled
01 = INT on first event
10 = INT on second event
11 = INT on third event

7 - 32 C2000 Piccolo Workshop - Control Peripherals

 ePWM

Hi-Resolution PWM (HRPWM)

Hi-Resolution PWM (HRPWM)

Significantly increases the resolution of conventionally derived digital PWM
Uses 8-bit extensions to Compare registers (CMPxHR), Period register
(TBPRDHR) and Phase register (TBPHSHR) for edge positioning control
Typically used when PWM resolution falls below ~9-10 bits which occurs at
frequencies greater than ~120 kHz (with system clock of 60 MHz)
Not all ePWM outputs support HRPWM feature (see device datasheet)

PWM Period

Device Clock
(i.e. 60 MHz)

Regular
PWM Step

(i.e. 16.67 ns)

HRPWM
Micro Step (~150 ps)

HRPWM divides a clock
cycle into smaller steps

called Micro Steps
(Step Size ~= 150 ps)

ms ms ms ms ms ms

Calibration Logic

Calibration Logic tracks the
number of Micro Steps per

clock to account for
variations caused by
Temp/Volt/Process

C2000 Piccolo Workshop - Control Peripherals 7 - 33

eCAP

eCAP
Capture Module (eCAP)

The eCAP module timestamps transitions
on a capture input pin

Timer

Timestamp
Values

Trigger

pin

The capture units allow time-based logging of external TTL signal transitions on the capture input
pins. The C28x has up to six capture units.

Capture units can be configured to trigger an A/D conversion that is synchronized with an
external event. There are several potential advantages to using the capture for this function over
the ADCSOC pin associated with the ADC module. First, the ADCSOC pin is level triggered,
and therefore only low to high external signal transitions can start a conversion. The capture unit
does not suffer from this limitation since it is edge triggered and can be configured to start a
conversion on either rising edges or falling edges. Second, if the ADCSOC pin is held high
longer than one conversion period, a second conversion will be immediately initiated upon
completion of the first. This unwanted second conversion could still be in progress when a
desired conversion is needed. In addition, if the end-of-conversion ADC interrupt is enabled, this
second conversion will trigger an unwanted interrupt upon its completion. These two problems
are not a concern with the capture unit. Finally, the capture unit can send an interrupt request to
the CPU while it simultaneously initiates the A/D conversion. This can yield a time savings
when computations are driven by an external event since the interrupt allows preliminary
calculations to begin at the start-of-conversion, rather than at the end-of-conversion using the
ADC end-of-conversion interrupt. The ADCSOC pin does not offer a start-of-conversion
interrupt. Rather, polling of the ADCSOC bit in the control register would need to be performed
to trap the externally initiated start of conversion.

7 - 34 C2000 Piccolo Workshop - Control Peripherals

 eCAP

Some Uses for the Capture Module

Problem: At low speeds, calculation of speed
based on a measured position change at
fixed time intervals produces large estimate
errors

Alternative: Estimate the speed using a measured time interval
at fixed position intervals

Signal from one
quadrature
encoder channel

Low speed velocity estimation from incr. encoder:
Measure the time width of a pulse

vk ≈ Δx
tk - tk-1

vk ≈
Δt

xk - xk-1

Δx

Auxiliary PWM generation

eCAP Module Block Diagram – Capture Mode

32-Bit
Time-Stamp

Counter

Capture 1
Register

Event
Prescale

Polarity
Select 1

Polarity
Select 2

Polarity
Select 3

Polarity
Select 4

Capture 2
Register

Capture 3
Register

Capture 4
Register

Ev
en

t L
og

ic

ECAPx
pin

SYSCLKOUT

CAP1POL

CAP2POL

CAP3POL

CAP4POL

PRESCALE

C2000 Piccolo Workshop - Control Peripherals 7 - 35

eCAP

eCAP Module Block Diagram – APWM Mode

32-Bit
Time-Stamp

Counter

Period
Register

(CAP3)
Period

Register
(CAP1)

Compare
Register

(CAP4)

Compare
Register
(CAP2)

PWM
Compare

Logic ECAP
pin

Shadowed

Shadowed

SYSCLKOUT

immediate
mode

shadow
mode

shadow
mode

immediate
mode

eCAP Module Registers
(lab file: ECap.c)

Name Description Structure
ECCTL1 Capture Control 1 ECapxRegs.ECCTL1.all =
ECCTL2 Capture Control 2 ECapxRegs.ECCTL2.all =
TSCTR Time-Stamp Counter ECapxRegs.TSCTR =
CTRPHS Counter Phase Offset ECapxRegs.CTRPHS =
CAP1 Capture 1 ECapxRegs.CAP1 =
CAP2 Capture 2 ECapxRegs.CAP2 =
CAP3 Capture 3 ECapxRegs.CAP3 =
CAP4 Capture 4 ECapxRegs.CAP4 =
ECEINT Enable Interrupt ECapxRegs.ECEINT.all =
ECFLG Interrupt Flag ECapxRegs.ECFLG.all =
ECCLR Interrupt Clear ECapxRegs.ECCLR.all =
ECFRC Interrupt Force ECapxRegs.ECFRC.all =

7 - 36 C2000 Piccolo Workshop - Control Peripherals

 eCAP

eCAP Control Register 1
ECapxRegs.ECCTL1

CAPLDENFREE_SOFT PRESCALE
15 - 14 13 - 9 8

Upper Register:

Emulation Control
00 = TSCTR stops immediately
01 = TSCTR runs until equals 0
1X = free run (do not stop)

Event Filter Prescale Counter
00000 = divide by 1 (bypass)
00001 = divide by 2
00010 = divide by 4
00011 = divide by 6
00100 = divide by 8

11110 = divide by 60
11111 = divide by 62

CAP1 – 4 Load
on Capture Event
0 = disable
1 = enable

eCAP Control Register 1
ECapxRegs.ECCTL1

Lower Register:

CTRRST4 CAP4POL
7 3 2

CTRRST3 CAP3POL CTRRST2 CAP2POL CTRRST1 CAP1POL
01456

Counter Reset on Capture Event
0 = no reset (absolute time stamp mode)
1 = reset after capture (difference mode)

Capture Event Polarity
0 = trigger on rising edge
1 = trigger on falling edge

C2000 Piccolo Workshop - Control Peripherals 7 - 37

eCAP

eCAP Control Register 2
ECapxRegs.ECCTL2

Upper Register:

SWSYNCAPWMPOL CAP_APWM

10 815 - 11

reserved

9

APWM Output Polarity
(valid only in APWM mode)
0 = active high output
1 = active low output

Capture / APWM mode
0 = capture mode
1 = APWM mode

Software Force
Counter Synchronization
0 = no effect
1 = TSCTR load of current

module and other modules
if SYNCO_SEL bits = 00

eCAP Control Register 2
ECapxRegs.ECCTL2

Lower Register:

SYNCO_SEL SYNCI_EN

7 - 6 3 02 - 1

TSCTRSTOP REARM STOP_WRAP CONT_ONESHT

45

Sync-Out Select
00 = sync-in to sync-out
01 = CTR = PRD event

generates sync-out
1X = disable

Counter Sync-In
0 = disable
1 = enable

Time Stamp
Counter Stop
0 = stop
1 = run

Re-arm
(capture mode only)
0 = no effect
1 = arm sequence

Stop Value for One-Shot Mode/
Wrap Value for Continuous Mode
(capture mode only)
00 = stop/wrap after capture event 1
01 = stop/wrap after capture event 2
10 = stop/wrap after capture event 3
11 = stop/wrap after capture event 4

Continuous/One-Shot
(capture mode only)
0 = continuous mode
1 = one-shot mode

7 - 38 C2000 Piccolo Workshop - Control Peripherals

 eCAP

The capture unit interrupts offer immediate CPU notification of externally captured events. In
situations where this is not required, the interrupts can be masked and flag testing/polling can be
used instead. This offers increased flexibility for resource management. For example, consider a
servo application where a capture unit is being used for low-speed velocity estimation via a
pulsing sensor. The velocity estimate is not used until the next control law calculation is made,
which is driven in real-time using a timer interrupt. Upon entering the timer interrupt service
routine, software can test the capture interrupt flag bit. If sufficient servo motion has occurred
since the last control law calculation, the capture interrupt flag will be set and software can
proceed to compute a new velocity estimate. If the flag is not set, then sufficient motion has not
occurred and some alternate action would be taken for updating the velocity estimate. As a
second example, consider the case where two successive captures are needed before a
computation proceeds (e.g. measuring the width of a pulse). If the width of the pulse is needed as
soon as the pulse ends, then the capture interrupt is the best option. However, the capture
interrupt will occur after each of the two captures, the first of which will waste a small number of
cycles while the CPU is interrupted and then determines that it is indeed only the first capture. If
the width of the pulse is not needed as soon as the pulse ends, the CPU can check, as needed, the
capture registers to see if two captures have occurred, and proceed from there.

eCAP Interrupt Enable Register
ECapxRegs.ECEINT

CTR=CMP CTR=PRD
7 3 2

CTROVF CEVT4 CEVT3 CEVT2 CEVT1
01456

reserved
15 - 8

reserved

0 = disable as interrupt source
1 = enable as interrupt source

CTR = CMP
Interrupt Enable

CTR = PRD
Interrupt Enable

CTR = Overflow
Interrupt Enable

Capture Event 3
Interrupt Enable

Capture Event 1
Interrupt Enable

Capture Event 4
Interrupt Enable

Capture Event 2
Interrupt Enable

C2000 Piccolo Workshop - Control Peripherals 7 - 39

eQEP

eQEP

What is an Incremental Quadrature
Encoder?

A digital (angular) position sensor

slots spaced θ deg. apart

photo sensors spaced θ/4 deg. apart

light source (LED)

shaft rotation

Ch. A

Ch. B

Quadrature Output from Photo Sensors

θ

θ/4

Incremental Optical Encoder

The eQEP circuit, when enabled, decodes and counts the quadrature encoded input pulses. The
QEP circuit can be used to interface with an optical encoder to get position and speed information
from a rotating machine.

How is Position Determined from
Quadrature Signals?

Ch. A

Ch. B

(00) (11)
(10) (01)(A,B) =

00

01

11

10

Quadrature Decoder
State Machine

increment
counter

decrement
counter

Position resolution is θ/4 degrees

Illegal
Transitions;

generate
phase error

interrupt

7 - 40 C2000 Piccolo Workshop - Control Peripherals

 eQEP

eQEP Module Block Diagram

Quadrature
Decoder

EQEPxA/XCLK

EQEPxB/XDIR

EQEPxI

EQEPxS

Position/Counter
Compare

Quadrature
Capture

32-Bit Unit
Time-Base

QEP
Watchdog

SYSCLKOUT

Generate the direction and
clock for the position counter
in quadrature count modeGenerate a sync output

and/or interrupt on a
position compare match

Measure the elapsed time
between the unit position events;
used for low speed measurement

Generate periodic
interrupts for velocity
calculations

Monitors the quadrature
clock to indicate proper
operation of the motion
control system

Quadrature -
clock mode

Direction -
count mode

eQEP Module Connections

Ch. A

Ch. B

Index
Quadrature

Decoder

EQEPxA/XCLK

EQEPxB/XDIR

EQEPxI

EQEPxS

Position/Counter
Compare

Quadrature
Capture

32-Bit Unit
Time-Base

QEP
Watchdog

SYSCL KOUT

Strobe
from homing sensor

C2000 Piccolo Workshop - Control Peripherals 7 - 41

Lab 7: Control Peripherals

Lab 7: Control Peripherals
 Objective

The objective of this lab is to become familiar with the programming and operation of the control
peripherals and their interrupts. ePWM1A will be setup to generate a 2 kHz, 25% duty cycle
symmetric PWM waveform. The waveform will then be sampled with the on-chip analog-to-
digital converter and displayed using the graphing feature of Code Composer Studio. Next,
eCAP1 will be setup to detect the rising and falling edges of the waveform. This information will
be used to determine the width of the pulse and duty cycle of the waveform. The results of this
step will be viewed numerically in a memory window.

Lab 7: Control Peripherals

ADC
RESULT0

...

data
memory

po
in

te
r

re
w

in
d

CPU copies
result to
buffer during
ADC ISR

ePWM2

connector
wire

Capture 1 Register
ADC-
INA0

TB Counter
Compare

Action Qualifier

ePWM1

eCAP1

Capture 2 Register

Capture 3 Register

Capture 4 Register
View ADC
buffer PWM
Samples

Code Composer
Studio

ePWM2 triggering
ADC on period match
using SOCA trigger every
20 µs (50 kHz)

 Procedure

Project File
1. A project named Lab7.pjt has been created for this lab. Open the project by clicking

on Project Open… and look in C:\C28x\Labs\Lab7. All Build Options
have been configured the same as the previous lab. The files used in this lab are:
Adc.c Gpio.c
CodeStartBranch.asm Lab_5_6_7.cmd
DefaultIsr_7.c Main_7.c
DelayUs.asm PieCtrl_5_6_7_8_9_10.c
DSP2833x_GlobalVariableDefs.c PieVect_5_6_7_8_9_10.c
DSP2833x_Headers_nonBIOS.cmd SysCtrl.c
ECap_7_8_9_10_12.c Watchdog.c
EPwm_7_8_9_10_12.c

7 - 42 C2000 Piccolo Workshop - Control Peripherals

 Lab 7: Control Peripherals

Setup Shared I/O and ePWM1
2. Edit Gpio.c and adjust the shared I/O pin in GPIO0 for the PWM1A function.

3. In EPwm_7_8_9_10_12.c, setup ePWM1 to implement the PWM waveform as
described in the objective for this lab. The following registers need to be modified:
TBCTL (set clock prescales to divide-by-1, no software force, sync and phase disabled),
TBPRD, CMPA, CMPCTL (load on 0 or PRD), and AQCTLA (set on up count and clear
on down count for output A). Software force, deadband, PWM chopper and trip action
has been disabled. (Hint – notice the last steps enable the timer count mode and enable
the clock to the ePWM module). Either calculate the values for TBPRD and CMPA (as a
challenge) or make use of the global variable names and values that have been set using
#define in the beginning of Lab.h file. Notice that ePWM2 has been initialized earlier
in the code for the ADC lab. Save your work.

Build and Load
4. Save all changes to the files and click the “Build” button to build and load the project.

Run the Code – PWM Waveform
5. Open a memory window to view some of the contents of the ADC results buffer. The

address label for the ADC results buffer is AdcBuf. We will be running our code in real-
time mode, and will have our window continuously refresh.

6. Using a connector wire provided, connect the PWM1A (pin # GPIO-00) to ADCINA0
(pin # ADC-A0) on the Docking Station.

7. Run the code (real-time mode) using the GEL function: GEL Realtime
Emulation Control Run_Realtime_with_Reset. Watch the window
update. Verify that the ADC result buffer contains the updated values.

8. Open and setup a graph to plot a 50-point window of the ADC results buffer.
Click: View Graph Time/Frequency… and set the following values:

Start Address AdcBuf

Acquisition Buffer Size 50

Display Data Size 50

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 50000

Time Display Unit μs

 Select OK to save the graph options.

C2000 Piccolo Workshop - Control Peripherals 7 - 43

Lab 7: Control Peripherals

9. The graphical display should show the generated 2 kHz, 25% duty cycle symmetric
PWM waveform. The period of a 2 kHz signal is 500 μs. You can confirm this by
measuring the period of the waveform using the graph (you may want to enlarge the
graph window using the mouse). The measurement is best done with the mouse. The
lower left-hand corner of the graph window will display the X and Y-axis values.
Subtract the X-axis values taken over a complete waveform period (you can use the PC
calculator program found in Microsoft Windows to do this).

Frequency Domain Graphing Feature of Code Composer Studio
10. Code Composer Studio also has the ability to make frequency domain plots. It does this

by using the PC to perform a Fast Fourier Transform (FFT) of the DSP data. Let's make
a frequency domain plot of the contents in the ADC results buffer (i.e. the PWM
waveform).

Click: View Graph Time/Frequency… and set the following values:

Display Type FFT Magnitude

Start Address AdcBuf

Acquisition Buffer Size 50

FFT Framesize 50

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 50000

 Select OK to save the graph options.

11. On the plot window, left-click the mouse to move the vertical marker line and observe the
frequencies of the different magnitude peaks. Do the peaks occur at the expected
frequencies?

12. Fully halt the CPU (real-time mode) by using the GEL function: GEL Realtime
Emulation Control Full_Halt.

Setup eCAP1 to Measure Width of Pulse
The first part of this lab exercise generated a 2 kHz, 25% duty cycle symmetric PWM
waveform which was sampled with the on-chip analog-to-digital converter and displayed
using the graphing feature of Code Composer Studio. Next, eCAP1 will be setup to detect
the rising and falling edges of the waveform. This information will be used to determine the
period and duty cycle of the waveform. The results of this step will be viewed numerically in
a memory window and can be compared to the results obtained using the graphing features of
Code Composer Studio.

13. Add the following file to the project:

ECap_7_8_9_10_12.c

7 - 44 C2000 Piccolo Workshop - Control Peripherals

 Lab 7: Control Peripherals

Check your files list to make sure the file is there.

14. In Main_7.c, add code to call the InitECap() function. There are no passed
parameters or return values, so the call code is simply:

InitECap();

15. Edit Gpio.c and adjust the shared I/O pin in GPIO5 for the ECAP1 function.

16. Open and inspect the eCAP1 interrupt service routine (ECAP1_INT_ISR) in the file
DefaultIsr_7.c. Notice that PwmDuty is calculated by CAP2 – CAP1 (rising to
falling edge) and that PwmPeriod is calculated by CAP3 – CAP1 (rising to rising edge).

17. In ECap_7_8_9_10_12.c, setup eCAP1 to calculate PWM_duty and PWM_period.
The following registers need to be modified: ECCTL2 (continuous mode, re-arm disable,
and sync disable), ECCTL1 (set prescale to divide-by-1, configure capture event polarity
without reseting the counter), and ECEINT (enable desired eCAP interrupt).

18. Using the “PIE Interrupt Assignment Table” find the location for the
eCAP1 interrupt “ECAP1_INT” and fill in the following information:

 PIE group #: # within group:

This information will be used in the next step.

19. Modify the end of ECap_7_8_9_10_12.c to do the following:
- Enable the “ECAP1_INT” interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

Build and Load
20. Save all changes to the files and click the “Build” button.

Run the Code – Pulse Width Measurement
21. Open a memory window to view the address label PwmPeriod. (Type &PwmPeriod in

the address box). The address label PwmDuty (address &PwmDuty) should appear in the
same memory window.

22. Set the memory window properties format to “32-Bit UnSigned Int”.

23. Using the connector wire provided, connect the PWM1A (pin # GPIO-00) to ECAP1 (pin
GPIO-05) on the Docking Station.

24. Run the code (real-time mode) by using the GEL function: GEL Realtime
Emulation Control Run_Realtime_with_Reset. Notice the values for
PwmDuty and PwmPeriod.

25. Fully halt the CPU (real-time mode) by using the GEL function: GEL Realtime
Emulation Control Full_Halt.

C2000 Piccolo Workshop - Control Peripherals 7 - 45

Lab 7: Control Peripherals

Questions:
• How do the captured values for PwmDuty and PwmPeriod relate to the compare register

CMPA and time-base period TBPRD settings for ePWM1A?
• What is the value of PwmDuty in memory?
• What is the value of PwmPeriod in memory?
• How does it compare with the expected value?

End of Exercise

7 - 46 C2000 Piccolo Workshop - Control Peripherals

Numerical Concepts

Introduction

In this module, numerical concepts will be explored. One of the first considerations concerns
multiplication – how does the user store the results of a multiplication, when the process of mul-
tiplication creates results larger than the inputs. A similar concern arises when considering accu-
mulation – especially when long summations are performed. Next, floating-point concepts will
be explored and IQmath will be described as a technique for implementing a “virtual floating-
point” system to simplify the design process.

The IQmath Library is a collection of highly optimized and high precision mathematical
functions used to seamlessly port floating-point algorithms into fixed-point code. These C/C++
routines are typically used in computationally intensive real-time applications where optimal
execution speed and high accuracy is needed. By using these routines a user can achieve
execution speeds considerable faster than equivalent code written in standard ANSI C language.
In addition, by incorporating the ready-to-use high precision functions, the IQmath library can
shorten significantly a DSP application development time. (The IQmath user's guide is included
in the application zip file, and can be found in the /docs folder once the file is extracted and
installed).

Learning Objectives
Learning Objectives

Integers and Fractions
IEEE-754 Floating-Point
IQmath
Format Conversion of ADC Results

C2000 Piccolo Workshop - Numerical Concepts 8 - 1

Module Topics

Module Topics
Numerical Concepts .. 8-1

Module Topics... 8-2
Numbering System Basics ... 8-3

Binary Numbers.. 8-3
Two's Complement Numbers ... 8-3
Integer Basics ... 8-4
Sign Extension Mode.. 8-5

Binary Multiplication.. 8-6
Binary Fractions ... 8-8

Representing Fractions in Binary ... 8-8
Fraction Basics ... 8-8
Multiplying Binary Fractions ... 8-9

Fraction Coding...8-11
Fractional vs. Integer Representation..8-12
Floating-Point..8-13
IQmath ...8-15

IQ Fractional Representation...8-15
Traditional “Q” Math Approach..8-16
IQmath Approach ..8-18

IQmath Library ..8-23
Converting ADC Results into IQ Format...8-25
AC Induction Motor Example ..8-26
IQmath Summary ...8-32
Lab 8: IQmath & Floating-Point FIR Filter..8-33

8 - 2 C2000 Piccolo Workshop - Numerical Concepts

 Numbering System Basics

Numbering System Basics
Given the ability to perform arithmetic processes (addition and multiplication) with the C28x, it is
important to understand the underlying mathematical issues which come into play. Therefore, we
shall examine the numerical concepts which apply to the C28x and, to a large degree, most
processors.

Binary Numbers
The binary numbering system is the simplest numbering scheme used in computers, and is the
basis for other schemes. Some details about this system are:

• It uses only two values: 1 and 0
• Each binary digit, commonly referred to as a bit, is one “place” in a binary number

and represents an increasing power of 2.
• The least significant bit (LSB) is to the right and has the value of 1.
• Values are represented by setting the appropriate 1's in the binary number.
• The number of bits used determines how large a number may be represented.

Examples:
01102 = (0 * 8) + (1 * 4) + (1 * 2) + (0 * 1) = 610
111102 = (1 * 16) + (1 * 8) + (1 * 4) + (1 * 2) + (0 * 1) = 3010

Two's Complement Numbers
Notice that binary numbers can only represent positive numbers. Often it is desirable to be able to
represent both positive and negative numbers. The two's complement numbering system modifies
the binary system to include negative numbers by making the most significant bit (MSB)
negative. Thus, two's complement numbers:

• Follow the binary progression of simple binary except that the MSB is negative — in
addition to its magnitude

• Can have any number of bits — more bits allow larger numbers to be represented

Examples:
0110 = (0 * -8) + (1 * 4) + (1 * 2) + (0 * 1) = 62 10

111102 = (1 * -16) + (1 * 8) + (1 * 4) + (1 * 2) + (0 * 1) = -210

The same binary values are used in these examples for two's complement as were used above for
binary. Notice that the decimal value is the same when the MSB is 0, but the decimal value is
quite different when the MSB is 1.

Two operations are useful in working with two's complement numbers:
• The ability to obtain an additive inverse of a value
• The ability to load small numbers into larger registers (by sign extending)

C2000 Piccolo Workshop - Numerical Concepts 8 - 3

Numbering System Basics

To load small two's complement numbers into larger
registers:
The MSB of the original number must carry to the MSB of the number when represented in the
larger register.

1. Load the small number “right justified” into the larger register.

2. Copy the sign bit (the MSB) of the original number to all unfilled bits to the left in the
register (sign extension).

Consider our two previous values, copied into an 8-bit register:

Examples:
Original No. 0 1 1 02 = 610 1 1 1 1 02 = -210

1. Load low 0 1 1 0 1 1 1 1 0

2. Sign Extend 0 0 0 0 0 1 1 0 = 4 + 2 = 6 1 1 1 1 1 1 1 0 = -128 + 64 + ... + 2 = -2

Integer Basics

Integer Basics

Unsigned Binary Integers
0100b = (0*23)+(1*22)+(0*22)+(0*20) = 4
1101b = (1*23)+(1*22)+(0*21)+(1*20) = 13

Signed Binary Integers (2’s Complement)
0100b = (0*-23)+(1*22)+(0*22)+(0*20) = 4
1101b = (1*-23)+(1*22)+(0*21)+(1*20) = -3

2323±2n-1±2n-1 2222 2121 2020

8 - 4 C2000 Piccolo Workshop - Numerical Concepts

 Numbering System Basics

Sign Extension Mode
The C28x can operate on either unsigned binary or two's complement operands. The “Sign
Extension Mode” (SXM) bit, present within a status register of the C28x, identifies whether or
not the sign extension process is used when a value is brought into the accumulator. It is good
programming practice to always select the desired SXM at the beginning of a module to assure
the proper mode.

What is Sign Extension?
When moving a value from a narrowed width location
to a wider width location, the sign bit is extended to fill
the width of the destination
Sign extension applies to signed numbers only
It keeps negative numbers negative!
Sign extension controlled by SXM bit in ST0 register;
When SXM = 1, sign extension happens automatically

4 bit Example: Load a memory value into the ACC

1101memory = -23 + 22 + 20 = -3

ACC = -27 + 26 + 25 + 24 + 23 + 22 + 20

= -128 + 64 + 32 + 16 + 8 + 4 + 1
= -3

Load and sign extend

1111 1101

C2000 Piccolo Workshop - Numerical Concepts 8 - 5

Binary Multiplication

Binary Multiplication
Now that you understand two's complement numbers, consider the process of multiplying two
two's complement values. As with “long hand” decimal multiplication, we can perform binary
multiplication one “place” at a time, and sum the results together at the end to obtain the total
product.

Note: This is not the method the C28x uses in multiplying numbers — it is merely a way of observing
how binary numbers work in arithmetic processes.

The C28x uses 16-bit operands and a 32-bit accumulator. For the sake of clarity, consider the
example below where we shall investigate the use of 4-bit values and an 8-bit accumulation:

Integer Multiplication (signed)

0100
x 1101

00000100
0000000
000100
11100
11110100

Accumulator

Data Memory

1111010011110100

4
x -3

4
x -3

-12-12

?

In this example, consider the following:
• What are the two input values, and the expected result?
• Why are the “partial products” shifted left as the calculation continues?
• Why is the final partial product “different” than the others?
• What is the result obtained when adding the partial products?
• How shall this result be loaded into the accumulator?
• How shall we fill the remaining bit? Is this value still the expected one?
• How can the result be stored back to memory? What problems arise?

8 - 6 C2000 Piccolo Workshop - Numerical Concepts

 Binary Multiplication

Note: With two’s complement multiplication, the leading “1” in the second multiplicand is a
sign bit. If the sign bit is “1”, then take the 2’s complement of the first multiplicand.
Additionally, each partial product must be sign-extended for correct computation.

Note: All of the above questions except the final one are addressed in this module. The last
question may have several answers:

• Store the lower accumulator to memory. What problem is apparent using this

method in this example?
• Store the upper accumulator back to memory. Wouldn't this create a loss of

precision, and a problem in how to interpret the results later?
• Store both the upper and lower accumulator to memory. This solves the above

problems, but creates some new ones:
− Extra code space, memory space, and cycle time are used
− How can the result be used as the input to a subsequent calculation? Is such a

condition likely (consider any “feedback” system)?

From this analysis, it is clear that integers do not behave well when multiplied. Might some other
type of number system behave better? Is there a number system where the results of a
multiplication are bounded?

C2000 Piccolo Workshop - Numerical Concepts 8 - 7

Binary Fractions

Binary Fractions
Given the problems associated with integers and multiplication, consider the possibilities of using
fractional values. Fractions do not grow when multiplied, therefore, they remain representable
within a given word size and solve the problem. Given the benefit of fractional multiplication,
consider the issues involved with using fractions:

• How are fractions represented in two's complement?
• What issues are involved when multiplying two fractions?

Representing Fractions in Binary
In order to represent both positive and negative values, the two's complement process will again
be used. However, in the case of fractions, we will not set the LSB to 1 (as was the case for
integers). When one considers that the range of fractions is from -1 to ~+1, and that the only bit
which conveys negative information is the MSB, it seems that the MSB must be the “negative
ones position.” Since binary representation is based on powers of two, it follows that the next bit
would be the “one-halves” position, and that each following bit would have half the magnitude
again. Considering, as before, a 4-bit model, we have the representation shown in the following
example.

1 . 0 1 1 = -1 + 1/4 + 1/8 = -5/8

-1 1/2 1/4 1/8

Fraction Basics

Fraction Basics

-20-20 2-12-1 2-22-2 2-32-3

•
1101b = (1*-20)+(1*2-1)+(0*2-2)+(1*2-3)

= -1 + 1/2 + 1/8
= -3/8

Fractions have the nice property that
fraction x fraction = fraction

2-(n-1)2-(n-1)

8 - 8 C2000 Piccolo Workshop - Numerical Concepts

 Binary Fractions

Multiplying Binary Fractions
When the C28x performs multiplication, the process is identical for all operands, integers or
fractions. Therefore, the user must determine how to interpret the results. As before, consider the
4-bit multiply example:

Fraction Multiplication

0100
x 1101

00000100
0000000
000100
11100
11110100

1111010011110100

1/2
x -3/8

-3/16

Accumulator

.

.

Data Memory -1/41110.

As before, consider the following:
• What are the two input values and the expected result?
• As before, “partial products” are shifted left and the final is negative.
• How is the result (obtained when adding the partial products) read?
• How shall this result be loaded into the accumulator?
• How shall we fill the remaining bit? Is this value still the expected one?
• How can the result be stored back to memory? What problems arise?

To “read” the results of the fractional multiply, it is necessary to locate the binary point (the base
2 equivalent of the base 10 decimal point). Start by identifying the location of the binary point in
the input values. The MSB is an integer and the next bit is 1/2, therefore, the binary point would
be located between them. In our example, therefore, we would have three bits to the right of the
binary point in each input value. For ease of description, we can refer to these as “Q3” numbers,
where Q refers to the number of places to the right of the point.

When multiplying numbers, the Q values add. Thus, we would (mentally) place a binary point
above the sixth LSB. We can now calculate the “Q6” result more readily.

C2000 Piccolo Workshop - Numerical Concepts 8 - 9

Binary Fractions

As with integers, the results are loaded low and the MSB is a sign extension of the seventh bit. If
this value were loaded into the accumulator, we could store the results back to memory in a
variety of ways:

• Store both low and high accumulator values back to memory. This offers maximum
detail, but has the same problems as with integer multiply.

• Store only the high (or low) accumulator back to memory. This creates a potential for
a memory littered with varying Q-types.

• Store the upper accumulator shifted to the left by 1. This would store values back to
memory in the same Q format as the input values, and with equal precision to the
inputs. How shall the left shift be performed? Here’s three methods:
− Explicit shift (C or assembly code)
− Shift on store (assembly code)
− Use Product Mode shifter (assembly code)

8 - 10 C2000 Piccolo Workshop - Numerical Concepts

 Fraction Coding

Fraction Coding
Although COFF tools recognize values in integer, hex, binary, and other forms, they understand
only integer, or non-fractional values. To use fractions within the C28x, it is necessary to describe
them as though they were integers. This turns out to be a very simple trick. Consider the
following number lines:

Coding Traditional 16-bit Q15 Fractions

Fraction

⇒
∗ 32768

(215)

C-code example: y = 0.707 * x
void main(void)
{

int16 coef = 32768*707/1000; // 0.707 in Q15
int16 x, y;
y = (int16)((int32)coef * (int32)x) >> 15);

}

~1

½

0

-½

-1

0x7FFF

0x4000

0x0000

0xC000

0x8000

32767

16384

0

-16384

-32768
Integer

By multiplying a fraction by 32K (32768), a normalized fraction is created, which can be passed
through the COFF tools as an integer. Once in the C28x, the normalized fraction looks and
behaves exactly as a fraction. Thus, when using fractional constants in a C28x program, the coder
first multiplies the fraction by 32768, and uses the resulting integer (rounded to the nearest whole
value) to represent the fraction.

The following is a simple, but effective method for getting fractions past the assembler:

1. Express the fraction as a decimal number (drop the decimal point).

2. Multiply by 32768.

3. Divide by the proper multiple of 10 to restore the decimal position.

Examples:
• To represent 0.62: 32768 x 62 / 100
• To represent 0.1405: 32768 x 1405 / 10000

This method produces a valid number accurate to 16 bits. You will not need to do the math
yourself, and changing values in your code becomes rather simple.

C2000 Piccolo Workshop - Numerical Concepts 8 - 11

Fractional vs. Integer Representation

Fractional vs. Integer Representation
Integer vs. Fractions

Range Precision

Integer determined 1
by # of bits

Fraction ~+1 to -1 determined
by # of bits

Integers grow when you multiply them
Fractions have limited range

Fractions can still grow when you add them
Scaling an application is time consuming

Are there any other alternatives?

The C28x accumulator, a 32-bit register, adds extra range to integer calculations, but this
becomes a problem in storing the results back to 16-bit memory.

Conversely, when using fractions, the extra accumulator bits increase precision, which helps
minimize accumulative errors. Since any number is accurate (at best) to ± one-half of a LSB,
summing two of these values together would yield a worst case result of 1 LSB error. Four
summations produce two LSBs of error. By 256 summations, eight LSBs are “noisy.” Since the
accumulator holds 32 bits of information, and fractional results are stored from the high
accumulator, the extra range of the accumulator is a major benefit in noise reduction for long
sum-of-products type calculations.

8 - 12 C2000 Piccolo Workshop - Numerical Concepts

 Floating-Point

Floating-Point
IEEE-754 Single Precision Floating-Point

Example: 0x41200000 = 0 100 0001 0 010 0000 0000 ... 0000 b
s e = 130 f = 2-2 = 0.25

⇒ Case 3 v = (-10)*2(130-127)*1.25 = 10.0

s eeeeeeee fffffffffffffffffffffff
031 30 23 22

23 bit mantissa (fraction)8 bit exponent1 bit sign

Case 1: if e = 255 and f ≠ 0, then v = NaN
Case 2: if e = 255 and f = 0, then v = [(-1)s]*infinity
Case 3: if 0 < e < 255, then v = [(-1)s]*[2(e-127)]*(1.f)
Case 4: if e = 0 and f ≠ 0, then v = [(-1)s]*[2(-126)]*(0.f)
Case 5: if e = 0 and f = 0, then v = [(-1)s]*0

Advantage ⇒ Exponent gives large dynamic range
Disadvantage ⇒ Precision of a number depends on its exponent

Normalized
values

Number Line Insight

Floating-Point:

0+∞ -∞0+∞ -∞

Non-uniform distribution
Precision greatest near zero
Less precision the further you get from zero

C2000 Piccolo Workshop - Numerical Concepts 8 - 13

Floating-Point

Floating-Point Pros and Cons

Advantages
Easy to write code
No scaling required

Disadvantages
Somewhat higher device cost
May offer insufficient precision for some
calculations due to 23 bit mantissa and
the influence of the exponent

What if you don’t have the luxury of
using a floating-point C28x device?

8 - 14 C2000 Piccolo Workshop - Numerical Concepts

 IQmath

IQmath
Implementing complex digital control algorithms on a Digital Signal Processor (DSP), or any
other DSP capable processor, typically come across the following issues:
• Algorithms are typically developed using floating-point math
• Floating-point devices are more expensive than fixed-point devices
• Converting floating-point algorithms to a fixed-point device is very time consuming
• Conversion process is one way and therefore backward simulation is not always possible

The design may initially start with a simulation (i.e. MatLab) of a control algorithm, which
typically would be written in floating-point math (C or C++). This algorithm can be easily ported
to a floating-point device, however because of cost reasons most likely a 16-bit or 32-bit fixed-
point device would be used in many target systems.

The effort and skill involved in converting a floating-point algorithm to function using a 16-bit or
32-bit fixed-point device is quite significant. A great deal of time (many days or weeks) would
be needed for reformatting, scaling and coding the problem. Additionally, the final
implementation typically has little resemblance to the original algorithm. Debugging is not an
easy task and the code is not easy to maintain or document.

IQ Fractional Representation
A new approach to fixed-point algorithm development, termed “IQmath”, can greatly simplify the
design development task. This approach can also be termed “virtual floating-point” since it looks
like floating-point, but it is implemented using fixed-point techniques.

IQ Fractional Representation

S IIIIIIII fffffffffffffffffffffff
031

32 bit mantissa

Advantage ⇒ Precision same for all numbers in an IQ format
Disadvantage ⇒ Limited dynamic range compared to floating-point

-2I + 2I-1 + … + 21 + 20 . 2-1 + 2-2 + … + 2-Q

I8Q24 Example: 0x41200000
= 0100 0001 . 0010 0000 0000 0000 0000 0000 b
= 26 + 20 + 2-3 = 65.125

C2000 Piccolo Workshop - Numerical Concepts 8 - 15

IQmath

The IQmath approach enables the seamless portability of code between fixed and floating-point
devices. This approach is applicable to many problems that do not require a large dynamic range,
such as motor or digital control applications.

IQ Fractions: uniform distribution (same precision everywhere)

0+∞ -∞

Number Line Insight
Distributions

Floating-Point: non-uniform distribution (variable precision)

0+∞ -∞

Both floating-point and IQ formats have 232

possible values on the number line
It’s how each distributes these values that differs

Traditional “Q” Math Approach

Traditional 32-bit “Q” Math Approach
y = mx + b

Y = ((int64) M * (int64) X + (int64) B << Q) >> Q;in C:

Note: Requires support for 64-bit integer data type in compiler

<< 24
Align Decimal
Point for Add

I8 Q24 M

X

B

Y

I8 Q24

I8 Q24

I16 Q48

ssssssssssssssssssI8 Q24

ssssI8 Q48

I16 Q48

sssssssssssssssssI16 Q24 I8 Q24

>> 24
Align Decimal
Point for Store

8 - 16 C2000 Piccolo Workshop - Numerical Concepts

 IQmath

The traditional approach to performing math operations, using fixed-point numerical techniques
can be demonstrated using a simple linear equation example. The floating-point code for a linear
equation would be:

float Y, M, X, B;
Y = M * X + B;

For the fixed-point implementation, assume all data is 32-bits, and that the "Q" value, or location
of the binary point, is set to 24 fractional bits (Q24). The numerical range and resolution for a
32-bit Q24 number is as follows:

Q value Min Value Max Value Resolution

Q24 -2(32-24) = -128.000 000 00 2(32-24) – (½)24 = 127.999 999 94 (½)24 = 0.000 000 06

The C code implementation of the linear equation is:

int32 Y, M, X, B; // numbers are all Q24
Y = ((int64) M * (int64) X + (int64) B << 24) >> 24;

Compared to the floating-point representation, it looks quite cumbersome and has little resem-
blance to the floating-point equation. It is obvious why programmers prefer using floating-point
math.

The slide shows the implementation of the equation on a processor containing hardware that can
perform a 32x32 bit multiplication, 64-bit addition and 64-bit shifts (logical and arithmetic) effi-
ciently.

The basic approach in traditional fixed-point "Q" math is to align the binary point of the operands
that get added to or subtracted from the multiplication result. As shown in the slide, the multipli-
cation of M and X (two Q24 numbers) results in a Q48 value that is stored in a 64-bit register.
The value B (Q24) needs to be scaled to a Q48 number before addition to the M*X value (low
order bits zero filled, high order bits sign extended). The final result is then scaled back to a Q24
number (arithmetic shift right) before storing into Y (Q24). Many programmers may be familiar
with 16-bit fixed-point "Q" math that is in common use. The same example using 16-bit numbers
with 15 fractional bits (Q15) would be coded as follows:

int16 Y, M, X, B; // numbers are all Q15
Y = ((int32) M * (int32) X + (int32) B << 15) >> 15;

In both cases, the principal methodology is the same. The binary point of the operands that get
added to or subtracted from the multiplication result must be aligned.

C2000 Piccolo Workshop - Numerical Concepts 8 - 17

IQmath

IQmath Approach

32-bit IQmath Approach
y = mx + b

I8 Q24
I16 Q48

M

X

B

Y

>> 24Align Decimal
Point Of Multiply

I8 Q24

I8 Q24

sssssssssssssssssI16 Q24

I8 Q24I8 Q24

Y = ((int64) M * (int64) X) >> Q + B;in C:

In the "IQmath" approach, rather then scaling the operands, which get added to or subtracted
from the multiplication result, we do the reverse. The multiplication result binary point is scaled
back such that it aligns to the operands, which are added to or subtracted from it. The C code
implementation of this is given by linear equation below:

int32 Y, M, X, B;
Y = ((int64) M * (int64) X) >> 24 + B;

The slide shows the implementation of the equation on a processor containing hardware that can
perform a 32x32 bit multiply, 32-bit addition/subtraction and 64-bit logical and arithmetic shifts
efficiently.

The key advantage of this approach is shown by what can then be done with the C and C++ com-
piler to simplify the coding of the linear equation example.

Let’s take an additional step and create a multiply function in C that performs the following op-
eration:

int32 _IQ24mpy(int32 M, int32 X) { return ((int64) M * (int64) X) >> 24; }

The linear equation can then be written as follows:

Y = _IQ24mpy(M , X) + B;

Already we can see a marked improvement in the readability of the linear equation.

8 - 18 C2000 Piccolo Workshop - Numerical Concepts

 IQmath

Using the operator overloading features of C++, we can overload the multiplication operand "*"
such that when a particular data type is encountered, it will automatically implement the scaled
multiply operation. Let’s define a data type called "iq" and assign the linear variables to this data
type:

iq Y, M, X, B // numbers are all Q24

The overloading of the multiply operand in C++ can be defined as follows:

iq operator*(const iq &M, const iq &X){return((int64)M*(int64) X) >> 24;}

Then the linear equation, in C++, becomes:

Y = M * X + B;

This final equation looks identical to the floating-point representation. It looks "natural". The
four approaches are summarized in the table below:

Math Implementations Linear Equation Code
32-bit floating-point math in C Y = M * X + B;

32-bit fixed-point "Q" math in C Y = ((int64) M * (int64) X) + (int64) B << 24) >> 24;
32-bit IQmath in C Y = _IQ24mpy(M, X) + B;

32-bit IQmath in C++ Y = M * X + B;

Essentially, the mathematical approach of scaling the multiplier operand enables a cleaner and a
more "natural" approach to coding fixed-point problems. For want of a better term, we call this
approach "IQmath" or can also be described as "virtual floating-point".

C2000 Piccolo Workshop - Numerical Concepts 8 - 19

IQmath

IQmath Approach
Multiply Operation

Y = ((i64) M * (i64) X) >> Q + B;

_IQmpy(M,X) == ((i64) M * (i64) X) >> Q

Redefine the multiply operation as follows:

Y = _IQmpy(M,X) + B;

This simplifies the equation as follows:

MOVL XT,@M
IMPYL P,XT,@X ; P = low 32-bits of M*X
QMPYL ACC,XT,@X ; ACC = high 32-bits of M*X
LSL64 ACC:P,#(32-Q) ; ACC = ACC:P << 32-Q

; (same as P = ACC:P >> Q)
ADDL ACC,@B ; Add B
MOVL @Y,ACC ; Result = Y = _IQmpy(M*X) + B
; 7 Cycles

C28x compiler supports “_IQmpy” intrinsic; assembly code generated:

IQmath Approach
It looks like floating-point!

float Y, M, X, B;

Y = M * X + B;

Floating-Point

long Y, M, X, B;

Y = ((i64) M * (i64) X + (i64) B << Q)) >> Q;

Traditional
Fix-Point Q

_iq Y, M, X, B;

Y = _IQmpy(M, X) + B;

“IQmath”
In C

iq Y, M, X, B;

Y = M * X + B;

“IQmath”
In C++

“IQmath” code is easy to read!

8 - 20 C2000 Piccolo Workshop - Numerical Concepts

 IQmath

IQmath Approach
GLOBAL_Q simplification

#define GLOBAL_Q 18 // set in “IQmathLib.h” file

_iq Y, M, X, B;

Y = _IQmpy(M,X) + B; // all values are in Q = 18

GLOBAL_Q

User selects “Global Q” value for the whole application

based on the required dynamic range or resolution, for example:

The user can also explicitly specify the Q value to use:
_iq20 Y, M, X, B;

Y = _IQ20mpy(M,X) + B; // all values are in Q = 20

0.000 000 06-128.000 000 00127.999 999 9424
0.000 001-2048.000 0002047.999 99920

0.000 000 004-8.000 000 0007.999 999 99628
ResolutionMin ValMax ValGLOBAL_Q

The basic "IQmath" approach was adopted in the creation of a standard math library for the Texas
Instruments TMS320C28x DSP fixed-point processor. This processor contains efficient hardware
for performing 32x32 bit multiply, 64-bit shifts (logical and arithmetic) and 32-bit add/subtract
operations, which are ideally suited for 32 bit "IQmath".

Some enhancements were made to the basic "IQmath" approach to improve flexibility. They are:

Setting of GLOBAL_Q Parameter Value: Depending on the application, the amount of numerical
resolution or dynamic range required may vary. In the linear equation example, we used a Q
value of 24 (Q24). There is no reason why any value of Q can't be used. In the "IQmath" library,
the user can set a GLOBAL_Q parameter, with a range of 1 to 30 (Q1 to Q30). All functions
used in the program will use this GLOBAL_Q value. For example:

#define GLOBAL_Q 18
Y = _IQmpy(M, X) + B; // all values use GLOBAL_Q = 18

If, for some reason a particular function or equation requires a different resolution, then the user
has the option to implicitly specify the Q value for the operation. For example:

Y = _IQ23mpy(M,X) + B; // all values use Q23, including B and Y

The Q value must be consistent for all expressions in the same line of code.

C2000 Piccolo Workshop - Numerical Concepts 8 - 21

IQmath

IQmath Provides Compatibility Between
Floating-Point and Fixed-Point

All “IQmath” operations have an equivalent floating-point operation

Compile & Run
on Fixed-Point

F282xx

Y = _IQmpy(M, X) + B;

#if MATH_TYPE == IQ_MATH #if MATH_TYPE == FLOAT_MATH

Y = (float)M * (float)X + (float)B;

1) Develop any mathematical function

2) Select math type in IQmathLib.h

3) Compiler automatically converts to:

Floating-Point
Math Code

Fixed-Point
Math Code

Compile & Run
on Floating-Point

F283xx *

* Can also compile floating-point code on any floating-point compiler (e.g., PC, Matlab, fixed-point w/ RTS lib, etc.)

Selecting FLOAT_MATH or IQ_MATH Mode: As was highlighted in the introduction, we would
ideally like to be able to have a single source code that can execute on a floating-point or fixed-
point target device simply by recompiling the code. The "IQmath" library supports this by setting
a mode, which selects either IQ_MATH or FLOAT_MATH. This operation is performed by
simply redefining the function in a header file. For example:

#if MATH_TYPE == IQ_MATH
#define _IQmpy(M , X) _IQmpy(M , X)
#elseif MATH_TYPE == FLOAT_MATH
#define _IQmpy(M , X) (float) M * (float) X
#endif

Essentially, the programmer writes the code using the "IQmath" library functions and the code
can be compiled for floating-point or "IQmath" operations.

8 - 22 C2000 Piccolo Workshop - Numerical Concepts

 IQmath Library

IQmath Library
IQmath Library: Math & Trig Functions

Accuracy of functions/operations approx ~28 to ~31 bits

IQsin(A),IQcos(A)
IQsinPU(A),IQcosPU(A)

IQasin(A),IQacos(A)
IQatan(A),IQatan2(A,B)

IQatan2PU(A,B)
IQsqrt(A),IQisqrt(A)

IQmag(A,B)
IQexp(A)

_IQsin(A), _IQcos(A)
_IQsinPU(A), _IQcosPU(A)

_IQasin(A),_IQacos(A)
_IQatan(A), _IQatan2(A,B)

_IQatan2PU(A,B)
_IQsqrt(A), _IQisqrt(A)

_IQmag(A,B)
_IQexp(A)

sin(A),cos(A)
sin(A*2pi),cos(A*2pi)

asin(A),acos(A)
atan(A),atan2(A,B)

atan2(A,B)/2pi
sqrt(A),1/sqrt(A)
sqrt(A*A + B*B)

exp(A)

trig
and

power
functions

IQsat(A,Pos,Neg)_IQsat(A,Pos,Neg)if(A > Pos) A = Pos
if(A < Neg) A = Neg

saturation

A – BA - BA - Bsubstract
>, >=, <, <=, ==, |=, &&, || >, >=, <, <=, ==, |=, &&, ||>, >=, <, <=, ==, |=, &&, ||boolean

A + BA + BA + Badd
A / B_IQdiv (A , B)A / B divide
A * B_IQmpy(A , B)A * Bmultiply

A = IQ(1.2345)A = _IQ(1.2345)A = 1.2345constant
iq A, B;_iq A, B;float A, B;type

“IQmath” in C++“IQmath” in CFloating-PointOperation

Additionally, the "IQmath" library contains DSP library modules for filters (FIR & IIR) and Fast
Fourier Transforms (FFT & IFFT).

IQmath Library: Conversion Functions

IQmath.lib > contains library of math functions
IQmathLib.h > C header file
IQmathCPP.h > C++ header file

atoIQ(char)_atoIQ(char)atof(char)string to iq
IQtoQN(A)_IQtoQN(A)Aiq to qN
QNtoIQ(A)_QNtoIQ(A)AqN to iq

IQmpyI32int(A,B)_IQmpyI32int(A,B)(long) (A * (float) B)integer(iq*long)
IQmpyI32frac(A,B)_IQmpyI32frac(A,B)A - (long) (A * (float) B)fraction(iq*long)

IQtoF(A)_IQtoF(A)AIQ to float

IQmpyI32(A,B)_IQmpyI32(A,B)A * (float) Biq = iq*long
IQfrac(A)_IQfrac(A)A – (long) Afraction(iq)
IQint(A)_IQint(A)(long) Ainteger(iq)

IQNtoIQ(A)_IQNtoIQ(A)AiqN to iq
IQtoIQN(A)_IQtoIQN(A)Aiq to iqN

“IQmath” in C++“IQmath” in CFloating-PointOperation

IQtoA(A,B,C)_IQtoA(A,B,C)sprintf(A,B,C)IQ to ASCII

C2000 Piccolo Workshop - Numerical Concepts 8 - 23

IQmath Library

16 vs. 32 Bits
The "IQmath" approach could also be used on 16-bit numbers and for many problems, this is suf-
ficient resolution. However, in many control cases, the user needs to use many different "Q" val-
ues to accommodate the limited resolution of a 16-bit number.

With DSP devices like the TMS320C28x processor, which can perform 16-bit and 32-bit math
with equal efficiency, the choice becomes more of productivity (time to market). Why bother
spending a whole lot of time trying to code using 16-bit numbers when you can simply use 32-bit
numbers, pick one value of "Q" that will accommodate all cases and not worry about spending
too much time optimizing.

Of course there is a concern on data RAM usage if numbers that could be represented in 16 bits
all use 32 bits. This is becoming less of an issue in today's processors because of the finer tech-
nology used and the amount of RAM that can be cheaply integrated. However, in many cases,
this problem can be mitigated by performing intermediate calculations using 32-bit numbers and
converting the input from 16 to 32 bits and converting the output back to 16 bits before storing
the final results. In many problems, it is the intermediate calculations that require additional ac-
curacy to avoid quantization problems.

8 - 24 C2000 Piccolo Workshop - Numerical Concepts

 Converting ADC Results into IQ Format

Converting ADC Results into IQ Format

_iq Result;

void main(void)

{

// Convert the ADC result into global IQ format valued between 0.0 and 1.0

Result = _IQ12toIQ((_iq)AdcResult.ADCRESULT0);

}

Getting the ADC Result into IQ Format
AdcResult.

ADCRESULTx

32-bit long
15 031

Do not sign extend

Notice that the 32-bit long is already in IQ12 format

// Optional: scale by ADC full-scale range to get 0.0 to 3.3

// (if you prefer to think/scale in terms of voltage)

Result = _IQmpy(_iq(3.3), Result);

}

x x x xx x x xx x x x0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0

x x x xx x x xx x x x0 0 0 0

As you may recall, the converted values of the ADC are placed in the lower 12 bits of the
ADCRESULT0 register. Before these values are filtered using the IQmath library, they need to
to be put into the IQ format as a 32-bit long. For uni-polar ADC inputs (i.e., 0 to 3.3 V inputs), a
conversion to global IQ format can be achieved with:

IQresult_unipolar = _IQmpy(_IQ(3.3),_IQ12toIQ((_iq) AdcResult.ADCRESULT0));

How can we modify the above to recover bi-polar inputs, for example +-1.65 volts? One could
do the following to offset the +1.65V analog biasing applied to the ADC input:

IQresult_bipolar =
 _IQmpy(_IQ(3.3),_IQ12toIQ((_iq) AdcResult.ADCRESULT0)) - _IQ(1.65);

However, one can see that the largest intermediate value the equation above could reach is 3.3.
This means that it cannot be used with an IQ data type of IQ30 (IQ30 range is -2 < x < ~2). Since
the IQmath library supports IQ types from IQ1 to IQ30, this could be an issue in some applica-
tions.

The following clever approach supports IQ types from IQ1 to IQ30:

IQresult_bipolar =
_IQmpy(_IQ(1.65),_IQ15toIQ((_iq) ((int16) (AdcResult.ADCRESULT0 ^
0x8000))));

The largest intermediate value that this equation could reach is 1.65. Therefore, IQ30 is easily
supported.

C2000 Piccolo Workshop - Numerical Concepts 8 - 25

AC Induction Motor Example

AC Induction Motor Example
AC Induction Motor Example

One of the more complex motor control algorithms

Sensorless, ACI induction machine direct rotor flux control
Goal: motor speed estimation & alpha-axis stator current estimation

The "IQmath" approach is ideally suited for applications where a large numerical dynamic range
is not required. Motor control is an example of such an application (audio and communication
algorithms are other applications). As an example, the IQmath approach has been applied to the
sensor-less direct field control of an AC induction motor. This is probably one of the most chal-
lenging motor control problems and as will be shown later, requires numerical accuracy greater
then 16-bits in the control calculations.

The above slide is a block diagram representation of the key control blocks and their interconnec-
tions. Essentially this system implements a "Forward Control" block for controlling the d-q axis
motor current using PID controllers and a "Feedback Control" block using back emf's integration
with compensated voltage from current model for estimating rotor flux based on current and volt-
age measurements. The motor speed is simply estimated from rotor flux differentiation and open-
loop slip computation. The system was initially implemented on a "Simulator Test Bench" which
uses a simulation of an "AC Induction Motor Model" in place of a real motor. Once working, the
system was then tested using a real motor on an appropriate hardware platform.

Each individual block shown in the slide exists as a stand-alone C/C++ module, which can be
interconnected to form the complete control system. This modular approach allows reusability
and portability of the code. The next few slides show the coding of one particular block, PARK
Transform, using floating-point and "IQmath" approaches in C:

8 - 26 C2000 Piccolo Workshop - Numerical Concepts

 AC Induction Motor Example

AC Induction Motor Example
Park Transform – floating-point C code

#include “math.h”

#define TWO_PI 6.28318530717959

void park_calc(PARK *v)

{

float cos_ang , sin_ang;

sin_ang = sin(TWO_PI * v->ang);

cos_ang = cos(TWO_PI * v->ang);

v->de = (v->ds * cos_ang) + (v->qs * sin_ang);

v->qe = (v->qs * cos_ang) - (v->ds * sin_ang);

}

AC Induction Motor Example
Park Transform - converting to “IQmath” C code

#include “math.h”

#define TWO_PI 6.28318530717959

void park_calc(PARK *v)

{

float cos_ang , sin_ang;

sin_ang = sin(TWO_PI * v->ang);

cos_ang = cos(TWO_PI * v->ang);

v->de = (v->ds * cos_ang) + (v->qs * sin_ang);

v->qe = (v->qs * cos_ang) - (v->ds * sin_ang);

}

#include “IQmathLib.h”

_IQ(6.28318530717959)

_iq

_IQsin(_IQmpy(TWO_PI , v->ang));

_IQcos(_IQmpy(TWO_PI , v->ang));

_IQmpy(v->ds , cos_ang) + _IQmpy(v->qs , sin_ang);

_IQmpy(v->qs , cos_ang) - _IQmpy(v->ds , sin_ang);

The complete system was coded using "IQmath". Based on analysis of coefficients in the system,
the largest coefficient had a value of 33.3333. This indicated that a minimum dynamic range of 7
bits (+/-64 range) was required. Therefore, this translated to a GLOBAL_Q value of 32-7 = 25
(Q25). Just to be safe, the initial simulation runs were conducted with GLOBAL_Q = 24 (Q24)

C2000 Piccolo Workshop - Numerical Concepts 8 - 27

AC Induction Motor Example

value. The plots start from a step change in reference speed from 0.0 to 0.5 and 1024 samples are
taken.

AC Induction Motor Example
GLOBAL_Q = 24, system stable

IQmath: speed IQmath: current

Floating-Point: speed Floating-Point: current

The speed eventually settles to the desired reference value and the stator current exhibits a clean
and stable oscillation. The block diagram slide shows at which points in the control system the
plots are taken from.

I8Q24 Fractions:

0+∞ -∞

What’s Happening Here?
Equal Precision in the Computation Region

In the region where these particular computations occur, the
precision of single-precision floating-point just happens to equal
the precision of the I8Q24 format.

So, both produce similar results!

Floating-Point:

0+∞ -∞

Same precision as I8Q24

8 - 28 C2000 Piccolo Workshop - Numerical Concepts

 AC Induction Motor Example

AC Induction Motor Example
GLOBAL_Q = 27, system unstable

IQmath: speed

IQmath: current

AC Induction Motor Example
GLOBAL_Q = 16, system unstable

IQmath: speed

IQmath: current

C2000 Piccolo Workshop - Numerical Concepts 8 - 29

AC Induction Motor Example

With the ability to select the GLOBAL_Q value for all calculations in the "IQmath", an experi-
ment was conducted to see what maximum and minimum Q value the system could tolerate be-
fore it became unstable. The results are tabulated in the slide below:

AC Induction Motor Example
Q stability range

The developer must pick the right GLOBAL_Q value!

Unstable
(not enough resolution, quantization problems)Q18 to Q0

StableQ26 to Q19

Unstable
(not enough dynamic range)Q31 to Q27

Stability RangeQ range

The above indicates that, the AC induction motor system that we simulated requires a minimum
of 7 bits of dynamic range (+/-64) and requires a minimum of 19 bits of numerical resolution (+/-
0.000002). This confirms our initial analysis that the largest coefficient value being 33.33333
required a minimum dynamic range of 7 bits. As a general guideline, users using IQmath should
examine the largest coefficient used in the equations and this would be a good starting point for
setting the initial GLOBAL_Q value. Then, through simulation or experimentation, the user can
reduce the GLOBAL_Q until the system resolution starts to cause instability or performance deg-
radation. The user then has a maximum and minimum limit and a safe approach is to pick a mid-
point.

What the above analysis also confirms is that this particular problem does require some calcula-
tions to be performed using greater then 16 bit precision. The above example requires a mini-
mum of 7 + 19 = 26 bits of numerical accuracy for some parts of the calculations. Hence, if one
was implementing the AC induction motor control algorithm using a 16 bit fixed-point DSP, it
would require the implementation of higher precision math for certain portions. This would take
more cycles and programming effort.

The great benefit of using GLOBAL_Q is that the user does not necessarily need to go into de-
tails to assign an individual Q for each variable in a whole system, as is typically done in conven-
tional fixed-point programming. This is time consuming work. By using 32-bit resolution and the
"IQmath" approach, the user can easily evaluate the overall resolution and quickly implement a
typical digital motor control application without quantization problems.

8 - 30 C2000 Piccolo Workshop - Numerical Concepts

 AC Induction Motor Example

AC Induction Motor Example
Performance comparisons

Benchmark C28x C C28x C C28x C
floating-point floating-point IQmath
std. RTS lib fast RTS lib v1.4d
(150 MHz) (150 MHz) (150 MHz)

B1: ACI module cycles 401 401 625
B2: Feedforward control cycles 421 371 403
B3: Feedback control cycles 2336 792 1011
Total control cycles (B2+B3) 2757 1163 1414
% of available MHz used 36.8% 15.5% 18.9%
(20 kHz control loop)

Notes: C28x compiled on codegen tools v5.0.0, -g (debug enabled), -o3 (max. optimization)
fast RTS lib v1.0beta1
IQmath lib v1.4d

Using the profiling capabilities of the respective DSP tools, the table above summarizes the num-
ber of cycles and code size of the forward and feedback control blocks.

The MIPS used is based on a system sampling frequency of 20 kHz, which is typical of such sys-
tems.

C2000 Piccolo Workshop - Numerical Concepts 8 - 31

IQmath Summary

IQmath Summary
IQmath Approach Summary

Seamless portability of code between fixed and floating-
point devices

User selects target math type in “IQmathLib.h” file
#if MATH_TYPE == IQ_MATH
#if MATH_TYPE == FLOAT_MATH

One source code set for simulation vs. target device
Numerical resolution adjustability based on application
requirement

Set in “IQmathLib.h” file
#define GLOBAL_Q 18

Explicitly specify Q value
_iq20 X, Y, Z;

Numerical accuracy without sacrificing time and cycles
Rapid conversion/porting and implementation of algorithms

IQmath library is freeware - available from TI DSP website
http://www.ti.com/c2000

“IQmath” + fixed-point processor with 32-bit capabilities =

The IQmath approach, matched to a fixed-point processor with 32x32 bit capabilities enables the
following:

• Seamless portability of code between fixed and floating-point devices
• Maintenance and support of one source code set from simulation to target device
• Adjustability of numerical resolution (Q value) based on application requirement
• Implementation of systems that may otherwise require floating-point device
• Rapid conversion/porting and implementation of algorithms

8 - 32 C2000 Piccolo Workshop - Numerical Concepts

 Lab 8: IQmath & Floating-Point FIR Filter

Lab 8: IQmath & Floating-Point FIR Filter
 Objective

The objective of this lab is to become familiar with IQmath programming. In the previous lab,
ePWM1A was setup to generate a 2 kHz, 25% duty cycle symmetric PWM waveform. The
waveform was then sampled with the on-chip analog-to-digital converter. In this lab the sampled
waveform will be passed through an FIR filter and displayed using the graphing feature of Code
Composer Studio. The filter math type is selected in the “IQmathLib.h” file.

Lab 8: IQmath FIR Filter

CPU copies
result to
buffer during
ADC ISR

ADC
RESULT0

ePWM2

connector
wire

ADCINA0

...

data
memory

po
in

te
r

re
w

in
d

Display
using CCS

TB Counter
Compare

Action Qualifier

ePWM1

ePWM2 triggering ADC on period
match using SOCA trigger every
20 µs (50 kHz)

FIR Filter

 Procedure

Project File
1. A project named Lab8.pjt has been created for this lab. Open the project by clicking

on Project Open… and look in C:\C28x\Labs\Lab8. All Build Options
have been configured the same as the previous lab. The files used in this lab are:
Adc.c Filter.c
CodeStartBranch.asm Gpio.c
DefaultIsr_8.c Lab_8.cmd
DelayUs.asm Main_8.c
DSP2803x_GlobalVariableDefs.c PieCtrl_5_6_7_8_9_10.c
DSP2803x_Headers_nonBIOS.cmd PieVect_5_6_7_8_9_10.c
ECap_7_8_9_10_12.c SysCtrl.c
EPwm_7_8_9_10_12.c Watchdog.c

C2000 Piccolo Workshop - Numerical Concepts 8 - 33

Lab 8: IQmath & Floating-Point FIR Filter

Project Build Options
2. Setup the include search path to include the IQmath header file. Open the Build

Options and select the Compiler tab. In the Preprocessor Category, find the Include
Search Path (-i) box and add to the end of the line (preceeded with a semicolon to
append this directory to the existing search path):

;..\IQmath\include

3. Setup the library search path to include the IQmath library. Select the Linker tab.

a. In the Libraries Category, find the Search Path (-i) box and enter:

..\IQmath\lib

b. In the Include Libraries (-l) box add to the end of the line (preceeded with
a semicolon to append this library to the existing library):

;IQmath.lib

Then select OK to save the Build Options.

Include IQmathLib.h
4. In the CCS project window left click the plus sign (+) to the left of the Include folder.

Edit Lab.h to uncomment the line that includes the IQmathLib.h header file. Next,
in the Function Prototypes section, uncomment the function prototype for IQssfir(), the
IQ math single-sample FIR filter function. In the Global Variable References section
uncomment the two _iq references. Save the changes and close the file.

Inspect Lab_8.cmd
5. Open and inspect Lab_8.cmd. First, notice that a section called “IQmath” is being

linked to L0SARAM. The IQmath section contains the IQmath library functions (code).
Second, notice that a section called “IQmathTables” is being linked to the
IQTABLES with a TYPE = NOLOAD modifier after its allocation. The IQmath tables
are used by the IQmath library functions. The NOLOAD modifier allows the linker to
resolve all addresses in the section, but the section is not actually placed into the .out
file. This is done because the section is already present in the device ROM (you cannot
load data into ROM after the device is manufactured!). The tables were put in the ROM
by TI when the device was manufactured. All we need to do is link the section to the
addresses where it is known to already reside (the tables are the very first thing in the
BOOT ROM, starting at address 0x3FE000). Close the inspected file.

8 - 34 C2000 Piccolo Workshop - Numerical Concepts

 Lab 8: IQmath & Floating-Point FIR Filter

Select a Global IQ value
6. Use File Open… to open c:\C28x\Labs\IQmath\include\IQmathLib.h.

Confirm that the GLOBAL_Q type (near beginning of file) is set to a value of 24. If it is not,
modify as necessary:

#define GLOBAL_Q 24

Recall that this Q type will provide 8 integer bits and 24 fractional bits. Dynamic range
is therefore -128 < x < +128, which is sufficient for our purposes in the workshop.

Notice that the math type is defined as IQmath by:

#define MATH_TYPE IQ_MATH

Close the file.

IQmath Single-Sample FIR Filter
7. Open and inspect DefaultIsr_8.c. Notice that the ADCINT_ISR calls the IQmath

single-sample FIR filter function, IQssfir(). The filter coefficients have been defined in
the beginning of Main_8.c.

8. Open and inspect the IQssfir() function in Filter.c. This is a simple, non-optimized
coding of a basic IQmath single-sample FIR filter. Close the inspected files.

Build and Load
9. Click the “Build” button to build and load the project.

Run the Code – Filtered Waveform
10. Open a memory window to view some of the contents of the filtered ADC results buffer.

The address label for the filtered ADC results buffer is AdcBufFiltered. Set the Format to
16-Bit Unsigned Integer. We will be running our code in real-time mode, and will have
our window continuously refresh.

Note: For the next step, check to be sure that the jumper wire connecting PWM1A (pin #
GPIO-00) to ADCINA0 (pin # ADC-A0) is in place on the Docking Station.

11. Run the code in real-time mode using the GEL function: GEL Realtime
Emulation Control Run_Realtime_with_Reset, and watch the memory
window update. Verify that the ADC result buffer contains updated values.

12. Open and setup a dual-time graph to plot a 50-point window of the filtered and unfiltered
ADC results buffer. Click: View Graph Time/Frequency… and set the
following values:

C2000 Piccolo Workshop - Numerical Concepts 8 - 35

Lab 8: IQmath & Floating-Point FIR Filter

Display Type Dual Time

Start Address – upper display AdcBufFiltered

Start Address – lower display AdcBuf

Acquisition Buffer Size 50

Display Data Size 50

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 50000

Time Display Unit μs

Select OK to save the graph options.

13. The graphical display should show the generated FIR filtered 2 kHz, 25% duty cycle
symmetric PWM waveform in the upper display and the unfiltered waveform generated
in the previous lab exercise in the lower display. Notice the shape and phase differences
between the waveform plots (the filtered curve has rounded edges, and lags the unfiltered
plot by several samples). The amplitudes of both plots should run from 0 to 4095.

14. Open and setup two (2) frequency domain plots – one for the filtered and another for the
unfiltered ADC results buffer. Click: View Graph Time/Frequency…
and set the following values:

 GRAPH #1 GRAPH #2

Display Type FFT Magnitude FFT Magnitude

Start Address AdcBufFiltered AdcBuf

Acquisition Buffer Size 50 50

FFT Framesize 50 50

DSP Data Type 16-bit unsigned integer 16-bit unsigned integer

Sampling Rate (Hz) 50000 50000

Select OK to save the graph options.

15. The graphical displays should show the frequency components of the filtered and
unfiltered 2 kHz, 25% duty cycle symmetric PWM waveforms. Notice that the higher
frequency components are reduced using the Low-Pass FIR filter in the filtered graph as
compared to the unfiltered graph.

8 - 36 C2000 Piccolo Workshop - Numerical Concepts

 Lab 8: IQmath & Floating-Point FIR Filter

16. Fully halt the CPU (real-time mode) by using the GEL function: GEL Realtime
Emulation Control Full_Halt.

End of Exercise

C2000 Piccolo Workshop - Numerical Concepts 8 - 37

Lab 8: IQmath & Floating-Point FIR Filter

Lab 8 Reference: Low-Pass FIR Filter

Bode Plot of Digital Low Pass Filter

Coefficients: [1/16, 4/16, 6/16, 4/16, 1/16]

Sample Rate: 50 kHz

8 - 38 C2000 Piccolo Workshop - Numerical Concepts

Control Law Accelerator

Introduction
This module explains the operation of the control law accelerator (CLA). The CLA is an
independent, fully programmable, 32-bit floating-point math processor that enables concurrent
execution into the C28x family. This extends the capabilities of the C28x CPU by adding parallel
processing. The CLA has direct access to the ADC result registers, and all ePWM, HRPWM and
comparator registers. This allows the CLA to read ADC samples “just-in-time” and significantly
reduces the ADC sample to output delay enabling faster system response and higher frequency
operation. Utilizing the CLA for time-critical tasks frees up the CPU to perform other system and
communication functions concurrently.

Learning Objectives
Learning Objectives

Explain the purpose and operation of
the Control Law Accelerator (CLA)
Describe the CLA initialization
procedure
Review the CLA registers, instruction
set, and programming flow

C2000 Piccolo Workshop - Control Law Accelerator 9 - 1

Module Topics

Module Topics
Control Law Accelerator .. 9-1

Module Topics... 9-2
Control Law Accelerator (CLA) ... 9-3

CLA Block Diagram... 9-3
CLA Memory and Register Access .. 9-4
CLA Tasks.. 9-4
Control and Execution Registers .. 9-5
CLA Registers .. 9-6
CLA Initialization... 9-8
CLA Task Programming .. 9-9
CLA Instruction Set...9-10
CLA Addressing Modes ..9-11
CLA Code Example...9-11
CLA Code Debugging ...9-12

Lab 9: CLA Floating-Point FIR Filter...9-13

9 - 2 C2000 Piccolo Workshop - Control Law Accelerator

 Control Law Accelerator (CLA)

Control Law Accelerator (CLA)
Control Law Accelerator (CLA)

CLA is an independent 32-bit floating-
point math accelerator
Executes algorithms independently and
in parallel with the main CPU
Direct access to ePWM / HRPWM, ADC
result and comparator registers
Responds to peripheral interrupts
independently of CPU
Frees-up CPU for other tasks
(communications and diagnostics)

C28x CPU

CLA
PWM

ADC
&

CMP

CLA Block Diagram

CLA Block Diagram

MPERINT1-8

ADCINT1 or
EPWM1_INT

ADCINT7 or
EPWM7_INT

ADCINT8 or
CPU Timer 0

CLA_INT1-8
LVF, LUF PIE

C28x
CPU

INT11
INT12

CLA
Control & Execution

Registers

Task Triggers
(Peripheral Interrupts)

CLA Program Bus

CLA Data Bus

Prog RAM Data RAM0 Data RAM1
MSG RAMs
CPU to CLA
CLA to CPU

Periph. Regs
ADC Results

ePWM
HRPWM

Comparator

C2000 Piccolo Workshop - Control Law Accelerator 9 - 3

Control Law Accelerator (CLA)

CLA Memory and Register Access

CLA Memory and Register Access

Contains CLA program code
Mapped to the CPU at reset
Initialized by the CPU

CLA Program Memory
Used to pass data between
the CPU and CLA
Always mapped to both
the CPU and CLA

Message RAMs

Contains variables and coefficients
used by the CLA program code
Mapped to the CPU at reset
Initialized by CPU

CLA Data Memory
ADC Results Regs
ePWM (all regs)
HRPWM (all regs)
Comparator (all regs)

Peripheral Reg Access

Prog RAM Data RAM0 Data RAM1
MSG RAMs
CPU to CLA
CLA to CPU

L3 DPSARAM L1 DPSARAM L2 DPSARAM PF0 PF0 & PF1
Periph. Regs
ADC Results

ePWM
HRPWM

Comparator

CLA Tasks

CLA Tasks

A Task is similar to an interrupt service routine
CLA supports 8 Tasks (Task1-8)
A task is started by a peripheral interrupt trigger

Triggers are enabled in the MPISRCSEL1 register
When a trigger occurs the CLA begins execution at the
associated task vector entry (MVECT1-8)
Once a task begins it runs to completion (no nesting)

A task is terminated with an MSTOP instruction

MPERINT1-8

ADCINT1 or
EPWM1_INT

ADCINT7 or
EPWM7_INT

ADCINT8 or
CPU Timer 0

CLA_INT1-8
LVF, LUF PIE

C28x
CPU

INT11
INT12

CLA
Control & Execution

Registers

Task Triggers
(Peripheral Interrupts)

9 - 4 C2000 Piccolo Workshop - Control Law Accelerator

 Control Law Accelerator (CLA)

Software triggering a task

Tasks can also be started by a software trigger
using the CPU

asm(" EALLOW"); // enable protected register access

Cla1Regs.MIFRC.bit.INT4 = 1; // start task 4

asm(" EDIS"); // disable protected register access

Method #1: Write to Interrupt Force Register (MIFRC) register

INT2INT3INT4INT5INT6INT7INT8 INT1
0123456715 - 8

reserved

Method #2: Use IACK instruction

asm(" IACK #0x0008"); // set bit 4 in MIFR to start task 4

More efficient – does not require EALLOW
Note: Use of IACK requires Cla1Regs.MCTL.bit.IACKE = 1

Control and Execution Registers

CLA Control and Execution Registers

ADCINT1
ePWM1_INT

S/W trigger
1

ADCINT8
CPU Timer 0

S/W trigger
0

MIFR MIER

MPISRCSEL1

CLA
Core

CLA Program Bus CLA Data Bus
Program
Memory

Data
Memory

MMEMCFG

MVECT1-8MPC

MAR0
MAR1

CLA_INT1-8
LVF, LUF

MR0
MR1
MR2
MR3

PIE C28x
CPU

INT11
INT12

MPISRCSEL1 – Peripheral Interrupt Source Select (Task 1-8)
MVECT1-8 – Task Interrupt Vector (MVECT1/2/3/4/5/6/7/8)
MMEMCFG – Memory Map Configuration (RAM1E, RAM0E, PROGE)
MPC – 12-bit Program Counter (initialized by appropriate MVECTx register)
MR0-3 – CLA Floating-Point 32-bit Result Registers
MAR0-1 – CLA Auxiliary Registers

C2000 Piccolo Workshop - Control Law Accelerator 9 - 5

Control Law Accelerator (CLA)

CLA Registers

CLA Registers
Cla1Regs.register (lab file: Cla.c)

MCTL Control Register
MMEMCFG Memory Configuration Register
MPISRCSEL1 Peripheral Interrupt Source Select 1 Register
MIFR Interrupt Flag Register
MIER Interrupt Enable Register
MIFRC Interrupt Force Register
MICLR Interrupt Flag Clear Register
MIOVF Interrupt Overflow Flag Register
MICLROVF Interrupt Overflow Flag Clear Register
MIRUN Interrupt Run Status Register
MVECTx Task x Interrupt Vector (x = 1-8)
MPC CLA 12-bit Program Counter
MARx CLA Auxiliary Register x (x = 0-1)
MRx CLA Floating-Point 32-bit Result Register (x = 0-3)
MSTF CLA Floating-Point Status Register

Register Description

CLA Control Register
Cla1Regs.MCTL

HARDRESETIACKE SOFTRESETreserved
15 - 3 02 1

Hard Reset
0 = no effect
1 = CLA reset

(registers set
to default state)

Soft Reset
0 = no effect
1 = CLA reset

(stop current task)

IACK Enable
0 = CPU IACK instruction ignored
1 = CPU IACK instruction triggers a task

9 - 6 C2000 Piccolo Workshop - Control Law Accelerator

 Control Law Accelerator (CLA)

CLA Memory Configuration Register
Cla1Regs.MMEMCFG

PROGE
015 - 6

reserved RAM1E RAM0E
45 2 - 1

reserved

CLA Program Space Enable
0 = mapped to CPU program and data space
1 = mapped to CLA program space

CLA Data RAM1 / RAM0 Enable
0 = mapped to CPU program and data space
1 = mapped to CLA data space

CLA Peripheral Interrupt Source
Select 1 Register

Cla1Regs.MPISRCSEL1

PERINT8SEL
31 - 28 19 - 16

PERINT7SEL PERINT6SEL PERINT5SEL
27 - 24 23 - 20

PERINT4SEL
15 - 12 3 - 0

PERINT3SEL PERINT2SEL PERINT1SEL
11 - 8 7 - 4

Task 1 Peripheral
Interrupt Input
000 = ADCINT1
010 = ePWM1
xx1 = no source

Task 2 Peripheral
Interrupt Input
000 = ADCINT2
010 = ePWM2
xx1 = no source

Task 3 Peripheral
Interrupt Input
000 = ADCINT3
010 = ePWM3
xx1 = no source

Task 4 Peripheral
Interrupt Input
000 = ADCINT4
010 = ePWM4
xx1 = no source

Task 8 Peripheral
Interrupt Input
000 = ADCINT8
010 = CPU Timer 0
xx1 = no source

Task 7 Peripheral
Interrupt Input
000 = ADCINT7
010 = ePWM7
xx1 = no source

Task 6 Peripheral
Interrupt Input
000 = ADCINT6
010 = ePWM6
xx1 = no source

Task 5 Peripheral
Interrupt Input
000 = ADCINT5
010 = ePWM5
xx1 = no source

000 = DefaultNote: select xx1 (no source) if task is generated by software

C2000 Piccolo Workshop - Control Law Accelerator 9 - 7

Control Law Accelerator (CLA)

CLA Interrupt Enable Register
Cla1Regs.MIER

INT2INT3INT4INT5INT6INT7INT8 INT1
0123456715 - 8

reserved

#include “DSP2803x_Device.h”

Cla1Regs.MIER.bit.INT2 = 1; //enable Task 2 interrupt

Cla1Regs.MIER.all = 0x0028; //enable Task 6 and 4 interrupts

0 = task interrupt disable (default)
1 = task interrupt enable

CLA Initialization

CLA Initialization

1. Copy CLA task code from flash to CLA program RAM

2. Initialize CLA data RAMs, as needed
Populate with data coefficients, constants, etc.

3. Configure the CLA registers
Enable the CLA clock (PCLKCR3 register)

Populate the CLA task interrupt vectors (MVECT1-8 registers)

Select the desired task interrupt sources (PERINT1SEL register)

If desired, enable IACK to start task using software (avoids EALLOW)

Map CLA program RAM and data RAMs to CLA space

4. Configure desired CLA task completion interrupts in the PIE

5. Enable CLA tasks triggers in the MIER register

6. Initialize the ePWM and/or ADC to trigger the CLA tasks

CLA initialization is performed by the CPU in C code
(typically done with the Peripheral Register Header Files)

Data is passed between the CLA and CPU via message RAMs

9 - 8 C2000 Piccolo Workshop - Control Law Accelerator

 Control Law Accelerator (CLA)

Enabling CLA Support in CCS

Note: You must be using a
C28x Piccolo device that has
the Control Law Accelerator!

In the project build options,
select:
‘cla0 (From Device Type 0)’

This is required in order to
assemble CLA code

CLA support requires
codegen tools v5.2.0 or later

CLA Task Programming

CLA Task Programming

CLA tasks are written in assembly code
Same instruction format as the C28x and
C28x+FPU

Destination operand is always on the left
Same mnemonics as C28x+FPU but with a
leading “M”

CPU: MPY ACC, T, loc16

FPU: MPYF32 R0H, R1H, R2H

CLA: MMPYF32 MR0, MR1, MR2

Destination Source Operands

C2000 Piccolo Workshop - Control Law Accelerator 9 - 9

Control Law Accelerator (CLA)

CLA Instruction Set

CLA Instruction Overview

1MNOPNo Operation
1MSTOPHalt Code or End Task
1MEALLOWWrite Protection Enable/Disable
1MLSR32 MRa,#SHIFTInteger Shifts
1MSUB32 MRa,MRb,MRcInteger Add and Subtract
1MAND32 MRa,MRb,MRcInteger Bitwise AND, OR, XOR

1-7MBCNDD 16bitdest {,CNDF}Branch/Call/Return
Conditional Delayed

1MMOV16 MAR,mem16Load/Store Auxiliary Register
1MMOV16 MRa,mem16Integer Load/Store

1MMOV32 MSTF,mem32Store/Load MSTF

1MMPYF32 MRa,MRb,MRcMultiply, Add, Subtract
1MEINVF32 MRa,MRb1/X (16-bit Accurate)
1MEISQRTF32 MRa,MRb1/Sqrt(x) (16-bit Accurate)

1MUI16TOF32 MRa,mem16Unsigned Integer to Float
1MI32TOF32 MRa,mem32Integer to Float
1MF32TOI16R MRa,MRbFloat to Integer & Round
1MF32TOI32 MRa,MRbFloat to Integer

1MCMPF32 MRa,MRbCompare, Min, Max
1MABSF32 MRa,MRbAbsolute, Negative Value

1MMOVD32 MRa,mem32Load with Data Move
MMOV32 mem32,MRa

MMOV32 MRa,mem32{,CONDF}
Example

1Load (Conditional)
1Store

CyclesType

CLA Parallel Instructions

Multiply, Add, Subtract, MAC
& Parallel Load

Multiply, Add, Subtract
& Parallel Store

Multiply
& Parallel Add/Subtract

Instruction

1
MADDF32 MRa,MRb,MRc

|| MMOV32 mem32,MRe

1
MMPYF32 MRa,MRb,MRc

|| MSUBF32 MRd,MRe,MRf

1
MADDF32 MRa,MRb,MRc

|| MMOV32 MRe, mem32

CyclesExample

Both operations complete in a single cycle

Parallel bars indicate a parallel instruction
Parallel instructions operate as a single instruction with
a single opcode and performs two operations

Example: Add + Parallel Store

MADDF32 MR3, MR3, MR1
|| MMOV32 @_Var, MR3

9 - 10 C2000 Piccolo Workshop - Control Law Accelerator

 Control Law Accelerator (CLA)

CLA Addressing Modes

CLA Addressing Modes
CLA has two addressing modes

Both modes can access the low 64Kw of memory:
All of the CLA data space
Both message RAMs
Shared peripheral registers

There is no stack pointer or data page pointer
Direct Addressing Mode:

Populates opcode field with 16-bit address of the variable

Example 1: MMOV32 MR1, @_VarA
Example 2: MMOV32 MR1, @_EPwm1Regs.CMPA.all

Indirect Addressing with 16-bit Post Increment:
Uses the address in MAR0 or MAR1 to access memory
After the read or write MAR0/MAR1 is incremented by #Imm16

Example 1: MMOV32 MR0, *MAR0[2]++
Example 2: MMOV32 MR1, *MAR1[-2]++

CLA Code Example

CLA Code Example (1 of 2)

.cdecls "Lab.h"

.sect "Cla1Prog"

_Cla1Prog_Start

_Cla1Task1: ; FIR filter

MUI16TOF32 MR2, @_AdcResult.ADCRESULT0

MMPYF32 MR2, MR1, MR0

MADDF32 MR3, MR3, MR2

MF32TOUI16 MR2, MR3

MMOV16 @_ClaFilteredOutput, MR2

MSTOP ; End of task

;-------------------------------------

_Cla1Task2:

MSTOP

;-------------------------------------

_Cla1Task3:

MSTOP

ClaTasks.asm

.cdecls directive used
to include the C
header file in the CLA
assembly file

.sect directive used to
place CLA assembly
code in its own
section

C Peripheral Register
Header File references
can be used in CLA
assembly code

MSTOP instruction
used at the end of the
task

CLA assembly and
C28 C-code reside in
the same project

C2000 Piccolo Workshop - Control Law Accelerator 9 - 11

Control Law Accelerator (CLA)

CLA Code Example (2 of 2)

#include "DSP2803x_Device.h"

extern Uint32 Cla1Prog_Start;

extern Uint32 Cla1Task1;

extern Uint32 Cla1Task2;

extern Uint32 Cla1Task8;

Lab.h

#include "Lab.h"

// Symbols used to calculate vector address

Cla1Regs.MVECT1 =
(Uint16)((Uint32)&Cla1Task1

(Uint32)&Cla1Prog_Start);

Cla1Regs.MVECT2 =
(Uint16)((Uint32)&Cla1Task2 -

(Uint32)&Cla1Prog_Start);

Cla.c

DSP2803x_Device.h
defines register bit
field structures

Symbols in header file
that are defined in the
CLA assembly file are
made global (by the
.cdecls in Cla.asm) and
are usable in C

CLA Code Debugging

CLA Code Debugging

1. Insert a breakpoint in CLA code
Insert MDEBUGSTOP instruction to halt CLA and then rebuild/reload

2. Enable CLA breakpoints
Enable CLA breakpoints in the debugger

3. Start the task
Done by peripheral interrupt, software (IACK) or MIFRC register
CLA executes instructions until MDEBUGSTOP
MPC will the have address of MDEBUGSTOP instruction

4. Single step the CLA code
Once halted, single step the CLA code
Can also run to the next MDEBUGSTOP or to the end of task
If another task is pending it will start at end of previous task

5. Disable CLA breakpoints, if desired

• The CLA can halt, single-step and run independently from the CPU
• Both the CLA and CPU are debugged from the same JTAG port

• CLA single step – CLA pipeline is clocked only one cycle and then frozen
• CPU single step – CPU pipeline is flushed for each single step

9 - 12 C2000 Piccolo Workshop - Control Law Accelerator

 Lab 9: CLA Floating-Point FIR Filter

Lab 9: CLA Floating-Point FIR Filter
 Objective

The objective of this lab is to become familiar with operation of the CLA. In the previous lab, the
CPU was used to filter the ePWM1A generated 2 kHz, 25% duty cycle symmetric PWM
waveform. In this lab, the PWM waveform will be filtered using the CLA. The CLA will
directly read the ADC result register and a task will run a low-pass FIR filter on the sampled
waveform. The filtered result will be stored in a circular memory buffer. Note that the CLA is
operating concurrently with the CPU. As an operational test, the filtered and unfiltered
waveforms will be displayed using the graphing feature of Code Composer Studio.

Lab 9: CLA Floating-Point FIR Filter

CPU copies
result to
buffer during
ADC ISR

ADC
RESULT0

ePWM2

connector
wire

ADCINA0

...

data
memory

po
in

te
r

re
w

in
d

Display
using CCS

TB Counter
Compare

Action Qualifier

ePWM1

ePWM2 triggering ADC on period
match using SOCA trigger every
20 µs (50 kHz)

CLA
_Cla1Task1
_Cla1Task2

_Cla1Task8

 Procedure

Project File
1. A project named Lab9.pjt has been created for this lab. Open the project by clicking

on Project Open… and look in C:\C28x\Labs\Lab9. All Build Options
have been configured the same as the previous lab. The files used in this lab are:
Adc.c EPwm_7_8_9_10_12.c
Cla_9.c Filter.c
ClaTasks.asm Gpio.c
CodeStartBranch.asm Lab_9.cmd
DefaultIsr_9_10.c Main_9.c
DelayUs.asm PieCtrl_5_6_7_8_9_10.c
DSP2803x_GlobalVariableDefs.c PieVect_5_6_7_8_9_10.c
DSP2803x_Headers_nonBIOS.cmd SysCtrl.c
ECap_7_8_9_10_12.c Watchdog.c

C2000 Piccolo Workshop - Control Law Accelerator 9 - 13

Lab 9: CLA Floating-Point FIR Filter

Enabling CLA Support in CCS
2. Open the Build Options and select the Compiler tab. In the Basic Category set the

Specify CLA Support to cla0 (From Device Type 0). This is needed to
assemble CLA code. Then select OK to save the Build Options.

Inspect Lab_9.cmd
3. Open and inspect Lab_9.cmd. Notice that a section called “Cla1Prog” is being

linked to L3DPSARAM. This section links the CLA program tasks (assembly code) to the
CPU memory space. This memory space will be remapped to the CLA memory space
during initialization. Also, notice the two message RAM sections used to pass data
between the CPU and CLA.

Setup CLA Initialization
During the CLA initialization, the CPU memory block L3DPSARAM needs to be configured as
CLA program memory. This memory space contains the CLA Task routines, which are coded in
assembly. The CLA Task 1 has been configured to run an FIR filter. The CLA needs to be
configured to start Task 1 on the ADCINT1 interrupt trigger. The next section will setup the PIE
interrupt for the CLA.

4. Open ClaTasks.asm and notice that the .cdecls directive is being used to include the
C header file in the CLA assembly file. Therefore, we can use the Peripheral Register
Header File references in the CLA assembly code. Next, notice Task 1 has been
configured to run an FIR filter. Within this code special instructions have been used to
convert the ADC result integer (i.e. the filter input) to floating-point and the floating-
point filter output back to integer.

5. Edit Cla_9.c to implement the CLA operation as described in the objective for this lab
exercise. Configure the L3DPSARM memory block to be mapped to CLA program
memory space. Set Task 1 peripheral interrupt source to ADCINT1 and set the other
Task peripheral interrupt source inputs to no source. Enable CLA Task 1 interrupt.

6. Open Main_9.c and add a line of code in main() to call the InitCla() function.
There are no passed parameters or return values. You just type

 InitCla();

 at the desired spot in main().

Setup PIE Interrupt for CLA
Recall that ePWM2 is triggering the ADC at a 50 kHz rate. In the previous lab exercise, the ADC
generated an interrupt to the CPU, and the CPU implemented the FIR filter in the ADC ISR. For
this lab exercise, the ADC is instead triggering the CLA, and the CLA will directly read the ADC
result register and run a task implementing an FIR filter. The CLA will generate an interrupt to
the CPU, which will store the filtered results to a circular buffer implemented in the CLA ISR.

9 - 14 C2000 Piccolo Workshop - Control Law Accelerator

 Lab 9: CLA Floating-Point FIR Filter

7. Edit Adc.c to comment out the code used to enable ADCINT1 interrupt in PIE group 1.
This is no longer being used. The CLA interrupt will be used instead.

8. Using the “PIE Interrupt Assignment Table” find the location for the CLA Task 1
interrupt “CLA1_INT1” and fill in the following information:

PIE group #: # within group:

This information will be used in the next step.

9. Modify the end of Cla_9.c to do the following:
- Enable the "CLA1_INT1" interrupt in the PIE (Hint: use the PieCtrlRegs structure)
- Enable the appropriate core interrupt in the IER register

10. Open and inspect DefaultIsr_9_10.c. Notice that this file contains the CLA
interrupt service routine. Save and close all modified files.

Build and Load
11. Click the “Build” button to build and load the project.

Run the Code – Test the CLA Operation

Note: For the next step, check to be sure that the jumper wire connecting PWM1A (pin #
GPIO-00) to ADCINA0 (pin # ADC-A0) is in place on the Docking Station.

12. Run the code in real-time mode using the GEL function: GEL Realtime
Emulation Control Run_Realtime_with_Reset, and watch the memory
window update. Verify that the ADC result buffer contains updated values.

13. Setup a dual-time graph of the filtered and unfiltered ADC results buffer. Click:
View Graph Time/Frequency… and set the following values:

C2000 Piccolo Workshop - Control Law Accelerator 9 - 15

Lab 9: CLA Floating-Point FIR Filter

Display Type Dual Time

Start Address – upper display AdcBufFiltered

Start Address – lower display AdcBuf

Acquisition Buffer Size 50

Display Data Size 50

DSP Data Type 16-bit unsigned integer

Sampling Rate (Hz) 50000

Time Display Unit μs

14. The graphical display should show the filtered PWM waveform in the upper display and
the unfiltered waveform in the lower display. You should see that the results match the
previous lab exercise.

15. Fully halt the CPU (real-time mode) by using the GEL function: GEL Realtime
Emulation Control Full_Halt.

End of Exercise

9 - 16 C2000 Piccolo Workshop - Control Law Accelerator

System Design

Introduction
This module discusses various aspects of system design. Details of the emulation and analysis
block along with JTAG will be explored. Flash memory programming and the Code Security
Module will be described.

Learning Objectives
Learning Objectives

Emulation and Analysis Block

Flash Configuration and
Memory Performance

Flash Programming

Code Security Module (CSM)

C2000 Piccolo Workshop - System Design 10 - 1

Module Topics

Module Topics
System Design ...10-1

Module Topics..10-2
Emulation and Analysis Block ...10-3
Flash Configuration and Memory Performance..10-6
Flash Programming ...10-9
Code Security Module (CSM) ..10-11
Lab 10: Programming the Flash..10-14

10 - 2 C2000 Piccolo Workshop - System Design

 Emulation and Analysis Block

Emulation and Analysis Block
JTAG Emulation System

(based on IEEE 1149.1 Boundary Scan Standard)

H
E
A
D
E
R

System Under Test

SCAN IN

SCAN OUT
Emulator

Pod

TMS320C2000

Some Available Emulators

XDS510 CLASS -
BlackHawk: USB2000
Signum System: JTAGjet-TMS-C2000
Spectrum Digital: XDS510LC

XDS100 CLASS -
BlackHawk: USB100
Olimex: TMS320-JTAG-USB
Spectrum Digital: XDS100
TI: TMDSEMU100U-14T

These emulators are C2000 specific,
and are much lower cost than emulators
that support all TI MCU/DSP platforms
(although those can certainly be used)

These emulators are much slower than
the ones listed above, but are also
available at a lower cost than XDS510
class and are NOT C2000 specific

Emulator Connections to the Device

TRST

TMS

TDI

TDO

TCK

EMU0

EMU1

TRST

TMS

TDI

TDO

TCK

TCK_RET

13

14

2

1

3

7

11

9
GND

PD

Vcc (3.3 V)

GND

GND

GND

GND

GND

5

4

6

8

10

12

Vcc (3.3 V)

TMS320F2803x Emulator Header

= If distance between device and header is greater than 6 inches

GND

C2000 Piccolo Workshop - System Design 10 - 3

Emulation and Analysis Block

On-Chip Emulation Analysis Block:
Capabilities

Two hardware analysis units can be configured to provide
any one of the following advanced debug features:

Halt program execution after a
specific value is written to a variable

1 Address Watchpoint with Data

Halt on a specified instruction only
after some other specific routine has
executed

1 Pair Chained Breakpoints

Halt on a specified instruction
(for debugging in Flash)

2 Hardware Breakpoints

A memory location is getting
corrupted; halt the processor when
any value is written to this location

2 Address Watchpoints

Debug ActivityAnalysis Configuration

⇒

⇒

⇒

⇒

On-Chip Emulation Analysis Block:
Hardware Breakpoints

Symbolic or
numeric address

Mask value for
specifying
address ranges

Chained
breakpoint
selection

10 - 4 C2000 Piccolo Workshop - System Design

 Emulation and Analysis Block

On-Chip Emulation Analysis Block:
Watchpoints

Symbolic or
numeric address

Mask value for
specifying
address ranges

Bus selection

Address with Data
selection

On-Chip Emulation Analysis Block:
Online Stack Overflow Detection

Emulation analysis registers are accessible to code as well!
Configure a watchpoint to monitor for writes near the end of
the stack
Watchpoint triggers maskable RTOSINT interrupt
Works with DSP/BIOS and non-DSP/BIOS

See TI application report SPRA820 for implementation details

Data Memory

Monitor for data
writes in region near
the end of the stack

Region of
memory

occupied
by the
stack

Stack grows
towards higher
memory
addresses

C2000 Piccolo Workshop - System Design 10 - 5

Flash Configuration and Memory Performance

Flash Configuration and Memory Performance
Basic Flash Operation

Flash is arranged in pages of 128 words
Wait states are specified for consecutive accesses within a page,
and random accesses across pages
OTP has random access only
Must specify the number of SYSCLKOUT wait-states;
Reset defaults are maximum value (15)
Flash configuration code should not be run from the Flash memory

FlashRegs.FBANKWAIT RANDWAITreserved

15 04 38 7

PAGEWAIT reserved

12 11

FlashRegs.FOTPWAIT OTPWAITreserved

15 05 4

*** Refer to the F2803x datasheet for detailed numbers ***
For 60 MHz, PAGEWAIT = 2, RANDWAIT = 2, OTPWAIT = 3

16 or 32
dispatched

16

64

Aligned
64-bit
fetch

2-level deep
fetch buffer

64

C28x Core
decoder unit

Speeding Up Code Execution in Flash
Flash Pipelining (for code fetch only)

Flash Pipeline Enable
0 = disable (default)
1 = enable

ENPIPEreserved
15 01
FlashRegs.FOPT.bit.ENPIPE = 1;

10 - 6 C2000 Piccolo Workshop - System Design

 Flash Configuration and Memory Performance

Code Execution Performance

Assume 60 MHz SYSCLKOUT, 16-bit instructions
(80% of instructions are 16 bits wide – Rest are 32 bits)

Internal RAM: 60 MIPS
Fetch up to 32-bits every cycle 1 instruction/cycle * 60 MHz = 60 MIPS

Flash (w/ pipelining): 60 MIPS
RANDWAIT = 2
Fetch 64 bits every 3 cycles, but it will take 4 cycles to execute them

4 instructions/4 cycles * 60 MHz = 60 MIPS
RPT will increase this; PC discontinuity will degrade this
Benchmarking in control applications has shown actual performance of about 54 MIPS

Data Access Performance

Internal RAM has best data performance – put time critical data here
Flash performance usually sufficient for most constants and tables
Note that the flash instruction fetch pipeline will also stall during a
flash data access

Memory 16-bit access 32-bit access Notes
(words/cycle) (words/cycle)

Internal RAM 1 1

Flash 0.33 0.33 RANDWAIT = 2
Flash is read only!

Assume 60 MHz SYSCLKOUT

C2000 Piccolo Workshop - System Design 10 - 7

Flash Configuration and Memory Performance

Other Flash Configuration Registers
FlashRegs.name

Address Name Description
0x00 0A80 FOPT Flash option register
0x00 0A82 FPWR Flash power modes registers
0x00 0A83 FSTATUS Flash status register
0x00 0A84 FSTDBYWAIT Flash sleep to standby wait register
0x00 0A85 FACTIVEWAIT Flash standby to active wait register
0x00 0A86 FBANKWAIT Flash read access wait state register
0x00 0A87 FOTPWAIT OTP read access wait state register

FPWR: Save power by putting Flash/OTP to ‘Sleep’ or ‘Standby’
mode; Flash will automatically enter active mode if a Flash/OTP
access is made
FSTATUS: Various status bits (e.g. PWR mode)
FSTDBYWAIT, FACTIVEWAIT: Specify # of delay cycles during
wake-up from sleep to standby, and from standby to active,
respectively. The delay is needed to let the flash stabilize.
Leave these registers set to their default maximum value.

See the “TMS320x2803x Piccolo System Control and Interrupts Reference
Guide,” SPRUGL8, for more information

10 - 8 C2000 Piccolo Workshop - System Design

 Flash Programming

Flash Programming
Flash Programming Basics

The DSP CPU itself performs the flash programming
The CPU executes Flash utility code from RAM that reads the
Flash data and writes it into the Flash
We need to get the Flash utility code and the Flash data into RAM

FLASH CPU

RAM

TMS320F2803x

JTAGEmulator

SPI

Flash
Utility
Code

Flash
Data I2C

RO
M

Bo
ot

lo
ad

er

CAN

SCIRS232

GPIO

Flash Programming Basics
Sequence of steps for Flash programming:

Minimum Erase size is a sector (4Kw or 8Kw)
Minimum Program size is a bit!
Important not to lose power during erase step:
If CSM passwords happen to be all zeros, the
CSM will be permanently locked!
Chance of this happening is quite small! (Erase
step is performed sector by sector)

1. Erase - Set all bits to zero, then to one
2. Program - Program selected bits with zero
3. Verify - Verify flash contents

Algorithm Function

C2000 Piccolo Workshop - System Design 10 - 9

Flash Programming

Flash Programming Utilities
JTAG Emulator Based

Code Composer Studio Plug-in
BlackHawk Flash utilities (requires Blackhawk emulator)
Elprotronic FlashPro2000
Spectrum Digital SDFlash JTAG (requires SD emulator)
Signum System Flash utilities (requires Signum emulator)

SCI Serial Port Bootloader Based
Code-Skin (http://www.code-skin.com)
Elprotronic FlashPro2000

Production Test/Programming Equipment Based
BP Micro programmer
Data I/O programmer

Build your own custom utility
Can use any of the ROM bootloader methods
Can embed flash programming into your application
Flash API algorithms provided by TI

* TI web has links to all utilities (http://www.ti.com/c2000)

Code Composer Studio Flash Plug-In

10 - 10 C2000 Piccolo Workshop - System Design

 Code Security Module (CSM)

Code Security Module (CSM)
Code Security Module (CSM)

Data reads and writes from restricted memory are only
allowed for code running from restricted memory
All other data read/write accesses are blocked:
JTAG emulator/debugger, ROM bootloader, code running in
external memory or unrestricted internal memory

Access to the following on-chip memory is restricted:

L0 SARAM (2Kw)
L1 DPSARAM (1Kw)
L2 DPSARAM (1Kw)
L3 DPSARAM (4Kw)

User OTP (1Kw)

ADC / OSC cal. data

L0 SARAM (2Kw)

reserved

reserved
Dual
Mapped

FLASH (64Kw)
PASSWORDS (8w)

reserved

0x008000
0x008800
0x008C00

0x00A000
0x009000

0x3D7800
0x3D7C00
0x3D7C80
0x3D8000
0x3E8000
0x3F7FF8
0x3F8000
0x3F8800

Flash Registers0x000A80

CSM Password

128-bit user defined password is stored in Flash

128-bit KEY registers are used to lock and unlock
the device

Mapped in memory space 0x00 0AE0 – 0x00 0AE7
Registers “EALLOW” protected

0x3F7FF8 - 0x3F7FFF

CSM Password
Locations (PWL)

FLASH (64Kw)

0x3E8000

128-Bit Password0x3F7FF8

C2000 Piccolo Workshop - System Design 10 - 11

Code Security Module (CSM)

CSM Registers
Address Name Description
0x00 0AE0 KEY0 Low word of 128-bit Key register
0x00 0AE1 KEY1 2nd word of 128-bit Key register
0x00 0AE2 KEY2 3rd word of 128-bit Key register
0x00 0AE3 KEY3 4th word of 128-bit Key register
0x00 0AE4 KEY4 5th word of 128-bit Key register
0x00 0AE5 KEY5 6th word of 128-bit Key register
0x00 0AE6 KEY6 7th word of 128-bit Key register
0x00 0AE7 KEY7 High word of 128-bit Key register
0x00 0AEF CSMSCR CSM status and control register

Key Registers – accessible by user; EALLOW protected

Address Name Description
0x3F 7FF8 PWL0 Low word of 128-bit password
0x3F 7FF9 PWL1 2nd word of 128-bit password
0x3F 7FFA PWL2 3rd word of 128-bit password
0x3F 7FFB PWL3 4th word of 128-bit password
0x3F 7FFC PWL4 5th word of 128-bit password
0x3F 7FFD PWL5 6th word of 128-bit password
0x3F 7FFE PWL6 7th word of 128-bit password
0x3F 7FFF PWL7 High word of 128-bit password

PWL in memory – reserved for passwords only

Locking and Unlocking the CSM

The CSM is always locked after reset
To unlock the CSM:

Perform a dummy read of each PWL
(passwords in the flash)
Write the correct password to each KEY
register

Passwords are all 0xFFFF on new devices
When passwords are all 0xFFFF, only a read
of each PWL is required to unlock the device
The bootloader does these dummy reads and
hence unlocks devices that do not have
passwords programmed

10 - 12 C2000 Piccolo Workshop - System Design

 Code Security Module (CSM)

CSM Caveats

Never program all the PWL’s as 0x0000
Doing so will permanently lock the CSM

Flash addresses 0x3F7F80 to 0x3F7FF5,
inclusive, must be programmed to 0x0000 to
securely lock the CSM
Remember that code running in unsecured
RAM cannot access data in secured memory

Don’t link the stack to secured RAM if you have
any code that runs from unsecured RAM

Do not embed the passwords in your code!
Generally, the CSM is unlocked only for debug
Code Composer Studio can do the unlocking

CSM Password Match Flow

Flash device
secure after

reset or runtime

Do dummy reads of PWL
0x3F 7FF8 – 0x3F 7FFF

Start Device permanently locked

Device unlocked
User can access on-
chip secure memory

Write password to KEY registers
0x00 0AE0 – 0x00 0AE7

(EALLOW) protected

Correct
password?

Is PWL =
all Fs?

Is PWL =
all 0s?

Yes

Yes

Yes

No

No

No

C2000 Piccolo Workshop - System Design 10 - 13

Lab 10: Programming the Flash

Lab 10: Programming the Flash
 Objective

The objective of this lab is to program and execute code from the on-chip flash memory. The
TMS320F28035 device has been designed for standalone operation in an embedded system.
Using the on-chip flash eliminates the need for external non-volatile memory or a host processor
from which to bootload. In this lab, the steps required to properly configure the software for
execution from internal flash memory will be covered.

Lab 10: Programming the Flash

Objective:
Program system into Flash
Memory
Learn use of CCS Flash Plug-in
DO NOT PROGRAM PASSWORDS

ADC
RESULT0

ePWM2

connector
wire

TB Counter
Compare

Action Qualifier

ePWM1
ADCINA0

ePWM2 triggering
ADC on period match
using SOCA trigger every
20 µs (50 kHz)

CPU copies
result to
buffer during
ADC ISR

...

data
memory

po
in

te
r

re
w

in
d

Display
using CCS

CLA
_Cla1Task1
_Cla1Task2

_Cla1Task8

 Procedure

Project File
1. A project named Lab10.pjt has been created for this lab. Open the project by

clicking on Project Open… and look in C:\C28x\Labs\Lab10. All Build
Options have been configured the same as the previous lab. The files used in this lab are:
Adc.c Filter.c
Cla_10_12.c Flash.c
ClaTasks.asm Gpio.c
CodeStartBranch.asm Lab_10.cmd
DefaultIsr_9_10.c Main_10.c
DelayUs.asm Passwords.asm
DSP2803x_GlobalVariableDefs.c PieCtrl_5_6_7_8_9_10.c
DSP2803x_Headers_nonBIOS.cmd PieVect_5_6_7_8_9_10.c
ECap_7_8_9_10_12.c SysCtrl.c
EPwm_7_8_9_10_12.c Watchdog.c

10 - 14 C2000 Piccolo Workshop - System Design

 Lab 10: Programming the Flash

Link Initialized Sections to Flash
Initialized sections, such as code and constants, must contain valid values at device power-up.
Stand-alone operation of an F28035 embedded system means that no emulator is available to
initialize the device RAM. Therefore, all initialized sections must be linked to the on-chip flash
memory.

Each initialized section actually has two addresses associated with it. First, it has a LOAD
address which is the address to which it gets loaded at load time (or at flash programming time).
Second, it has a RUN address which is the address from which the section is accessed at runtime.
The linker assigns both addresses to the section. Most initialized sections can have the same
LOAD and RUN address in the flash. However, some initialized sections need to be loaded to
flash, but then run from RAM. This is required, for example, if the contents of the section needs
to be modified at runtime by the code.

2. Open and inspect the linker command file Lab_10.cmd. Notice that a memory block
named FLASH_ABCDEFGH has been been created at origin = 0x3E8000, length =
0x00FF80 on Page 0. This flash memory block length has been selected to avoid
conflicts with other required flash memory spaces. See the reference slide at the end of
this lab exercise for further details showing the address origins and lengths of the various
memory blocks used.

3. Edit Lab_10.cmd to link the following compiler sections to on-chip flash memory
block FLASH_ABCDEFGH:

Compiler Sections

.text

.cinit

.const

.econst

.pinit

.switch

4. In Lab_10.cmd notice that the section named “IQmath” is an initialized section that
needs to load to and run from flash. Previously the “IQmath” section was linked to
L0SARAM. Edit Lab_10.cmd so that this section is now linked to
FLASH_ABCDEFGH. Save your work and close the file.

Copying Interrupt Vectors from Flash to RAM
The interrupt vectors must be located in on-chip flash memory and at power-up needs to be
copied to the PIE RAM as part of the device initialization procedure. The code that performs this
copy is located in InitPieCtrl(). The C-compiler runtime support library contains a memory copy
function called memcpy() which will be used to perform the copy.

C2000 Piccolo Workshop - System Design 10 - 15

Lab 10: Programming the Flash

5. Open and inspect InitPieCtrl() in PieCtrl_5_6_7_8_9_10.c. Notice the memcpy()
function used to initialize (copy) the PIE vectors. At the end of the file a structure is used
to enable the PIE.

Initializing the Flash Control Registers
The initialization code for the flash control registers cannot execute from the flash memory (since
it is changing the flash configuration!). Therefore, the initialization function for the flash control
registers must be copied from flash (load address) to RAM (run address) at runtime. The memory
copy function memcpy() will again be used to perform the copy. The initialization code for the
flash control registers InitFlash() is located in the Flash.c file.

6. Add Flash.c to the project.

7. Open and inspect Flash.c. The C compiler CODE_SECTION pragma is used to place
the InitFlash() function into a linkable section named “secureRamFuncs”.

8. The “secureRamFuncs” section will be linked using the user linker command file
Lab_10.cmd. Open and inspect Lab_10.cmd. The “secureRamFuncs” will load
to flash (load address) but will run from L0SARAM (run address). Also notice that the
linker has been asked to generate symbols for the load start, load size, and run start
addresses.

While not a requirement from a MCU hardware or development tools perspective (since
the C28x MCU has a unified memory architecture), historical convention is to link code
to program memory space and data to data memory space. Therefore, notice that for the
L0SARAM memory we are linking “secureRamFuncs” to, we are specifiying
“PAGE = 0” (which is program memory).

9. Open and inspect Main_10.c. Notice that the memory copy function memcpy() is
being used to copy the section “secureRamFuncs”, which contains the initialization
function for the flash control registers.

10. Add a line of code in main() to call the InitFlash() function. There are no passed
parameters or return values. You just type

 InitFlash();

 at the desired spot in main().

Code Security Module and Passwords
The CSM module provides protection against unwanted copying (i.e. pirating!) of your code from
flash, OTP memory, and the L0, L1, L2 and L3 RAM blocks. The CSM uses a 128-bit password
made up of 8 individual 16-bit words. They are located in flash at addresses 0x3F7FF8 to
0x3F7FFF. During this lab, dummy passwords of 0xFFFF will be used – therefore only dummy
reads of the password locations are needed to unsecure the CSM. DO NOT PROGRAM ANY
REAL PASSWORDS INTO THE DEVICE. After development, real passwords are typically

10 - 16 C2000 Piccolo Workshop - System Design

 Lab 10: Programming the Flash

placed in the password locations to protect your code. We will not be using real passwords in the
workshop.

The CSM module also requires programming values of 0x0000 into flash addresses 0x3F7F80
through 0x3F7FF5 in order to properly secure the CSM. Both tasks will be accomplished using a
simple assembly language file Passwords.asm.

11. Add Passwords.asm to the project.

12. Open and inspect Passwords.asm. This file specifies the desired password values
(DO NOT CHANGE THE VALUES FROM 0xFFFF) and places them in an initialized
section named “passwords”. It also creates an initialized section named
“csm_rsvd” which contains all 0x0000 values for locations 0x3F7F80 to 0x3F7FF5
(length of 0x76).

13. Open Lab_10.cmd and notice that the initialized sections for “passwords” and
“csm_rsvd” are linked to memories named PASSWORDS and CSM_RSVD,
respectively.

Executing from Flash after Reset
The F28035 device contains a ROM bootloader that will transfer code execution to the flash after
reset. When the boot mode selection is set for “Jump to Flash” mode, the bootloader will branch
to the instruction located at address 0x3F7FF6 in the flash. An instruction that branches to the
beginning of your program needs to be placed at this address. Note that the CSM passwords
begin at address 0x3F7FF8. There are exactly two words available to hold this branch
instruction, and not coincidentally, a long branch instruction “LB” in assembly code occupies
exactly two words. Generally, the branch instruction will branch to the start of the C-
environment initialization routine located in the C-compiler runtime support library. The entry
symbol for this routine is _c_int00. Recall that C code cannot be executed until this setup routine
is run. Therefore, assembly code must be used for the branch. We are using the assembly code
file named CodeStartBranch.asm.

14. Open and inspect CodeStartBranch.asm. This file creates an initialized section
named “codestart” that contains a long branch to the C-environment setup routine.
This section needs to be linked to a block of memory named BEGIN_FLASH.

15. In the earlier lab exercises, the section “codestart” was directed to the memory
named BEGIN_M0. Edit Lab_10.cmd so that the section “codestart” will be
directed to BEGIN_FLASH. Save your work and close the opened files.

On power up the reset vector will be fetched and the ROM bootloader will begin execution. If
the emulator is connected, the device will be in emulator boot mode and will use the EMU_KEY
and EMU_BMODE values in the PIE RAM to determine the bootmode. This mode was utilized
in an earlier lab. In this lab, we will be disconnecting the emulator and running in stand-alone
boot mode (but do not disconnect the emulator yet!). The bootloader will read the OTP_KEY
and OTP_BMODE values from their locations in the OTP. The behavior when these values have
not been programmed (i.e., both 0xFFFF) or have been set to invalid values is boot to flash
bootmode.

C2000 Piccolo Workshop - System Design 10 - 17

Lab 10: Programming the Flash

Initializing the CLA
Previously, the named section “Cla1Prog” containing the CLA program tasks was linked
directly to the CPU memory block L3DPSARAM for both load and run purposes. At runtime, all
the code did was map the L3DPSARAM block to the CLA program memory space during CLA
initialization. For an embedded application, the CLA program tasks are linked to load to flash
and run from RAM. At runtime, the CLA program tasks must be copied from flash to
L3DPSARAM. The memory copy function memcpy() will once again be used to perform the
copy. After the copy is performed, the L3DPSARAM block will then be mapped to CLA program
memory space as was done in the earlier lab.

16. Open and inspect Lab_10.cmd. Notice that the named section “Cla1Prog” will now
load to flash (load address) but will run from L3DPSARAM (run address). The linker will
also be used to generate symbols for the load start, load size, and run start addresses.

17. Open Cla_10_12.c and notice that the memory copy function memcpy() is being used
to copy the CLA program code from flash to L3DPSARAM using the symbols generated
by the linker. Just after the copy the Cla1Regs structure is used to configure the
L3DPSARAM block as CLA program memory space. Close the inspected files.

Build – Lab.out
18. At this point we need to build the project, but not have CCS automatically load it since

CCS cannot load code into the flash (the flash must be programmed)! On the menu bar
click: Option Customize… and select the “Program/Project CIO” tab.
Uncheck “Load Program After Build”.

 CCS has a feature that automatically steps over functions without debug information.
This can be useful for accelerating the debug process provided that you are not interested
in debugging the function that is being stepped-over. While single-stepping in this lab
exercise we do not want to step-over any functions. Therefore, select the “Debug
Properties” tab. Uncheck “Step over functions without debug
information when source stepping”, then click OK.

19. Click the “Build” button to generate the Lab.out file to be used with the CCS Flash
Plug-in.

CCS Flash Plug-in
20. Open the Flash Plug-in tool by clicking:

Tools F28xx On-Chip Flash Programmer

21. A Clock Configuration window may open. If needed, in the Clock Configuration
window set “OSCCLK (MHz):” to 10, “DIVSEL:” to /2, and “PLLCR Value:” to 12.
Then click OK. In the next Flash Programmer Settings window confirm that the selected
DSP device to program is F28035 and all options have been checked. Click OK.

10 - 18 C2000 Piccolo Workshop - System Design

 Lab 10: Programming the Flash

22. The CCS Flash Programmer uses the Piccolo™ 10 MHz internal oscillator as the device
clock during programming. Confirm the “Clock Configuration” in the upper left corner
has the OSCCLK set to 10 MHz, the DIVSEL set to /2, and the PLLCR value set to 12.
Recall that the PLL is divided by two, which gives a SYSCLKOUT of 60 MHz.

23. Confirm that all boxes are checked in the “Erase Sector Selection” area of the plug-in
window. We want to erase all the flash sectors.

24. We will not be using the plug-in to program the “Code Security Password”. Do not
modify the Code Security Password fields. They should remain as all 0xFFFF.

25. In the “Operation” block, notice that the “COFF file to Program/Verify” field
automatically defaults to the current .out file. Check to be sure that “Erase, Program,
Verify” is selected. We will be using the default wait states, as shown on the slide in this
module. The selection for wait-states only affects the verify step, and makes little
noticeable difference even if you reduce the wait-states.

26. Click “Execute Operation” to program the flash memory. Watch the programming status
update in the plug-in window.

27. After successfully programming the flash memory, close the programmer window.

Running the Code – Using CCS
28. In order to effectively debug with CCS, we need to load the symbolic debug information

(e.g., symbol and label addresses, source file links, etc.) so that CCS knows where
everything is in your code. Click:

File Load Symbols Load Symbols Only…

and select Lab10.out in the Debug folder.

29. Reset the CPU. The program counter should now be at 0x3FF8A1, which is the start of
the bootloader in the Boot ROM.

30. Under GEL on the menu bar click:
EMU Boot Mode Select EMU_BOOT_FLASH.
This has the debugger load values into EMU_KEY and EMU_BMODE so that the
bootloader will jump to "FLASH" at 0x3F7FF6.

31. Single-Step <F11> through the bootloader code until you arrive at the beginning of the
codestart section in the CodeStartBranch.asm file. (Be patient, it will take about
125 single-steps). Notice that we have placed some code in CodeStartBranch.asm
to give an option to first disable the watchdog, if selected.

32. Step a few more times until you reach the start of the C-compiler initialization routine at
the symbol _c_int00.

33. Now do Debug Go Main. The code should stop at the beginning of your main()
routine. If you got to that point succesfully, it confirms that the flash has been

C2000 Piccolo Workshop - System Design 10 - 19

Lab 10: Programming the Flash

programmed properly, that the bootloader is properly configured for jump to flash mode,
and that the codestart section has been linked to the proper address.

34. You can now RUN the CPU, and you should observe the LED on the ControlCARD
blinking. Try resetting the CPU, select the EMU_BOOT_FLASH boot mode, and then
hitting RUN (without doing all the stepping and the Go Main procedure). The LED
should be blinking again.

35. HALT the CPU.

Running the Code – Stand-alone Operation (No Emulator)
36. Close Code Composer Studio.

37. Disconnect the USB cable (emulator) from the Docking Station (i.e. remove power from
the ControlCARD).

38. Re-connect the USB cable to the Docking Station to power the ControlCARD. The LED
should be blinking, showing that the code is now running from flash memory.

End of Exercise

10 - 20 C2000 Piccolo Workshop - System Design

 Lab 10: Programming the Flash

Lab 10 Reference: Programming the Flash

Flash Memory Section Blocks

PASSWORDS
length = 0x8

page = 0

BEGIN_FLASH
length = 0x2

page = 0

CSM_RSVD
length = 0x76

page = 0

FLASH
length = 0xFF80

page = 0

0x3E 8000

0x3F 7F80

0x3F 7FF6

0x3F 7FF8

origin =

SECTIONS
{

codestart :> BEGIN_FLASH, PAGE = 0
passwords :> PASSWORDS, PAGE = 0
csm_rsvd :> CSM_RSVD, PAGE = 0

}

Lab_10.cmd

Startup Sequence from Flash Memory

0x3F 7FF6

0x3E 8000

0x3F E000

0x3F FFC0

Boot ROM (8Kw)

BROM vector (32w)
0x3F F8A1

Boot Code

RESET

0x3F F8A1
{SCAN GPIO}

FLASH (64Kw)

Passwords (8w)
_c_int00

LB

“rts2800_ml.lib”

“user” code sections

_c_int00

main ()
{

}

2

3

4

5

1

……
……
……

C2000 Piccolo Workshop - System Design 10 - 21

Lab 10: Programming the Flash

10 - 22 C2000 Piccolo Workshop - System Design

Communications

Introduction
The TMS320C28x contains features that allow several methods of communication and data
exchange between the C28x and other devices. Many of the most commonly used
communications techniques are presented in this module.

The intent of this module is not to give exhaustive design details of the communication
peripherals, but rather to provide an overview of the features and capabilities. Once these
features and capabilities are understood, additional information can be obtained from various
resources such as documentation, as needed. This module will cover the basic operation of the
communication peripherals, as well as some basic terms and how they work.

Learning Objectives
Learning Objectives

Serial Peripheral Interface (SPI)

Serial Communication Interface (SCI)

Local Interconnect Network (LIN)

Inter-Integrated Circuit (I2C)

Enhanced Controller Area Network (eCAN)

Note: Up to 2 SPI modules (A/B), 1 SCI module (A), 1 LIN module (A), 1 I2C module (A),
and 1 eCAN module (A) are available on the F2803x devices

C2000 Piccolo Workshop - Communications 11 - 1

Module Topics

Module Topics
Communications...11-1

Module Topics..11-2
Communications Techniques ...11-3
Serial Peripheral Interface (SPI) ...11-4

SPI Registers ...11-7
SPI Summary...11-8

Serial Communications Interface (SCI) ...11-9
Multiprocessor Wake-Up Modes...11-11
SCI Registers ...11-14
SCI Summary ..11-15

Local Interconnect Network (LIN) ...11-16
LIN Message Frame and Data Timing ..11-17
LIN Summary..11-18

Inter-Integrated Circuit (I2C)..11-19
I2C Operating Modes and Data Formats ...11-20
I2C Summary...11-21

Enhanced Controller Area Network (eCAN) ...11-22
CAN Bus and Node ...11-23
Principles of Operation..11-24
Message Format and Block Diagram...11-25
eCAN Summary ..11-26

11 - 2 C2000 Piccolo Workshop - Communications

 Communications Techniques

Communications Techniques
Several methods of implementing a TMS320C28x communications system are possible. The
method selected for a particular design should reflect the method that meets the required data rate
at the lowest cost. Various categories of interface are available and are summarized in the
learning objective slide. Each will be described in this module.

Synchronous vs. Asynchronous

Synchronous
Short distances (on-
board)
High data rate
Explicit clock

Asynchronous
longer distances
Lower data rate (≈ 1/8 of
SPI)
Implied clock (clk/data
mixed)
Economical with
reasonable performance

C28x

U2

PCB

Port

C28x

PCB

Port
Destination

Serial ports provide a simple, hardware-efficient means of high-level communication between
devices. Like the GPIO pins, they may be used in stand-alone or multiprocessing systems.

In a multiprocessing system, they are an excellent choice when both devices have an available
serial port and the data rate requirement is relatively low. Serial interface is even more desirable
when the devices are physically distant from each other because the inherently low number of
wires provides a simpler interconnection.

Serial ports require separate lines to implement, and they do not interfere in any way with the data
and address lines of the processor. The only overhead they require is to read/write new words
from/to the ports as each word is received/transmitted. This process can be performed as a short
interrupt service routine under hardware control, requiring only a few cycles to maintain.

The C28x family of devices have both synchronous and asynchronous serial ports. Detailed
features and operation will be described next.

C2000 Piccolo Workshop - Communications 11 - 3

Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI)
The SPI module is a synchronous serial I/O port that shifts a serial bit stream of variable length
and data rate between the C28x and other peripheral devices. During data transfers, one SPI
device must be configured as the transfer MASTER, and all other devices configured as
SLAVES. The master drives the transfer clock signal for all SLAVES on the bus. SPI
communications can be implemented in any of three different modes:

• MASTER sends data, SLAVES send dummy data

• MASTER sends data, one SLAVE sends data

• MASTER sends dummy data, one SLAVE sends data

In its simplest form, the SPI can be thought of as a programmable shift register. Data is shifted in
and out of the SPI through the SPIDAT register. Data to be transmitted is written directly to the
SPIDAT register, and received data is latched into the SPIBUF register for reading by the CPU.
This allows for double-buffered receive operation, in that the CPU need not read the current
received data from SPIBUF before a new receive operation can be started. However, the CPU
must read SPIBUF before the new operation is complete of a receiver overrun error will occur. In
addition, double-buffered transmit is not supported: the current transmission must be complete
before the next data character is written to SPIDAT or the current transmission will be corrupted.

The Master can initiate a data transfer at any time because it controls the SPICLK signal. The
software, however, determines how the Master detects when the Slave is ready to broadcast.

SPI Data Flow

SPI Shift Register

SPI Device #1 - Master SPI Device #2 - Slave

Simultaneous transmits and receive
SPI Master provides the clock signal

shift shift

clock

SPI Shift RegisterSPI Shift Register

11 - 4 C2000 Piccolo Workshop - Communications

 Serial Peripheral Interface (SPI)

SPI Block Diagram

SPIRXBUF.15-0

SPIDAT.15-0

SPICLK

SPISOMI

SPISIMO

LSPCLK baud
rate

clock
polarity

clock
phase

C28x - SPI Master Mode Shown

SPITXBUF.15-0

LSBMSB

TX FIFO_0

TX FIFO_15

RX FIFO_0

RX FIFO_15

SPI Transmit / Receive Sequence
1. Slave writes data to be sent to its shift register (SPIDAT)

2. Master writes data to be sent to its shift register (SPIDAT or SPITXBUF)

3. Completing Step 2 automatically starts SPICLK signal of the Master

4. MSB of the Master’s shift register (SPIDAT) is shifted out, and LSB of the Slave’s shift
register (SPIDAT) is loaded

5. Step 4 is repeated until specified number of bits are transmitted

6. SPIDAT register is copied to SPIRXBUF register

7. SPI INT Flag bit is set to 1

8. An interrupt is asserted if SPI INT ENA bit is set to 1

9. If data is in SPITXBUF (either Slave or Master), it is loaded into SPIDAT and transmission
starts again as soon as the Master’s SPIDAT is loaded

C2000 Piccolo Workshop - Communications 11 - 5

Serial Peripheral Interface (SPI)

Since data is shifted out of the SPIDAT register MSB first, transmission characters of less than 16
bits must be left-justified by the CPU software prior to be written to SPIDAT.

Received data is shifted into SPIDAT from the left, MSB first. However, the entire sixteen bits
of SPIDAT is copied into SPIBUF after the character transmission is complete such that received
characters of less than 16 bits will be right-justified in SPIBUF. The non-utilized higher
significance bits must be masked-off by the CPU software when it interprets the character. For
example, a 9 bit character transmission would require masking-off the 7 MSB’s.

SPI Data Character Justification

Programmable data
length of 1 to 16 bits
Transmitted data of less
than 16 bits must be left
justified

MSB transmitted first

Received data of less
than 16 bits are right
justified

User software must
mask-off unused MSB’s

11001001XXXXXXXX11001001XXXXXXXX

XXXXXXXX11001001XXXXXXXX11001001

SPIDAT - Processor #1

SPIDAT - Processor #2

11 - 6 C2000 Piccolo Workshop - Communications

 Serial Peripheral Interface (SPI)

SPI Registers

SPI Baud Rate Register
SpixRegs.SPIBRR

15-7 6-0
reserved SPI BIT RATE

SPICLK signal =

LSPCLK
(SPIBRR + 1)

LSPCLK
4

, SPIBRR = 3 to 127

, SPIBRR = 0, 1, or 2

Need to set this only when in master mode!

Baud Rate Determination: The Master specifies the communication baud rate using its baud rate
register (SPIBRR.6-0):

• For SPIBRR = 3 to 127: SPI Baud Rate =
)1(+SPIBRR

LSPCLK
 bits/sec

• For SPIBRR = 0, 1, or 2: SPI Baud Rate =
4

LSPCLK
 bits/sec

From the above equations, one can compute

Maximum data rate = 25 Mbps @ 100 MHz

Character Length Determination: The Master and Slave must be configured for the same
transmission character length. This is done with bits 0, 1, 2 and 3 of the configuration control
register (SPICCR.3-0). These four bits produce a binary number, from which the character length
is computed as binary + 1 (e.g. SPICCR.3-0 = 0010 gives a character length of 3).

C2000 Piccolo Workshop - Communications 11 - 7

Serial Peripheral Interface (SPI)

Select SPI Registers
Configuration Control SpixRegs.SPICCR

Reset, Clock Polarity, Loopback, Character Length

Operation Control SpixRegs.SPICTL
Overrun Interrupt Enable, Clock Phase, Interrupt Enable
Master / Slave Transmit enable

Status SpixRegs.SPIST
RX Overrun Flag, Interrupt Flag, TX Buffer Full Flag

FIFO Transmit SpixRegs.SPIFFTX

FIFO Receive SpixRegs.SPIFFRX
FIFO Enable, FIFO Reset
FIFO Over-flow flag, Over-flow Clear
Number of Words in FIFO (FIFO Status)
FIFO Interrupt Enable, Interrupt Status, Interrupt Clear
FIFO Interrupt Level (Number of Words in FIFO)

Note: refer to the reference guide for a complete listing of registers

SPI Summary

SPI Summary

Synchronous serial communications
Two wire transmit or receive (half duplex)
Three wire transmit and receive (full duplex)

Software configurable as master or slave
C28x provides clock signal in master mode

Data length programmable from 1-16 bits
125 different programmable baud rates

11 - 8 C2000 Piccolo Workshop - Communications

 Serial Communications Interface (SCI)

Serial Communications Interface (SCI)
The SCI module is a serial I/O port that permits Asynchronous communication between the C28x
and other peripheral devices. The SCI transmit and receive registers are both double-buffered to
prevent data collisions and allow for efficient CPU usage. In addition, the C28x SCI is a full
duplex interface which provides for simultaneous data transmit and receive. Parity checking and
data formatting is also designed to be done by the port hardware, further reducing software
overhead.

SCI Pin Connections

Transmitter-data
buffer register

SCI Device #1

SCIRXD

SCITXD SCITXD

SCIRXD

SCI Device #2

8

Receiver-data
buffer register

8

Transmitter-data
buffer register

Receiver
shift register

Transmitter
shift register

8

Receiver-data
buffer register

Receiver
shift register

Transmitter
shift register

8

(Full Duplex Shown)

RX FIFO_0

RX FIFO_15

RX FIFO_0

RX FIFO_15

TX FIFO_0

TX FIFO_15

TX FIFO_0

TX FIFO_15

C2000 Piccolo Workshop - Communications 11 - 9

Serial Communications Interface (SCI)

SCI Data Format

This bit present only in Address-bit mode

NRZ (non-return to zero) format

Communications Control Register (ScixRegs.SCICCR)

0 = 1 Stop bit
1 = 2 Stop bits

0 = Odd
1 = Even

0 = Disabled
1 = Enabled

0 = Disabled
1 = Enabled

0 = Idle-line mode
1 = Addr-bit mode

of data bits = (binary + 1)
e.g. 110b gives 7 data bits

Stop
Bits

Even/Odd
Parity

Parity
Enable

Loopback
Enable

Addr/Idle
Mode

SCI
Char2

SCI
Char1

SCI
Char0

7 6 5 4 3 2 1 0

Start LSB 2 3 4 5 6 7 MSB Addr/
Data Parity Stop 1 Stop 2

The basic unit of data is called a character and is 1 to 8 bits in length. Each character of data is
formatted with a start bit, 1 or 2 stop bits, an optional parity bit, and an optional address/data bit.
A character of data along with its formatting bits is called a frame. Frames are organized into
groups called blocks. If more than two serial ports exist on the SCI bus, a block of data will
usually begin with an address frame which specifies the destination port of the data as determined
by the user’s protocol.

The start bit is a low bit at the beginning of each frame which marks the beginning of a frame.
The SCI uses a NRZ (Non-Return-to-Zero) format which means that in an inactive state the
SCIRX and SCITX lines will be held high. Peripherals are expected to pull the SCIRX and
SCITX lines to a high level when they are not receiving or transmitting on their respective lines.

When configuring the SCICCR, the SCI port should first be held in an inactive state. This
is done using the SW RESET bit of the SCI Control Register 1 (SCICTL1.5). Writing a 0 to this
bit initializes and holds the SCI state machines and operating flags at their reset condition. The
SCICCR can then be configured. Afterwards, re-enable the SCI port by writing a 1 to the SW
RESET bit. At system reset, the SW RESET bit equals 0.

11 - 10 C2000 Piccolo Workshop - Communications

 Serial Communications Interface (SCI)

SCI Data Timing

Start Bit LSB of Data

Majority
Vote

Falling Edge Detected

• Start bit valid if 4 consecutive SCICLK periods of zero bits after falling edge
• Majority vote taken on 4th, 5th, and 6th SCICLK cycles

SCIRXD

SCICLK
(Internal)

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2

Note: 8 SCICLK periods per data bit

Multiprocessor Wake-Up Modes

Multiprocessor Wake-Up Modes

Allows numerous processors to be hooked
up to the bus, but transmission occurs
between only two of them
Idle-line or Address-bit modes
Sequence of Operation
1. Potential receivers set SLEEP = 1, which disables RXINT

except when an address frame is received
2. All transmissions begin with an address frame
3. Incoming address frame temporarily wakes up all SCIs on bus
4. CPUs compare incoming SCI address to their SCI address
5. Process following data frames only if address matches

C2000 Piccolo Workshop - Communications 11 - 11

Serial Communications Interface (SCI)

Idle-Line Wake-Up Mode

Idle time separates blocks of frames
Receiver wakes up when SCIRXD high for 10 or
more bit periods
Two transmit address methods

Deliberate software delay of 10 or more bits
Set TXWAKE bit to automatically leave exactly
11 idle bits

Last Data ST SPST DataSCIRXD/
SCITXD

Block of Frames

SP SP Last DataST AddrSP

Idle
Period
10 bits

or greater

Idle
Period
10 bits

or greater

Address frame
follows 10 bit
or greater idle

1st data frame

SPST Addr

Idle periods
of less than

10 bits

Address-Bit Wake-Up Mode

All frames contain an extra address bit
Receiver wakes up when address bit detected
Automatic setting of Addr/Data bit in frame by
setting TXWAKE = 1 prior to writing address to
SCITXBUF

Last Data STST DataSCIRXD/
SCITXD

Block of Frames

SP SP Last DataST AddrSP

Idle Period
length of no
significance

First frame within
block is Address.

ADDR/DATA
bit set to 1

1st data frame

0 1 0 0 SPST Addr 1SP

no additional
idle bits needed
beyond stop bits

11 - 12 C2000 Piccolo Workshop - Communications

 Serial Communications Interface (SCI)

The SCI interrupt logic generates interrupt flags when it receives or transmits a complete
character as determined by the SCI character length. This provides a convenient and efficient
way of timing and controlling the operation of the SCI transmitter and receiver. The interrupt
flag for the transmitter is TXRDY (SCICTL2.7), and for the receiver RXRDY (SCIRXST.6).
TXRDY is set when a character is transferred to TXSHF and SCITXBUF is ready to receive the
next character. In addition, when both the SCIBUF and TXSHF registers are empty, the TX
EMPTY flag (SCICTL2.6) is set. When a new character has been received and shifted into
SCIRXBUF, the RXRDY flag is set. In addition, the BRKDT flag is set if a break condition
occurs. A break condition is where the SCIRXD line remains continuously low for at least ten
bits, beginning after a missing stop bit. Each of the above flags can be polled by the CPU to
control SCI operations, or interrupts associated with the flags can be enabled by setting the
RX/BK INT ENA (SCICTL2.1) and/or the TX INT ENA (SCICTL2.0) bits active high.

Additional flag and interrupt capability exists for other receiver errors. The RX ERROR flag is
the logical OR of the break detect (BRKDT), framing error (FE), receiver overrun (OE), and
parity error (PE) bits. RX ERROR high indicates that at least one of these four errors has
occurred during transmission. This will also send an interrupt request to the CPU if the RX ERR
INT ENA (SCICTL1.6) bit is set.

C2000 Piccolo Workshop - Communications 11 - 13

Serial Communications Interface (SCI)

SCI Registers

SCI Baud Rate Registers

BAUD15
(MSB) BAUD14

Baud-Select MSbyte Register (ScixRegs.SCIHBAUD)
7 6 5 4 3 2 1 0

BAUD13 BAUD12 BAUD11 BAUD10 BAUD9 BAUD8

BAUD6

Baud-Select LSbyte Register (ScixRegs.SCILBAUD)
7 6 5 4 3 2 1 0

BAUD5 BAUD4 BAUD3 BAUD2 BAUD1BAUD7 BAUD0
(LSB)

SCI baud rate =

LSPCLK
(BRR + 1) x 8

LSPCLK
16

, BRR = 1 to 65535

, BRR = 0

Baud Rate Determination: The values in the baud-select registers (SCIHBAUD and SCILBAUD)
concatenate to form a 16 bit number that specifies the baud rate for the SCI.

• For BRR = 1 to 65535: SCI Baud Rate =
8)1(×+BRR

LSPCLK
 bits/sec

• For BRR = 0: SCI Baud Rate =
16

LSPCLK
 bits/sec

Max data rate = 6.25 Mbps @ 100 MHz

Note that the CLKOUT for the SCI module is one-half the CPU clock rate.

11 - 14 C2000 Piccolo Workshop - Communications

 Serial Communications Interface (SCI)

Select SCI Registers
Control 1 ScixRegs.SCICTL1

Reset, Transmitter / Receiver Enable
TX Wake-up, Sleep, RX Error Interrupt Enable

Control 2 ScixRegs.SPICTL2
TX Buffer Full / Empty Flag, TX Ready Interrupt Enable
RX Break Interrupt Enable

Receiver Status ScixRegs.SCIRXST
Error Flag, Ready, Flag Break-Detect Flag, Framing Error
Detect Flag, Parity Error Flag, RX Wake-up Detect Flag

FIFO Transmit ScixRegs.SCIFFTX

FIFO Receive ScixRegs.SCIFFRX
FIFO Enable, FIFO Reset
FIFO Over-flow flag, Over-flow Clear
Number of Words in FIFO (FIFO Status)
FIFO Interrupt Enable, Interrupt Status, Interrupt Clear
FIFO Interrupt Level (Number of Words in FIFO)

Note: refer to the reference guide for a complete listing of registers

SCI Summary

SCI Summary

Asynchronous communications format
65,000+ different programmable baud rates
Two wake-up multiprocessor modes

Idle-line wake-up & Address-bit wake-up
Programmable data word format

1 to 8 bit data word length
1 or 2 stop bits
even/odd/no parity

Error Detection Flags
Parity error; Framing error; Overrun error; Break detection

Transmit FIFO and receive FIFO
Individual interrupts for transmit and receive

C2000 Piccolo Workshop - Communications 11 - 15

Local Interconnect Network (LIN)

Local Interconnect Network (LIN)
Local Interconnect Network (LIN)

Compliant to the LIN2.0 protocol Specification Package

Module based on SCI (core) with added hardware
features for LIN compatibility:

Error detector
Mask filter
Synchronizer
Multi-buffered receiver/transmitter

Standard is based on SCI (UART) serial data link format

Communication concept is single-master/multiple-slave
with message identification for multi-cast transmission
between any network nodes

Module can be used in LIN mode or SCI (UART) mode

LIN Block Diagram

SCIRXSHF

7 RD0 0
7 RD1 0
7 RD2 0
7 RD3 0
7 RD4 0
7 RD5 0
7 RD6 0
7 RD7 0

7 TD7 0
7 TD6 0
7 TD5 0
7 TD4 0
7 TD3 0
7 TD2 0
7 TD1 0
7 TD0 0

SCITXSHF

Mask
Filter

Sy
nc

hr
on

iz
erLINRX/

SCIRX
LINTX/
SCITX

Checksum
Calculator

Parity
Calculator

Bit
Monitor

11 - 16 C2000 Piccolo Workshop - Communications

 Local Interconnect Network (LIN)

LIN Message Frame and Data Timing

LIN Message Frame

Sync Break – beginning of a message
Sync Field – bit rate information
ID Field – content of a message
Data Field – consists of 1 data byte, 1 start bit, and 1

stop bit (10 bits total)
Checksum Field – consists of 1 checksum byte, 1 start

bit and 1 stop bit (10 bits total)
In-Frame & Interbyte Spaces – can be 0

Sync
Break

Sync
Field

ID
Field

Data
Field

Check
Sum
Field

Data
Field

Data
Field

Data
Field

Data
Field

Interbyte SpacesIn-Frame Space

1 to 8 Data Fields

Master Header Response

Message Frame

LIN Data Timing

LIN module is clocked at ½ the CPU clock (SYSCLKOUT)

To make a determination of the bit value, 16 samples of each
bit are taken with majority vote on samples 8, 9, and 10

Majority
Vote

LINRX

LM_CLK
(Internal)

Majority
Vote

Majority
Vote

C2000 Piccolo Workshop - Communications 11 - 17

Local Interconnect Network (LIN)

LIN Summary

LIN Summary

Functionally compatible with standalone
SCI of C28x devices
Identification masks for filtering
Automatic master header generation
228 programmable transmission rates
Automatic wakeup support
Error detection (bit, bus, no response,
checksum, synchronization, parity)
Multi-buffered receive/transmit units

11 - 18 C2000 Piccolo Workshop - Communications

 Inter-Integrated Circuit (I2C)

Inter-Integrated Circuit (I2C)
Inter-Integrated Circuit (I2C)

Philips I2C-bus specification compliant, version 2.1
Data transfer rate from 10 kbps up to 400 kbps
Each device can be considered as a Master or Slave
Master initiates data transfer and generates clock signal
Device addressed by Master is considered a Slave
Multi-Master mode supported
Standard Mode – send exactly n data values (specified in register)
Repeat Mode – keep sending data values (use software to initiate a
stop or new start condition)

28xx
I2C

I2C
Controller

I2C
EPROM

28xx
I2C

. .

.
Pull-up

Resisters

VDD

Serial Data (SDA)
Serial Clock (SCL)

I2C Block Diagram

TX FIFO

RX FIFO

I2CDXR

I2CDRR

I2CXSR

I2CRSR

Clock
Circuits

SDA

SCL

C2000 Piccolo Workshop - Communications 11 - 19

Inter-Integrated Circuit (I2C)

I2C Operating Modes and Data Formats

I2C Operating Modes

Operating Mode Description

Slave-receiver mode Module is a slave and receives data from a master
(all slaves begin in this mode)

Slave-transmitter mode Module is a slave and transmits data to a master
(can only be entered from slave-receiver mode)

Master-receiver mode Module is a master and receives data from a slave
(can only be entered from master-transmit mode)

Master-transmitter mode Module is a master and transmits to a slave
(all masters begin in this mode)

I2C Serial Data Formats

S Slave Address R/W ACK Data DataACK ACK P
1 7 1 1 n 1 n 1 1
7-Bit Addressing Format

S 11110AA R/W ACK AAAAAAAA DataACK ACK P
1 7 1 1 8 1 n 1 1
10-Bit Addressing Format

S Data ACK Data DataACK ACK P
1 n 1 n 1 n 1 1
Free Data Format

R/W = 0 – master writes data to addressed slave
R/W = 1 – master reads data from the slave
n = 1 to 8 bits
S = Start (high-to-low transition on SDA while SCL is high)
P = Stop (low-to-high transition on SDA while SCL is high)

11 - 20 C2000 Piccolo Workshop - Communications

 Inter-Integrated Circuit (I2C)

I2C Arbitration
Arbitration procedure invoked if two or more master-
transmitters simultaneously start transmission

Procedure uses data presented on serial data bus (SDA) by
competing transmitters
First master-transmitter which drives SDA high is overruled
by another master-transmitter that drives SDA low
Procedure gives priority to the data stream with the lowest
binary value

1 0

1 0 0 1 0 1

1 0 0 1 0 1

SCL

SDA

Data from
device #1

Data from
device #2

Device #1 lost arbitration
and switches to slave-

receiver mode

Device #2
drives SDA

I2C Summary

I2C Summary

Compliance with Philips I2C-bus
specification (version 2.1)
7-bit and 10-bit addressing modes
Configurable 1 to 8 bit data words
Data transfer rate from 10 kbps up to
400 kbps
Transmit FIFO and receive FIFO

C2000 Piccolo Workshop - Communications 11 - 21

Enhanced Controller Area Network (eCAN)

Enhanced Controller Area Network (eCAN)

Controller Area Network (CAN)
A Multi-Master Serial Bus System

CAN 2.0B Standard
High speed (up to 1 Mbps)
Add a node without disturbing the bus (number of nodes not
limited by protocol)
Less wires (lower cost, less maintenance, and more reliable)
Redundant error checking (high reliability)
No node addressing (message identifiers)
Broadcast based signaling

C

ED

A
B

CAN does not use physical addresses to address stations. Each message is sent with an identifier
that is recognized by the different nodes. The identifier has two functions – it is used for message
filtering and for message priority. The identifier determines if a transmitted message will be
received by CAN modules and determines the priority of the message when two or more nodes
want to transmit at the same time.

11 - 22 C2000 Piccolo Workshop - Communications

 Enhanced Controller Area Network (eCAN)

CAN Bus and Node

CAN Bus

CAN
NODE B

CAN
NODE A

CAN
NODE C

CAN_H

CAN_L

Two wire differential bus (usually twisted pair)
Max. bus length depend on transmission rate

40 meters @ 1 Mbps

120Ω120Ω

The MCU communicates to the CAN Bus using a transceiver. The CAN bus is a twisted pair
wire and the transmission rate depends on the bus length. If the bus is less than 40 meters the
transmission rate is capable up to 1 Mbit/second.

CAN Node
Wired-AND Bus Connection

RXTX

CAN Controller
(e.g. TMS320F28035)

CAN Transceiver
(e.g. TI SN65HVD23x)

CAN_L

CAN_H

120Ω120Ω

C2000 Piccolo Workshop - Communications 11 - 23

Enhanced Controller Area Network (eCAN)

Principles of Operation

Principles of Operation
Data messages transmitted are identifier based,
not address based
Content of message is labeled by an identifier that
is unique throughout the network

(e.g. rpm, temperature, position, pressure, etc.)
All nodes on network receive the message and
each performs an acceptance test on the identifier
If message is relevant, it is processed (received);
otherwise it is ignored
Unique identifier also determines the priority of the
message

(lower the numerical value of the identifier, the higher the
priority)

When two or more nodes attempt to transmit at the
same time, a non-destructive arbitration technique
guarantees messages are sent in order of priority
and no messages are lost

Non-Destructive Bitwise Arbitration
Bus arbitration resolved via arbitration with
wired-AND bus connections

Dominate state (logic 0, bus is high)
Recessive state (logic 1, bus is low)

Node A wins
arbitration

CAN Bus

Node A

Node B

Node C

Start
Bit

Node B loses
arbitration

Node C loses
arbitration

11 - 24 C2000 Piccolo Workshop - Communications

 Enhanced Controller Area Network (eCAN)

Message Format and Block Diagram

CAN Message Format
Data is transmitted and received using Message Frames
8 byte data payload per message
Standard and Extended identifier formats

Standard Frame: 11-bit Identifier (CAN v2.0A)

Extended Frame: 29-bit Identifier (CAN v2.0B)

11-bit
Identifier

R
T
R

S
O
F

I
D
E

r0 DLC 0…8 Bytes Data CRC ACK
E
O
F

Arbitration
Field

Control
Field Data Field

Control
Field

11-bit
Identifier

R
T
R

S
O
F

I
D
E

r0 DLC 0…8 Bytes Data CRC ACKr1
18-bit

Identifier
S
R
R

E
O
F

Arbitration Field Data Field

The MCU CAN module is a full CAN Controller. It contains a message handler for transmission
and reception management, and frame storage. The specification is CAN 2.0B Active – that is,
the module can send and accept standard (11-bit identifier) and extended frames (29-bit
identifier).

eCAN Block Diagram

Memory Management
Unit

CPU Interface,
Receive Control Unit

Timer Management Unit

eCAN Memory
(512 bytes)

Register and Message
Object Control

Mailbox RAM
(512 bytes)

32 Mailboxes
(4 x 32-bit words)

32 32

Receive Buffer
Transmit Buffer
Control Buffer
Status Buffer

SN65HVD23x
3.3-V CAN Transceiver

CAN Bus

32

32

DataAddresseCAN0INT eCAN1INT

A message mailbox
Identifier – MID
Control – MCF
Data low – MDL
Data high - MDH

C2000 Piccolo Workshop - Communications 11 - 25

Enhanced Controller Area Network (eCAN)

The CAN controller module contains 32 mailboxes for objects of 0 to 8-byte data lengths:
• configurable transmit/receive mailboxes
• configurable with standard or extended indentifier

The CAN module mailboxes are divided into several parts:
• MID – contains the identifier of the mailbox
• MCF (Message Control Field) – contains the length of the message (to transmit or

receive) and the RTR bit (Remote Transmission Request – used to send remote
frames)

• MDL and MDH – contains the data

The CAN module contains registers which are divided into five groups. These registers are
located in data memory from 0x006000 to 0x0061FF. The five register groups are:

• Control & Status Registers

• Local Acceptance Masks

• Message Object Time Stamps

• Message Object Timeout

• Mailboxes

eCAN Summary

eCAN Summary

Fully compliant with CAN standard v2.0B
Supports data rates up to 1 Mbps
Thirty-two mailboxes

Configurable as receive or transmit
Configurable with standard or extended identifier
Programmable receive mask
Uses 32-bit time stamp on messages
Programmable interrupt scheme (two levels)
Programmable alarm time-out

Programmable wake-up on bus activity
Self-test mode

11 - 26 C2000 Piccolo Workshop - Communications

DSP/BIOS

Introduction
This module discusses the basic features of using DSP/BIOS in a system. Scheduling threads,
periodic functions, and the use of real-time analysis tools will be demonstrated, in addition to
programming the flash with DSP/BIOS.

Learning Objectives
Learning Objectives

Introduction to DSP/BIOS

DSP/BIOS Configuration Tool

Scheduling DSP/BIOS threads

Periodic Functions

Real-Time Analysis Tools

C2000 Piccolo Workshop - DSP/BIOS 12 - 1

Module Topics

Module Topics
DSP/BIOS..12-1

Module Topics..12-2
Introduction to DSP/BIOS ...12-3
DSP/BIOS Configuration Tool...12-4
Scheduling DSP/BIOS threads...12-9
Periodic Functions...12-14
Real-Time Analysis Tools...12-15
Lab 12: DSP/BIOS...12-16

12 - 2 C2000 Piccolo Workshop - DSP/BIOS

 Introduction to DSP/BIOS

Introduction to DSP/BIOS
What is DSP/BIOS?

A full-featured, scalable real-time kernel
System configuration tools
Preemptive multi-threading scheduler
Real-time analysis tools

Why Use DSP/BIOS?

Helps Manage complex system resources
no need to develop or maintain a “home-brew” kernel
faster time to market

Efficient debugging of real-time applications
Real-Time Analysis

Create robust applications
industry proven kernel technology

Reduce cost of software maintenance
code reuse and standardized software

Integrated with Code Composer Studio IDE
requires no runtime license fees
fully supported by TI

Uses minimal Mips and Memory (2-8Kw)
scalable – use only what is needed
easily fits in limited memory space

C2000 Piccolo Workshop - DSP/BIOS 12 - 3

DSP/BIOS Configuration Tool

DSP/BIOS Configuration Tool
The DSP/BIOS Configuration Tool (often called Config Tool or GUI Tool or GUI) creates and
modifies a system file called the Text Configuration File (.tcf). If we talk about using .tcf files,
we’re also talking about using the Config Tool.

DSP/BIOS Configuration Tool (file .tcf)

System Setup Tools
Handles memory configuration
(builds .cmd file), run-time
support libraries, interrupt
vectors, system setup and
reset, etc.

Real-Time Analysis Tools
Allows application to run
uninterrupted while displaying
debug data

Real-Time Scheduler
Preemptive tread manager
kernel configures DSP/BIOS
scheduling

Real-Time I/O
Allows two way
communication between
threads or between target and
PC host

The GUI (graphical user interface) simplifies system design by:
• Automatically including the appropriate runtime support libraries
• Automatically handles interrupt vectors and system reset
• Handles system memory configuration (builds .cmd file)
• When a .tcf file is saved, the Config Tool generates 5 additional files:

Filename.tcf Text Configuration File

Filenamecfg_c.c C code created by Config Tool

Filenamecfg.s28 ASM code created by Config Tool

Filenamecfg.cmd Linker command file

Filenamecfg.h header file for *cfg_c.c

Filenamecfg.h28 header file for *cfg.s28

When you add a .tcf file to your project, CCS automatically adds the C and assembly
(.s28) files and the linker command file (.cmd) to the project under the Generated Files
folder.

12 - 4 C2000 Piccolo Workshop - DSP/BIOS

 DSP/BIOS Configuration Tool

1. Creating a New Memory Region (Using MEM)
First, to create a specific memory area, open up the .tcf file, right-click on the Memory Section
Manager and select “Insert MEM”. Give this area a unique name and then specify its base and
length. Once created, you can place sections into it (shown in the next step).

Memory Section Manager (MEM)
Generates the main
linker command file for
your code project

Create memories
Place sections

To create a new memory
area:

Right-click on MEM and
select insert memory
Enter your choice of a
name for the memory
Right-click on the
memory, and select
Properties

fill in base, length, space

C2000 Piccolo Workshop - DSP/BIOS 12 - 5

DSP/BIOS Configuration Tool

2. Placing Sections – MEM Manager Properties
The configuration tool makes it easy to place sections. The predefined compiler sections that
were described earlier each have their own drop-down menu to select one of the memory regions
you defined (in step 1).

Memory Section Manager Properties

To place a section
into a memory area:

Right-click on MEM
and select Properties
Select the desired tab
(e.g. Compiler)
Select the memory
you would like to link
each section to

12 - 6 C2000 Piccolo Workshop - DSP/BIOS

 DSP/BIOS Configuration Tool

3. PIE Interrupts – HWI Interrupts
The configuration tools is also used to assign the interrupt vectors. The vectors are placed into a
section named .hwi_vec. The memory manager (MEM) links this section to the proper location
in memory.

Hardware Interrupt Manager (HWI)

Config Tool used to assign
interrupt vectors
Vectors are placed in the
section .hwi_vec
Use MEM manager to link
.hwi_vec to the proper memory

C2000 Piccolo Workshop - DSP/BIOS 12 - 7

DSP/BIOS Configuration Tool

4. Running the Linker
Creating the Linker Command File (via .tcf)

When you have finished creating memory regions and allocating sections into these memory
areas (i.e. when you save the .tcf file), the CCS configuration tool creates five files. One of the
files is BIOS’s cfg.cmd file — a linker command file.

Files Created by the Configuration Tool

*.tcf

*cfg.s28

*cfg.h28

*cfg_c.c

*cfg.h
*cfg.cmd

Config tool generates
five different files
.cmd file is generated
from your MEM settings
Vectors put into *cfg_c.c

save to compiler

This file contains two main parts, MEMORY and SECTIONS. (Though, if you open and examine
it, it’s not quite as nicely laid out as shown above.)

Running the Linker

The linker’s main purpose is to link together various object files. It combines like-named input
sections from the various object files and places each new output section at specific locations in
memory. In the process, it resolves (provides actual addresses for) all of the symbols described in
your code. The linker can create two outputs, the executable (.out) file and a report which
describes the results of linking (.map).

Note: The linker gets run automatically when you BUILD or REBUILD your project.

12 - 8 C2000 Piccolo Workshop - DSP/BIOS

 Scheduling DSP/BIOS threads

Scheduling DSP/BIOS threads
DSP/BIOS Thread Types

Pr
io

rit
y

Use SWI to perform HWI ‘follow-up’ activity
SWI's are ‘posted’ by software
Multiple SWIs at each of 15 priority levels

Use TSK to run different programs concurrently
under separate contexts
TSK's enabled by posting ‘semaphore’ (a signal)

Runs when no service routines are pending
Runs as an infinite loop, like traditional while loop
All BIOS data transfers to host occur here

Used to implement ‘urgent’ part of real-time event
Triggered by hardware interrupt
HWI priorities fixed in hardware

SWI
Software Interrupts

HWI
Hardware Interrupts

TSK
Tasks

IDL
Background

Enabling DSP/BIOS in main()

BIOS will enable global
interrupts for you
Must delete the
endless loop at end of
main()

main() returns to BIOS
and goes to the IDLE
thread, allowing BIOS to
schedule events,
transfer data to the host,
etc.
An endless loop in
main() will keep BIOS
from running

void main(void)

{

//*** Initialization

. . .

//*** Enable global interrupts

// asm(“ CLRC INTM”);

//*** Main Loop

// while(1);

} //end of main()

C2000 Piccolo Workshop - DSP/BIOS 12 - 9

Scheduling DSP/BIOS threads

Using Hardware Interrupts - HWI

Interrupt priority
fixed by hardware

interrupt void MyHwi(void)
{
}

The HWI Dispatcher
For non-BIOS code, use the
interrupt keyword to declare an ISR

tells the compiler to perform
context save/restore

For DSP/BIOS code, use the
Dispatcher to perform the
save/restore

Remove the interrupt keyword
from the MyHwi()
Check the “Use Dispatcher” box
when you configure the interrupt
vector in the DSP/BIOS
configuration tool

This is necessary if you want to
use any DSP/BIOS functionality
inside the ISR

12 - 10 C2000 Piccolo Workshop - DSP/BIOS

 Scheduling DSP/BIOS threads

Using Software Interrupts - SWI

Make each algorithm an
independent software interrupt
SWI scheduling is handled by DSP/BIOS

HWI function triggered by hardware
SWI function triggered by software
e.g. a call to SWI_post()

Why use a SWI?
No limitation on number of SWIs, and
priorities for SWIs are user-defined
SWI can be scheduled by hardware or
software event(s)
Defer processing from HWI to SWI

SWI Properties

C2000 Piccolo Workshop - DSP/BIOS 12 - 11

Scheduling DSP/BIOS threads

Managing SWI Priority

Drag and Drop SWIs to change
priority
Equal priority SWIs run in the
order that they are posted

Drag and Drop SWIs to change
priority
Equal priority SWIs run in the
order that they are posted

Priority Based Thread Scheduling
HWI 2

HWI 1

SWI 3

SWI 2

SWI 1

MAIN

IDLE
int1

rtn

post2 rtn

int2

post3 rtn

post1 rtn

rtn

rtn

User sets the priority...BIOS does the scheduling

(highest)

(lowest)

SWI_post(&swi2);

12 - 12 C2000 Piccolo Workshop - DSP/BIOS

 Scheduling DSP/BIOS threads

Using Tasks (TSK)
SWI vs. TSK

Similar to hardware interrupt,
but triggered by SWI_post()
SWIs must run to completion
All SWI's use system stack
faster context switching
smaller code size

SWI SWI_post

start

end

“must run to
completion”

SEM_post() readies the TSK
which pends on an event
TSKs can be terminated by S/W
Each TSK has its own stack
slower context switching
larger code size

TSK

start

end

Pause

SEM_post

(blocked
state)

SEM_pend

C2000 Piccolo Workshop - DSP/BIOS 12 - 13

Periodic Functions

Periodic Functions

period

LED LED LED

Using Periodic Functions - PRD

Periodic functions are a special type of SWI that are triggered by
DSP/BIOS

Periodic functions run at a user specified rate:
- e.g. LED blink requires 0.5 Hz

Use the CLK Manager to specify the DSP/BIOS CLK rate in
microseconds per “tick”

Use the PRD Manager to specify the period (for the function) in ticks

Allows multiple periodic functions with different rates

DSP/BIOS
CLK

tick

Creating a Periodic Function

period

func1 func1 func1

DSP/BIOS
CLK

tick

12 - 14 C2000 Piccolo Workshop - DSP/BIOS

 Real-Time Analysis Tools

Real-Time Analysis Tools
Built-in Real-Time Analysis Tools

Gather data on target (3-10 CPU cycles)
Send data during BIOS IDL (100s of cycles)
Format data on host (1000s of cycles)
Data gathering does NOT stop target CPU

Execution Graph

Shows amount of CPU
horsepower being
consumed

CPU Load Graph

Software logic analyzer
Debug event timing
and priority

Built-in Real-Time Analysis Tools

Profile routines w/o
halting the CPU

Statistics View

Send debug msgs to host
Doesn’t halt the DSP
Deterministic, low DSP
cycle count
More efficient than
traditional printf()

Message LOG

LOG_printf(&trace, “LedSwiCount = %u", LedSwiCount++);

C2000 Piccolo Workshop - DSP/BIOS 12 - 15

Lab 12: DSP/BIOS

Lab 12: DSP/BIOS
 Objective

The objective of this lab is to become familiar with DSP/BIOS. In this lab exercise, we will make
use of the DSP/BIOS configuration tool, implement a software interrupt (SWI) and periodic
function (PRD), program the DSP/BIOS project into the flash, and explore the built-in real-time
analysis tools. The DSP/BIOS configuration tool creates a text configuration file (*.tcf) and
generates a linker command file (*cfg.cmd). This generated linker command file is functionally
equivalent to the linker command file previously used. The memory area of the lab linker
command file will be deleted; however, part of the sections area will be used to link sections that
are not part of DSP/BIOS. In the lab files we will change the CLA HWI (CLA1_INT1_ISR) to a
SWI and replace the LED blink routine with a periodic function. The steps required to properly
configure the software for execution from internal flash memory will be covered. Features of the
real-time analysis tools, such as the CPU Load Graph, Execution Graph, Message Log, and RTA
Control Panel will be demonstrated.

Lab 12: DSP/BIOS

ADC
RESULT0

ePWM2

connector
wire

TB Counter
Compare

Action Qualifier

ePWM1
ADCINA0

ePWM2 triggering
ADC on period match
using SOCA trigger every
40 µs (25 kHz)

CPU copies
result to
buffer during
ADC ISR

...

data
memory

po
in

te
r

re
w

in
d

Display
using CCS

CLA
_Cla1Task1
_Cla1Task2

_Cla1Task8

Objective:
Use DSP/BIOS Configuration Tool to:

Handle system memory & interrupt vectors
Create a .tcf file

Change CLA CLA1_INT1_ISR HWI to SWI
Replace LED blink routine with a Periodic
Function
Program system into Flash Memory

 Procedure

Project File
1. A project named Lab12.pjt has been created for this lab. Open the project by

clicking on Project Open… and look in C:\C28x\Labs\Lab12. All Build
Options have been configured the same as the previous lab. The files used in this lab are:

12 - 16 C2000 Piccolo Workshop - DSP/BIOS

 Lab 12: DSP/BIOS

Adc.c Filter.c
Cla_10_12.c Flash.c
ClaTasks.asm Gpio.c
CodeStartBranch.asm Lab_12.cmd
DefaultIsr_12.c Main_12.c
DelayUs.asm Passwords.asm
DSP2803x_GlobalVariableDefs.c PieCtrl_12.c
DSP2803x_Headers_BIOS.cmd SysCtrl.c
ECap_7_8_9_10_12.c Watchdog.c
EPwm_7_8_9_10_12.c

Edit Lab.h File
2. Edit Lab.h to uncomment the line that includes the labcfg.h header file. This is the

DSP/BIOS generated include file, and is needed to allow code to access the DSP/BIOS
functions and data structures. Next, comment out the line that includes the
“DSP2803x_DefaultIsr.h” ISR function prototypes. DSP/BIOS will supply its
own ISR function prototypes.

3. In our lab setup, we are running the ADC at a 50 kHz interrupt rate. Such a high
frequency interrupt would typically be handled directly in the HWI, as SWIs and TSKs
have some overhead associated with them and lauching them this frequently can cause
very large processing loads on the CPU. DSP/BIOS is flexible in this way. You can
have some interrupts processed directly in the HWI, and others delegated to SWIs or
TSKs. For purposes of this lab however, we would like to illustrate how to code a SWI.
Therefore, we will convert the ADC ISR into a SWI. To reduce the CPU load, we are
going to reduce the frequency of the ADC sample rate by half to 25 kHz.

In Lab.h modify the constant definition for the ADC sample rate as follows:

#define ADC_SAMPLE_PERIOD 2399 // 25 KHz sampling

 Save and close the file.

Remove “rts2800_ml.lib” and Inspect Lab_12.cmd
4. The DSP/BIOS configuration tool supplies its own RTS library. Open the Build

Options and select the Linker tab. In the Libraries Category, find the Include
Libraries (-l) box and delete: rts2800_ml.lib.

5. Select the Compiler tab. As the project is now configured, we would get a warning at
build time stating that the typedef name has already been declared with the same type.
This is because it has been defined twice; once in the header files and again in the include
file generated by DSP/BIOS. To suppress the warning select Diagnostics Category and
find the Suppress Diagnostic <n> (-pds): box. Type in code number 303.
Select OK and the Build Options window will close.

6. We will be using the DSP/BIOS configuration tool to create a linker command file. Open
and inspect Lab_12.cmd. Notice that the linker command file does not have a memory

C2000 Piccolo Workshop - DSP/BIOS 12 - 17

Lab 12: DSP/BIOS

area and includes only a limited sections area. These sections are not part of DSP/BIOS
and need to be included in a “user” linker command file. Close the inspected file.

Using the DSP/BIOS Configuration Tool
7. The text configuration file (*.tcf) created by the DSP/BIOS configuration tool controls a

wide range of CCS capabilities. The .tcf file will be used to automatically create and
perform memory management. Create a new .tcf file for this lab. On the menu bar click:

File New DSP/BIOS Configuration…

A dialog box appears showing a number of available .tcf seed files. The seed files are
used to configure many objects specific to the processor and will be invoked as the first
item in your own .tcf file. On the C2xxx tab select the ti.platforms.control28035
template and click OK. A configuration window will open.

8. Save the configuration file by selecting:

 File Save As…

 and name it Lab.tcf in C:\C28x\Labs\Lab12 then click Save. Close the
configuration window and select YES to save changes to Lab.tcf.

9. Add the configuration file to the project. Click:

 Project Add Files to Project…

Make sure you’re looking in C:\C28x\Labs\Lab12. Change the “files of type” to
view All Files (*.*) and select Lab.tcf. Click OPEN to add the file to the project.

10. In the project window left click the plus sign (+) to the left of DSP/BIOS Config.
Notice that the Lab.tcf file is listed.

11. Next, add the generated linker command file Labcfg.cmd to the project. After the file
has been added you will notice that it is listed under the source files.

Create New Memory Sections Using the TCF File
12. Open the Lab.tcf file by double clicking on Lab.tcf. In the configuration window,

left click the plus sign next to System and the plus sign next to MEM. By default, the
Memory Section Manager has combined the memory space L1, L2 and L3DPSARAM
into a single memory block called DPSARAM. It has also combined M0 and
M1SARAM into a single memory block called MSARAM.

13. Next, we will add some of the additional memory sections that will be needed for the lab
exercises in this module. To add a memory section:

Right click on MEM – Memory Section Manager and select Insert MEM.
Rename the newly added memory section to BEGIN_FLASH. Repeat the process and
add the following memory sections: CLAMSGRAM1, CLAMSGRAM2, CSM_RSVD,
IQTABLES, L3DPSARAM, and PASSWORDS. Double check and see that all seven
memory sections have been added.

12 - 18 C2000 Piccolo Workshop - DSP/BIOS

 Lab 12: DSP/BIOS

14. Modify the base addresses, length, and space of each of the memory sections to
correspond to the memory mapping shown in the table below. To modify the length,
base address, and space of a memory section, right click on the memory in the
configuration tool, and select Properties.

Memory Base Length Space

BEGIN_FLASH 0x3F 7FF6 0x0002 code

CLAMSGRAM1 0x00 1480 0x0080 data

CLAMSGRAM2 0x00 1500 0x0080 data

CSM_RSVD 0x3F 7F80 0x0076 code

IQTABLES 0x3F E000 0x0B50 code

L3DPSARAM 0x00 9000 0x1000 code

PASSWORDS 0x3F 7FF8 0x0008 code

15. Modify the base addresses, length, and space of each of the memory sections to avoid
memory conflicts with the newly added memory sections as shown in the table below.

Memory Base Length Space

BOOTROM 0x3F F27C 0x0D44 code

DPSARAM 0x00 8800 0x0800 data

FLASH 0x3E 8000 0xFF80 code

Link Uninitialized Sections to RAM
16. Right click on MEM – Memory Section Manager and select Properties.

Select the Compiler Sections tab and link the following uninitialized sections
into the MSARAM memory block via the pull-down boxes.

MSARAM

.bss

.ebss

C2000 Piccolo Workshop - DSP/BIOS 12 - 19

Lab 12: DSP/BIOS

Link Initialized Sections to Flash
All initialized sections must be linked to the on-chip flash memory. Each initialized section has
two addresses associated with it. First, it has a LOAD address which is the address to which it
gets loaded at load time (or at flash programming time). Second, it has a RUN address which is
the address from which the section is accessed at runtime. The linker assigns both addresses to
the section. Most initialized sections can have the same LOAD and RUN address in the flash.
However, some initialized sections need to be loaded to flash, but then run from RAM. This is
required, for example, if the contents of the section needs to be modified at runtime by the code.

17. This step assigns the RUN address of those sections that need to run from flash. Using
the MEM – Memory Section Manager in the DSP/BIOS configuration tool link
the following sections to on-chip flash memory via the pull-down boxes:

BIOS Data tab BIOS Code tab Compiler Sections tab

.gblinit .bios .text

 .sysinit .switch

 .hwi .cinit

 .rtdx_text .pinit

 .econst / .const

 .data / .cio

18. This step assigns the LOAD address of those sections that need to load to flash. Again
using the MEM – Memory Section Manager in the DSP/BIOS configuration tool
select the Load Address tab and check the “Specify Separate Load
Addresses” box. Then set all entries to the FLASH memory block.

19. Click the BIOS Data tab and notice that the .stack section has been linked into
memory. Click OK to close the window.

20. The section named “IQmath” is an initialized section that needs to load to and run from
flash. This section is not linked using the DSP/BIOS configuration tool (because it is
neither a standard compiler section nor a DSP/BIOS generated section). Instead, this
section is linked with the user linker command file (Lab_12.cmd). Open and inspect
Lab_12.cmd. Previously the “IQmath” section was linked to L0SARAM. Notice
that this section is now linked to FLASH.

12 - 20 C2000 Piccolo Workshop - DSP/BIOS

 Lab 12: DSP/BIOS

Set the Stack Size in the TCF File
Recall in the previous lab exercise that the stack size was set using the CCS project Build
Options. When using the DSP/BIOS configuration tool, the stack size is instead specified in the
.tcf file. First we need to remove the stack size setting from the project Build Options.

21. Click: Project Build Options… and select the Linker tab. Delete the entry
of 0x200 in the Stack Size box. Select OK to close the Build Options window.

22. Using the MEM – Memory Section Manager select the General tab. Set the
Stack Size to 0x100. The stack size needs to be reduced from 0x200 to 0x100 because of
the limited amount of available RAM on the device when using DSP/BIOS. Click OK to
close the window.

Copying .hwi_vec Section from Flash to RAM
The DSP/BIOS .hwi_vec section contains the interrupt vectors. This section must be loaded to
flash (load address) but run from RAM (run address). The code that performs this copy is located
in InitPieCtrl(). The linker command file generated by the DSP/BIOS configuration tool
generates global symbols that can be accessed by code in order to determine the load address, run
address, and length of the .hwi_vec section. The RTS library contains a memory copy function
called memcpy() which will be used to perform the copy.

23. Open and inspect InitPieCtrl() in PieCtrl_12.c. Notice the memcpy() function and
the symbols used to initialize (copy) the .hwi_vec section.

Copying the .trcdata Section from Flash to RAM
The DSP/BIOS .trcdata section is used by CCS and DSP/BIOS for certain real-time debugging
features. This section must be loaded to flash (load address) but run from RAM (run address).
The linker command file generated by the DSP/BIOS configuration tool generates global symbols
that can be accessed by code in order to determine the load address, run address, and length of the
.trcdata section. The memory copy function memcpy() will again be used to perform the copy.

The copying of .trcdata must be performed prior to main(). This is because DSP/BIOS modifies
the contents of .trcdata during DSP/BIOS initialization, which also occurs prior to main(). The
DSP/BIOS configuration tool provides a user initialization function which will be used to
perform the .trcdata section copy prior to both main() and DSP/BIOS initialization.

24. In the DSP/BIOS configuration file (Lab.tcf) and select the Properties for the
Global Settings. Check the box “Call User Init Function” and enter
the UserInit() function name with a leading underscore: _UserInit. This will
cause the function UserInit() to execute prior to main(). Click OK to close the window.

25. Open and inspect the file Main_12.c. Notice that the function UserInit() is used
to copy the .trcdata section from its load address to its run address before main().

C2000 Piccolo Workshop - DSP/BIOS 12 - 21

Lab 12: DSP/BIOS

Initializing the Flash Control Registers
The initialization code for the flash control registers cannot execute from the flash memory (since
it is changing the flash configuration!). Therefore, the initialization function for the flash control
registers must be copied from flash (load address) to RAM (run address) at runtime. The memory
copy function memcpy() will again be used to perform the copy. The initialization code for the
flash control registers InitFlash() is located in the Flash.c file.

26. Open and inspect Flash.c. The C compiler CODE_SECTION pragma is used to place
the InitFlash() function into a linkable section named “secureRamFuncs”.

27. Since the DSP/BIOS configuration tool does not know about user defined sections, the
“secureRamFuncs” section will be linked using the user linker command file
Lab_12.cmd. Open and inspect Lab_12.cmd. The “secureRamFuncs” will load
to flash (load address) but will run from LSARAM (run address). Also notice that the
linker has been asked to generate symbols for the load start, load size, and run start
addresses.

28. Open and inspect Main_12.c. Notice that the memory copy function memcpy() is
being used to copy the section “secureRamFuncs”, which contains the initialization
function for the flash control registers. Close all the inspected files.

Setup PIE Vectors for Interrupts in the TCF File
Next, we will setup all of the PIE interrupt vectors that will be needed for the lab exercises in this
module. This will include all of the vectors used in the previous lab exercises. (Note: the
PieVect.c file is not used since DSP/BIOS generates the interrupt vector table).

29. Modify the configuration file Lab.tcf to setup the PIE vector for the watchdog
interrupt. Click on the plus sign (+) to the left of Scheduling and again on the plus
sign (+) to the left of HWI – Hardware Interrupt Service Routine
Manager. Click the plus sign (+) to the left of PIE INTERRUPTS. Locate the
interrupt entry for the watchdog at PIE_INT1_8. Right click, select Properties,
and type _WAKEINT_ISR (with a leading underscore) in the function field. Click OK to
save.

30. Setup the PIE vector for the ADC interrupt. Locate the interrupt entry for the ADC at
PIE_INT1_1. Right click, select Properties, and type _ADCINT1_ISR (with a
leading underscore) in the function field. Click OK to save.

31. Setup the PIE vector for the ECAP1 interrupt. Locate the interrupt entry for the ECAP1
at PIE_INT4_1. Right click, select Properties, and type _ECAP1_INT_ISR
(with a leading underscore) in the function field. Click OK to save.

32. Setup the PIE vector for the CLA Task 1 interrupt. Locate the interrupt entry for the
CLA Task 1 at PIE_INT11_1. Right click, select Properties, and type
_CLA1_INT1_ISR (with a leading underscore) in the function field. Click OK to save.
Close the configuration window and select YES to save changes to Lab.tcf.

12 - 22 C2000 Piccolo Workshop - DSP/BIOS

 Lab 12: DSP/BIOS

Prepare main() for DSP/BIOS
33. Open Main_12.c and delete the inline assembly code from main() that enables global

interrupts. DSP/BIOS will enable global interrupts after main().

34. In Main_12.c, remove the endless while() loop from the end of main(). When using
DSP/BIOS, you must return from main(). In all DSP/BIOS programs, the main()
function should contain all one-time user-defined initialization functions. DSP/BIOS will
then take-over control of the software execution. Save and close the file.

Configuring DSP/BIOS Global Settings
35. Open the configuration file Lab.tcf and click on the plus sign (+) to the left of

System. Right click on Global Settings and select Properties. Confirm
that the “DSP Speed in MHz (CLKOUT)” field is set to 60 so that it matches the
processor speed. Click OK to save the value and close the configuration window. This
value is used by the CLK manager to calculate the register settings for the on-chip timers
and provide the proper time-base for executing CLK functions.

Create a SWI
36. Open Main_12.c and notice that at the end of main() two new functions have been

added – Cla1Swi() and LedBlink(). We moved part of the CLA1_INT1_ISR() routine
from DefaultIsr_12.c to this space in Main_12.c.

37. Open DefaultIsr_12.c and locate the CLA1_INT1_ISR() routine. The entire
contents of the CLA1_INT1_ISR() routine was moved to the Cla1Swi() function in
Main_12.c with the following exceptions:

• The instruction used to acknowledge the PIE group interrupt

• The GPIO pin (LED) toggle code

Comment: In almost all appplications, the PIE group acknowledge code is left in the HWI
(rather than move it to a SWI). This allows other interrupts to occur on that PIE group
even if the SWI has not yet executed. On the other hand, we are leaving the GPIO
toggle code in the HWI just as an example. It illustrates that you can post a SWI and also
do additional operations in the HWI. DSP/BIOS is extremely flexible!

38. Delete the interrupt key word from the CLA1_INT1_ISR. The interrupt keyword is
not used when a HWI is under DSP/BIOS control. A HWI is under DSP/BIOS control
when it uses any DSP/BIOS functionality, such as posting a SWI, or calling any
DSP/BIOS function or macro.

Post a SWI
39. Still in DefaultIsr_12.c add the following SWI_post to the CLA1_INT1_ISR(),

just after the structure used to acknowledge the PIE group:

C2000 Piccolo Workshop - DSP/BIOS 12 - 23

Lab 12: DSP/BIOS

SWI_post(&CLA1_swi); // post a SWI

This posts a SWI that will execute the CLA1_swi() code that was moved to the
Cla1Swi() function in Main_12.c. In other words, the CLA1 interrupt still executes
the same code as before. However, most of that code is now in a posted SWI that
DSP/BIOS will execute according to the specified scheduling priorities. Save and close
the modified files.

Add the SWI to the TCF File
40. In the configuration file Lab.tcf we need to add and setup the Cla1Swi() SWI. Open

Lab.tcf and click on the plus sign (+) to the left of Scheduling and again on the
plus sign (+) to the left of SWI – Software Interrupt Manager.

41. Right click on SWI – Software Interrupt Manager and select Insert SWI.
Rename SWI0 to CLA1_swi and click OK. This is just an arbitrary name. We want to
differentiate the Cla1Swi() function itself (which is nothing but an ordinary C function)
from the DSP/BIOS SWI object which we are calling CLA1_swi.

42. Select the Properties for CLA1_swi and type _Cla1Swi (with a leading
underscore) in the function field. Click OK. This tells DSP/BIOS that it should run the
function Cla1Swi() when it executes the CLA1_swi SWI.

43. We need to have the PIE for the CLA Task 1 interrupt use the dispatcher. The dispatcher
will automatically perform the context save and restore, and allow the DSP/BIOS
scheduler to have insight into the ISR. You may recall from an earlier lab that the CLA
Task 1 interrupt is located at PIE_INT11_1.

Click on the plus sign (+) to the left of HWI – Hardware Interrupt Service
Routine Manager. Click the plus sign (+) to the left of PIE INTERRUPTS. Locate
the interrupt entry for the CLA Task 1: PIE_INT11_1. Right click, select Properties,
and select the Dispatcher tab. Check the “Use Dispatcher” box and select OK.
Close the configuration file and click YES to save changes.

Add a Periodic Function
Recall that an instruction was used in the CLA1_INT1_ISR to toggle the LED on the
ControlCARD. This instruction has been moved into a periodic function that will toggle the LED
at the same rate.

44. Open DefaultIsr_12.c and locate the CLA1_INT1_ISR routine. Notice that the
instruction used to toggle the LED was moved to the LedBlink() function in
Main_12.c:

 GpioDataRegs.GPBTOGGLE.bit.GPIO34 = 1; // Toggle the pin

Also, the code used to implement the interval counter for the LED toggle (i.e., the
GPIO32_count++ loop), and the declaration of the GPIO32_count itself from the
beginning of CLA1_INT1_ISR() have been deleted. These are no longer needed, as
DSP/BIOS will implement the interval counter for us in the periodic function
configuration (next step in the lab). Close the inspected files.

12 - 24 C2000 Piccolo Workshop - DSP/BIOS

 Lab 12: DSP/BIOS

45. In the configuration file Lab.tcf we need to add and setup the LedBlink_PRD. Open
Lab.tcf and click on the plus sign (+) to the left of Scheduling. Right click on
PRD – Periodic Function Manger and select Insert PRD. Rename PRD0
to LedBlink_PRD and click OK.

Select the Properties for LedBlink_PRD and type _LedBlink (with a leading
underscore) in the function field. This tells DSP/BIOS to run the LedBlink() function
when it executes the LedBlink_PRD periodic function object.

Next, in the period (ticks) field type 500. The default DSP/BIOS system timer
increments every 1 millisecond, so what we are doing is telling the DSP/BIOS scheduler
to schedule the LedBlink() function to execute every 500 milliseconds. A PRD object is
just a special type of SWI which gets scheduled periodically and runs in the context of
the SWI level at a specified SWI priority. Click OK. Close the configuration file and
click YES to save changes.

DSP/BIOS – Real-time Analysis Tools
The DSP/BIOS analysis tools complement the CCS environment by enabling real-time program
analysis of a DSP/BIOS application. You can visually monitor an MCU application as it runs
with essentially no impact on the application’s real-time performance. In CCS, the DSP/BIOS
realt-time analysis (RTA) tools are found on the DSP/BIOS menu. Unlike traditional debugging,
which is external to the executing program, DSP/BIOS program analysis requires that the target
program be instrumented with analysis code. By using DSP/BIOS APIs and objects, developers
automatically instrument the target for capturing and uploading real-time information to CCS
using these tools.

46. In the next few steps the Log Event Manager will be setup to record the occurrence of an
event in real-time while the program executes. We will be using LOG_printf() to
write to a log buffer. The LOG_printf() function is a very efficient means of sending
a message from the code to the CCS display. Unlike an ordinary C-language printf(),
which can consume several hundred CPU cycles to format the data on the MCU before
transmission to the CCS host PC, a LOG_printf() transmits the raw data to the host. The
host then formats the data and displays it in CCS. This consumes only 10’s of cycles
rather than 100’s of cycles.

In Main_12.c notice the following code at the top of the LedBlink() function just
before the instruction used to toggle the LED:

static Uint16 LedSwiCount=0; // used for LOG_printf

/*** Using LOG_printf() to write to a log buffer ***/

 LOG_printf(&trace, "LedSwiCount = %u", LedSwiCount++);

Close the file.

47. In the configuration file Lab.tcf we need to add and setup the trace buffer. Open
Lab.tcf and click on the plus sign (+) to the left of Instrumentation and again on
the plus sign (+) to the left of LOG – Event Log Manager.

C2000 Piccolo Workshop - DSP/BIOS 12 - 25

Lab 12: DSP/BIOS

48. Right click on LOG – Event Log Manager and select Insert LOG. Rename
LOG0 to trace and click OK.

49. Select the Properties for trace and confirm that the logtype is set to circular and
the datatype is set to printf. Click OK. Close the configuration file and click YES to save
changes.

Build – Lab.out
50. At this point we need to build the project, but not have CCS automatically load it since

CCS cannot load code into the flash (the flash must be programmed)! On the menu bar
click: Option Customize… and select the “Program/Project CIO” tab
and confirm that the “Load Program After Build” is unchecked.

 Next select the “Debug Properties” tab and confirm that the “Step over
functions without debug information when source stepping” is
unchecked. Then click OK.

51. Click the “Build” button to generate Lab.out.

CCS Flash Plug-in
52. Open the Flash Plug-in tool by clicking:

Tools F28xx On-Chip Flash Programmer

53. A Clock Configuration window may open. If needed, in the Clock Configuration
window set “OSCCLK (MHz):” to 10, “DIVSEL:” to /2, and “PLLCR Value:” to 12.
Then click OK. In the next Flash Programmer Settings window confirm that the selected
DSP device to program is F28035 and all options have been checked. Click OK.

54. The CCS Flash Programmer uses the Piccolo™ 10 MHz internal oscillator as the device
clock during programming. Confirm the “Clock Configuration” in the upper left corner
has the OSCCLK set to 10 MHz, the DIVSEL set to /2, and the PLLCR value set to 12.
Recall that the PLL is divided by two, which gives a SYSCLKOUT of 60 MHz.

55. Confirm that all boxes are checked in the “Erase Sector Selection” area of the plug-in
window. We want to erase all the flash sectors.

56. We will not be using the plug-in to program the “Code Security Password”. Do not
modify the Code Security Password fields. They should remain as all 0xFFFF.

57. In the “Operation” block, notice that the “COFF file to Program/Verify” field
automatically defaults to the current .out file. Check to be sure that “Erase, Program,
Verify” is selected. We will be using the default wait states, as shown on the slide in this
module. The selection for wait-states only affects the verify step, and makes little
noticeable difference even if you reduce the wait-states.

12 - 26 C2000 Piccolo Workshop - DSP/BIOS

 Lab 12: DSP/BIOS

58. Click “Execute Operation” to program the flash memory. Watch the programming status
update in the plug-in window.

59. After successfully programming the flash memory, close the programmer window.

Running the Code – Using CCS
60. In order to effectively debug with CCS, we need to load the symbolic debug information

(e.g., symbol and label addresses, source file links, etc.) so that CCS knows where
everything is in your code. Click:

File Load Symbols Load Symbols Only…

and select Lab12.out in the Debug folder.

61. Reset the CPU. The program counter should now be at 0x3FF8A1, which is the start of
the bootloader in the Boot ROM.

62. Under GEL on the menu bar click:
EMU Boot Mode Select EMU_BOOT_FLASH.
This has the debugger load values into EMU_KEY and EMU_BMODE so that the
bootloader will jump to "FLASH" at 0x3F7FF6.

63. Single-Step <F11> through the bootloader code until you arrive at the beginning of the
codestart section in the CodeStartBranch.asm file. (Be patient, it will take about
125 single-steps). Notice that we have placed some code in CodeStartBranch.asm
to give an option to first disable the watchdog, if selected.

64. Step a few more times until you reach the start of the C-compiler initialization routine at
the symbol _c_int00.

65. Now do Debug Go Main. The code should stop at the beginning of your main()
routine. If you got to that point succesfully, it confirms that the flash has been
programmed properly, that the bootloader is properly configured for jump to flash mode,
and that the codestart section has been linked to the proper address.

66. You can now RUN the CPU, and you should observe the LED on the ControlCARD
blinking. Try resetting the CPU, select the EMU_BOOT_FLASH boot mode, and then
hitting RUN (without doing all the stepping and the Go Main procedure). The LED
should be blinking again.

Run the Code – Real-time Analysis Tools
It will be interesting to investigate the CPU computational burden of the the different pieces of
DSP/BIOS real-time analysis tools that we will be using in this lab exercise. The ‘CPU Load
Graph’ feature of DSP/BIOS will provide a quick and easy method for doing this. We will be
tabulating these results in the table that follows at various steps throughout the remainder of this
lab.

C2000 Piccolo Workshop - DSP/BIOS 12 - 27

Lab 12: DSP/BIOS

Table 12-1: CPU Computational Burden Results

Case

Description CPU Load %

1 CLA processing handled in SWI.
LED blink handled in PRD.
RTA Global Host Enable disabled.

2 Case #1 + LOG_printf in SWI.

3 Case #2 + RTA SWI Logging enabled.

4 Case #3 + RTA SWI Accumulators enabled.

67. Open the RTA Control Panel by clicking DSP/BIOS RTA Control Panel.
Uncheck ALL of the boxes. This disables most of the realtime analysis tools. We will
selectively enable them in the lab.

68. Open the CPU Load Graph by clicking DSP/BIOS CPU Load Graph. The CPU
load graph displays the percentage of available CPU computing horsepower that the
application is consuming. The CPU may be running ISRs, software interrupts, periodic
functions, performing I/O with the host, or running any user routine. When the CPU is
not executing user code, it will be idle (in the DSP/BIOS idle thread).

69. Record the value shown in the CPU Load Graph under “Case #1” in Table 12-1.

70. Open the Message Log. On the menu bar, click:

DSP/BIOS Message Log

The message log dialog box is displaying the commanded LOG_printf() output, i.e. the
number of times (count value) that the LedSwi() has executed.

71. Verify that all the check boxes in the RTA Control Panel window are still unchecked.
Then, check the box marked “Global Host Enable.” This is the main control switch for
most of the RTA tools. We will be selectively enabling the rest of the check boxes in this
portion of the exercise.

72. Record the value shown in the CPU Load Graph under “Case #2” in Table 12-1.

73. Open the Execution Graph. On the menu bar, click:

DSP/BIOS Execution Graph

12 - 28 C2000 Piccolo Workshop - DSP/BIOS

 Lab 12: DSP/BIOS

Presently, the execution graph is not displaying anything. This is because we have it
disabled in the RTA Control Panel.

In the RTA Control Panel, check the top four boxes to enable logging of all event types to
the execution graph. Notice that the Execution Graph is now displaying information
about the execution threads being taken by your software. This graph is not based on
time, but the activity of events (i.e. when an event happens, such as a SWI or periodic
function begins execution). Notice that the execution graph simply records DSP/BIOS
CLK events along with other system events (the DSP/BIOS clock periodically triggers
the DSP/BIOS scheduler). As a result, the time scale on the execution graph is not linear.

The logging of events to the execution graph consumes CPU cycles, which is why the
CPU Load Graph jumped as you enabled logging.

74. Record the value shown in the CPU Load Graph under “Case #3” in Table 12-1.

75. Open the Statistics View window. On the menu bar, click:

DSP/BIOS Statistics View

Presently, the statistics view window is not changing with the exception of the statistics
for the IDL_busyObj row (i.e., the idle loop). This is because we have it disabled in the
RTA Control Panel.

In the RTA Control Panel, check the next five boxes (i.e., those with the word
“Accumulator” in their description) to enable logging of statistics to the statistics view
window. The logging of statistics consumes CPU cycles, which is why the CPU Load
Graph jumped as you enabled logging.

76. Record the value shown in the CPU Load Graph under “Case #4” in Table 12-1.

77. Table 12-1 should now be completely filled in. Think about the results.

Note: In this lab exercise only the basic features of DSP/BIOS and the real-time analysis tools
have been used. For more information and details, please refer to the DSP/BIOS user’s
manuals and other DSP/BIOS related training.

Running the Code – Stand-alone Operation (No Emulator)
78. Close Code Composer Studio.

79. Disconnect the USB cable (emulator) from the Docking Station (i.e. remove power from
the ControlCARD).

80. Re-connect the USB cable to the Docking Station to power the ControlCARD. The LED
should be blinking, showing that the code is now running from flash memory.

End of Exercise

C2000 Piccolo Workshop - DSP/BIOS 12 - 29

Lab 12: DSP/BIOS

Lab 12 Reference: Programming the Flash

Flash Memory Section Blocks

PASSWORDS
len = 0x8

space = code

BEGIN_FLASH
len = 0x2

space = code

CSM_RSVD
len = 0x76

space = code

FLASH
len = 0xFF80
space = code

0x3E 8000

0x3F 7F80

0x3F 7FF6

0x3F 7FF8

base =

SECTIONS
{

codestart :> BEGIN_FLASH, PAGE = 0
passwords :> PASSWORDS, PAGE = 0
csm_rsvd :> CSM_RSVD, PAGE = 0

}

Lab_12.cmd

BIOS Startup Sequence from Flash Memory

0x3F 7FF6

0x3E 8000

0x3F E000

0x3F FFC0

Boot ROM (8Kw)

BROM vector (32w)
0x3F F8A1

Boot Code

RESET

0x3F F8A1
{SCAN GPIO}

FLASH (64Kw)

Passwords (8w)
_c_int00

LB

BIOS code Sections

“rts2800_ml.lib”

“user” code sections

_c_int00 BIOS_reset()
BIOS_init()
main ()
BIOS_start()

IDL_run()

main ()
{

……
return;

}2

3

4

5

6

7

1

12 - 30 C2000 Piccolo Workshop - DSP/BIOS

 Lab 12: DSP/BIOS

Table 12-2: CPU Computational Burden Results (Solution)

Case

Description CPU Load %

1 CLA processing handled in SWI.
LED blink handled in PRD.
RTA Global Host Enable disabled.

27.5

2 Case #1 + LOG_printf in SWI. 27.5

3 Case #2 + RTA SWI Logging enabled. 37.0

4 Case #3 + RTA SWI Accumulators enabled. 48.6

C2000 Piccolo Workshop - DSP/BIOS 12 - 31

Lab 12: DSP/BIOS

12 - 32 C2000 Piccolo Workshop - DSP/BIOS

Development Support

Introduction
This module contains various references to support the development process.

Learning Objectives
Learning Objectives

TI Workshops Download Site

Signal Processing Libraries

TI Development Tools

Additional Resources
Internet

Product Information Center

C2000 Piccolo Workshop - Development Support 13 - 1

Module Topics

Module Topics
Development Support ..13-1

Module Topics..13-2
TI Support Resources...13-3

C28x Signal Processing Libraries..13-3
Experimenter’s Kits...13-4
F28335 Peripheral Explorer Kit...13-5
C2000 ControlCARD Application Kits...13-5
Product Information Resources ...13-6

13 - 2 C2000 Piccolo Workshop - Development Support

 TI Support Resources

TI Support Resources
TI Workshops Download Site

http://www.tiworkshop.com/survey/downloadsort.asp

Login Name: c28xmdw
Password: ttoc28

C28x Signal Processing Libraries

C2000 Signal Processing Libraries
Signal Processing Libraries & Applications Software Literature #
ACI3-1: Control with Constant V/Hz SPRC194
ACI3-3: Sensored Indirect Flux Vector Control SPRC207
ACI3-3: Sensored Indirect Flux Vector Control (simulation) SPRC208
ACI3-4: Sensorless Direct Flux Vector Control SPRC195
ACI3-4: Sensorless Direct Flux Vector Control (simulation) SPRC209
PMSM3-1: Sensored Field Oriented Control using QEP SPRC210
PMSM3-2: Sensorless Field Oriented Control SPRC197
PMSM3-3: Sensored Field Oriented Control using Resolver SPRC211
PMSM3-4: Sensored Position Control using QEP SPRC212
BLDC3-1: Sensored Trapezoidal Control using Hall Sensors SPRC213
BLDC3-2: Sensorless Trapezoidal Drive SPRC196
DCMOTOR: Speed & Position Control using QEP without Index SPRC214
Digital Motor Control Library (F/C280x) SPRC215
Communications Driver Library SPRC183
DSP Fast Fourier Transform (FFT) Library SPRC081
DSP Filter Library SPRC082
DSP Fixed-Point Math Library SPRC085
DSP IQ Math Library SPRC087
DSP Signal Generator Library SPRC083
DSP Software Test Bench (STB) Library SPRC084
C28x FPU Fast RTS Library SPRC664
DSP2803x C/C++ Header Files and Peripheral Examples SPRC892

Available from TI Website ⇒ http://www.ti.com/c2000

C2000 Piccolo Workshop - Development Support 13 - 3

TI Support Resources

Experimenter’s Kits

C2000 Experimenter’s Kits
F28027, F28035, F2808, F28335

Experimenter Kits include
F28027, F28035, F2808 or F28335
ControlCARD
USB docking station
C2000 Applications Software CD
with example code and full
hardware details
Code Composer Studio v3.3 with
code size limit of 32KB

Docking station features
Access to ControlCARD signals
Breadboard areas
Onboard USB JTAG Emulation

JTAG emulator not required

Available through TI authorized
distributors and the TI eStore

TMDXDOCK28027

TMDXDOCK28035

TMDSDOCK2808

TMDSDOCK28335

C2834x Experimenter’s Kits
C28343, C28346

Experimenter Kits include
C2834x ControlCARD
Docking station
C2000 Applications Software CD
with example code and full
hardware details
Code Composer Studio v3.3 with
code size limit of 32KB
5V power supply

Docking station features
Access to ControlCARD signals
Breadboard areas
JTAG emulator required – sold
separately

Available through TI authorized
distributors and the TI eStore

TMDXDOCK28343

TMDXDOCK28346-168

13 - 4 C2000 Piccolo Workshop - Development Support

 TI Support Resources

F28335 Peripheral Explorer Kit

F28335 Peripheral Explorer Kit
Experimenter Kit includes

F28335 ControlCARD
Peripheral Explorer baseboard
C2000 Applications Software CD
with example code and full
hardware details
Code Composer Studio v3.3 with
code size limit of 32KB
5V DC power supply

Peripheral Explorer features
ADC input variable resistors
GPIO hex encoder & push buttons
eCAP infrared sensor
GPIO LEDs, I2C & CAN connection
Analog I/O (AIC+McBSP)

JTAG emulator required – sold
separately
Available through TI authorized
distributors and the TI eStoreTMDSPREX28335

C2000 ControlCARD Application Kits

C2000 ControlCARD Application Kits
Digital Power

Experimenter’s
Kit

Digital Power
Developer’s

Kit

Resonant
DC/DC

Developer’s Kit

Renewable
Energy

Developer’s Kit

AC/DC
Developer’s

Kit

Kits includes
ControlCARD and application
specific baseboard
Full version of Code Composer
Studio v3.3 with 32KB code size
limit

Software download includes
Complete schematics, BOM, gerber
files, and source code for board
and all software
Quickstart demonstration GUI for
quick and easy access to all board
features
Fully documented software
specific to each kit and application

See www.ti.com/c2000 for more
details
Available through TI authorized
distributors and the TI eStore

Dual Motor
Control and

PFC
Developer’s

Kit

C2000 Piccolo Workshop - Development Support 13 - 5

TI Support Resources

Product Information Resources

For More Information . . .

Phone: 800-477-8924 or 972-644-5580
Email: support@ti.com

Information and support for all TI Semiconductor products/tools
Submit suggestions and errata for tools, silicon and documents

USA - Product Information Center (PIC)

Website: http://www.ti.com

FAQ: http://www-k.ext.ti.com/sc/technical_support/knowledgebase.htm
Device information my.ti.com
Application notes News and events
Technical documentation Training

Enroll in Technical Training: http://www.ti.com/sc/training

Internet

Web: http://www-k.ext.ti.com/sc/technical_support/pic/euro.htm

Phone: Language Number
Belgium (English) +32 (0) 27 45 55 32
France +33 (0) 1 30 70 11 64
Germany +49 (0) 8161 80 33 11
Israel (English) 1800 949 0107 (free phone)
Italy 800 79 11 37 (free phone)
Netherlands (English) +31 (0) 546 87 95 45
Spain +34 902 35 40 28
Sweden (English) +46 (0) 8587 555 22
United Kingdom +44 (0) 1604 66 33 99
Finland (English) +358(0) 9 25 17 39 48

Fax: All Languages +49 (0) 8161 80 2045

Email: epic@ti.com

Literature, Sample Requests and Analog EVM Ordering
Information, Technical and Design support for all Catalog TI
Semiconductor products/tools
Submit suggestions and errata for tools, silicon and documents

European Product Information Center (EPIC)

13 - 6 C2000 Piccolo Workshop - Development Support

Appendix A – Experimenter’s Kit

C2000 Piccolo Workshop - Appendix A -Experimenter's Kit A - 1

Module Topics

Module Topics
Appendix A – Experimenter’s Kit ...A-1

Module Topics... A-2
F28035 ControlCARD .. A-3

F28035 PCB Outline (Top View)...A-3
LD1 / LD2 / LD3..A-3
SW1..A-3
SW2..A-4
SW3..A-4

F28335 ControlCARD .. A-5
F28335 PCB Outline (Top View)...A-5
LD1 / LD2 / LD3..A-5

Docking Station... A-6
SW1 / LD1..A-6
JP1 / JP2 ...A-6
J1 / J2 /J3 / J8 / J9...A-6
F2833x Boot Mode Selection ...A-7
F280xx Boot Mode Selection ...A-7
J3 – DB-9 to 4-Pin Header Cable ...A-8

A - 2 C2000 Piccolo Workshop - Appendix A -Experimenter's Kit

 F28035 ControlCARD

F28035 ControlCARD

F28035 PCB Outline (Top View)

SW1

SW3 SW2

LD2 LD3LD1

LD1 / LD2 / LD3

SW1

C2000 Piccolo Workshop - Appendix A -Experimenter's Kit A - 3

F28035 ControlCARD

SW2

SW3

A - 4 C2000 Piccolo Workshop - Appendix A -Experimenter's Kit

 F28335 ControlCARD

F28335 ControlCARD

F28335 PCB Outline (Top View)

LD2 LD1LD3

LD1 / LD2 / LD3

C2000 Piccolo Workshop - Appendix A -Experimenter's Kit A - 5

Docking Station

Docking Station

SW1

JP1

JP2

LD1J1

J2

J3

2833x
Boot

280xx
Boot

J8J9

SW1 / LD1
SW1 – USB: Power from USB; ON – Power from JP1

LD1 – Power-On indicator

JP1 / JP2
JP1 – 5.0 V power supply input

JP2 – USB JTAG emulation port

J1 / J2 /J3 / J8 / J9
J1 – ControlCARD 100-pin DIMM socket

J2 – JTAG header connector

J3 – UART communications header connector

J8 – Internal emulation enable/disable jumper (NO jumper for internal emulation)

J9 – User virtual COM port to C2000 device (Note: ControlCARD would need to be
modified to disconnect the C2000 UART connection from header J3)

A - 6 C2000 Piccolo Workshop - Appendix A -Experimenter's Kit

 Docking Station

Note: The internal emulation logic on the Docking Station routes through the FT2232 USB
device. By default this device enables the USB connection to perform JTAG
communication and in parallel create a virtual serial port (SCI/UART). As shipped, the
C2000 device is not connected to the virtual COM port and is instead connected to J3.

F2833x Boot Mode Selection

F280xx Boot Mode Selection

C2000 Piccolo Workshop - Appendix A -Experimenter's Kit A - 7

Docking Station

J3 – DB-9 to 4-Pin Header Cable

Note: This cable is NOT included with the Experimenter’s Kit and is only shown for reference.

Pin-Out Table for Both Ends of the Cable:

DB-9 female SIL 0.1" female
Pin# Pin#
--
2 (black) 1 (TX)
3 (red) 4 (RX)
5 (bare wire) 3 (GND)

Note: pin 2 on SIL is a no-connect

DB-9 Male

A - 8 C2000 Piccolo Workshop - Appendix A -Experimenter's Kit

Appendix B – Addressing Modes

Introduction
Appendix B will describe the data addressing modes on the C28x. Immediate addressing allows
for constant expressions which are especially useful in the initialization process. Indirect
addressing uses auxiliary registers as pointers for accessing organized data in arrays. Direct
addressing is used to access general purpose memory. Techniques for managing data pages,
relevant to direct addressing will be covered as well. Finally, register addressing allows for
interchange between CPU registers.

Learning Objectives

Learning Objectives

Explain .sect and .usect assembly directives

Explain assembly addressing modes

Understand instruction formats

Describe options for each addressing mode

C2000 Piccolo Workshop - Appendix B - Addressing Modes B - 1

Module Topics

Module Topics
Appendix B – Addressing Modes ...B-1

Module Topics... B-2
Labels, Mnemonics and Assembly Directives ... B-3
Addressing Modes... B-4
Instruction Formats .. B-5
Register Addressing .. B-6
Immediate Addressing... B-7
Direct Addressing ... B-8
Indirect Addressing... B-10
Review... B-13

Exercise B...B-14
Lab B: Addressing... B-15
OPTIONAL Lab B-C: Array Initialization in C .. B-17
Solutions.. B-18

B - 2 C2000 Piccolo Workshop - Appendix B - Addressing Modes

 Labels, Mnemonics and Assembly Directives

Labels, Mnemonics and Assembly Directives

.def start
count .set 9

;create an array x of 10 words
x .usect “mydata”, 10

.sect “code”
start: C28OBJ ;operate in C28x mode

MOV ACC,#1
next: MOVL XAR1,#x

MOV AR2,#count
loop: MOV *XAR1++,AL

BANZ loop,AR2--
bump: ADD ACC,#1

SB next,UNC

.ref start

.sect “vectors”
;make reset vector address 'start'

reset: .long start

Labels and Mnemonics

Mnemonics
Lines of instructions
Use upper or lower case
Become components of
program memory

Labels
Optional for all assembly
instructions and most
assembler directives
Must begin in column 1
The “ : ” is not treated as
part of the label name
Used as pointers to
memory or instructions

.def start
count .set 9

; create an array x of 10 words
x .usect “mydata”, 10

.sect “code”
start: C28OBJ ;operate in C28x mode

MOV ACC,#1
next: MOVL XAR1,#x

MOV AR2,#count
loop: MOV *XAR1++,AL

BANZ loop,AR2--
bump: ADD ACC,#1

SB next,UNC

Assembly Directives
.ref start
.sect “vectors”
;make reset vector address 'start'

reset: .long start

Directives allow you to:
Define a label as global
Reserve space in memory
for un-initialized variables
Initialized memory

Begin with a period (.) and are
lower case

Used by the linker to locate
code and data into specified
sections

initialized section
.sect “name”

used for code or constants

uninitialized section
label .usect “name”,5

used for variables

Directives

C2000 Piccolo Workshop - Appendix B - Addressing Modes B - 3

Addressing Modes

Addressing Modes
Addressing Modes

Mode Symbol Purpose

Register Operate between Registers

Immediate # Constants and Initialization

Direct @ General-purpose access to data

Indirect * Support for pointers – access arrays,
lists, tables

(register)

(constant)

(paged)

(pointer)

Four main categories of addressing modes are available on the C28x. Register addressing mode
allows interchange between all CPU registers, convenient for solving intricate equations.
Immediate addressing is helpful for expressing constants easily. Direct addressing mode allows
information in memory to be accessed. Indirect addressing allows pointer support via dedicated
‘auxiliary registers’, and includes the ability to index, or increment through a structure. The C28x
supports a true software stack, desirable for supporting the needs of the C language and other
structured programming environments, and presents a stack-relative addressing mode for
efficiently accessing elements from the stack. Paged direct addressing offers general-purpose
single cycle memory access, but restricts the user to working in any single desired block of
memory at one time.

B - 4 C2000 Piccolo Workshop - Appendix B - Addressing Modes

 Instruction Formats

Instruction Formats

Instruction Formats

What is a “REG”?
16-bit Access = AR0 through AR7, AH, AL, PH, PL, T and SP
32-bit Access = XAR0 through XAR7, ACC, P, XT

What is an “#imm”?
an immediate constant stored in the instruction

What is a “mem”?
A directly or indirectly addressed operand from data memory
Or, one of the registers from “REG”!
loc16 or loc32 (for 16-bit or 32-bit data access)

INSTR REG NEG AL
INSTR REG,#imm MOV ACC,#1
INSTR REG,mem ADD AL,@x
INSTR mem,REG SUB AL,@AR0
INSTR mem,#imm MOV *XAR0++,#25

INSTR dst ,src Example

The C28x follows a convention that uses instruction, destination, then source operand order
(INSTR dst, src). Several general formats exist to allow modification of memory or registers
based on constants, memory, or register inputs. Different modes are identifiable by their leading
characters (# for immediate, * for indirect, and @ for direct). Note that registers or data memory
can be selected as a ‘mem’ value.

C2000 Piccolo Workshop - Appendix B - Addressing Modes B - 5

Register Addressing

Register Addressing
Register Addressing

Allows for efficient register to register
operation
16-bit and 32-bit Register Address modes
Reduces code overhead, memory
accesses, and memory overhead

AR0 – AR7 AH AL PH PL T TL DP SP
16-bit Registers

XAR0 – XAR7 ACC P XT
32-bit Registers

Register addressing allows the exchange of values between registers, and with certain instructions
can be used in conjunction with other addressing modes, yielding a more efficient instruction set.
Remember that any ‘mem’ field allows the use of a register as the operand, and that no special
character (such as @, *, or #) need be used to specify the register mode.

Register Addressing – Example

MOVL loc32,ACC

MOVL @XT,ACC

MOV loc16,Ax,COND

MOV @AR1,AL,GT

MOV Ax,loc16

MOV AH,@AL

User Guide & Dis-assembler
use @ for second register

Format

Instruction

Format

Instruction

B - 6 C2000 Piccolo Workshop - Appendix B - Addressing Modes

 Immediate Addressing

Immediate Addressing
Immediate Addressing – “#”

Fixed value part of program memory
instruction
Supports short (8-bit) and long (16-bit)
immediate constants
Long immediate can include a shift
Used to initialize registers, and operate
with constants

OPCODE 8-bit OPERAND
one word instruction

OPCODE
16-bit OPERAND

two word instruction

Immediate addressing allows the user to specify a constant within an instruction mnemonic. Short
immediate are single word, and execute in a single cycle. Long (16-bit) immediate allow full
sized values, which become two-word instructions - yet execute in a single instruction cycle.

Immediate Addressing – Example

Long Immediate, 2 Words (AND)

loc16
#16Bit

AND

AND loc16,#16Bit

Ax

#16Bit

loc16AND

AND Ax,loc16,#16Bit

ACC

#16Bit

shiftAND

AND ACC,#16Bit,<<0-16

Short Immediate, 1 Word (ANDB)

AND automatically replaced by
ANDB if IMM value is 8 bits or less

ANDB

ANDB Ax,#8Bit

Ax #8Bit

C2000 Piccolo Workshop - Appendix B - Addressing Modes B - 7

Direct Addressing

Direct Addressing
Direct addressing allows for access to the full 4-Meg words space in 64 word “page” groups. As
such, a 16-bit Data Page register is used to extend the 6-bit local address in the instruction word.
Programmers should note that poor DP management is a key source of programming errors.
Paged direct addressing is fast and reliable if the above considerations are followed. The watch
operation, recommended for use whenever debugging, extracts the data page and displays it as the
base address currently in use for direct addressing.

Direct Addressing – “@”

Data memory space divided into 65,536 pages with
64 words on each page
Data page pointer (DP) used to select active page
16-bit DP is concatenated with a 6-bit offset from the
instruction to generate an absolute 22-bit address
Access data on a given page in any order

00 0000 0000 0000 00 00 0000
• • • Page 0: 00 0000 – 00 003F

00 0000 0000 0000 00 11 1111
00 0000 0000 0000 01 00 0000

• • • Page 1: 00 0040 – 00 007F
00 0000 0000 0000 01 11 1111
00 0000 0000 0000 10 00 0000

• • • Page 2: 00 0080 – 00 00BF
00 0000 0000 0000 10 11 1111

• • • • •
• • • • •

11 1111 1111 1111 11 00 0000
• • • Page 65,535: 3F FFC0 – 3F FFFF

11 1111 1111 1111 11 11 1111

OffsetData Page Data Memory

B - 8 C2000 Piccolo Workshop - Appendix B - Addressing Modes

 Direct Addressing

Direct Addressing – Example

Z = X + Y

x .usect “samp”,3
.sect “code”

MOV AL,@x
MOVW DP,#x

ADD AL,@y
MOV @z, AL

Data Memory
address data
0001C0 0001 … …

x: 0001FD 1000
y: 0001FE 0500
z: 0001FF

64
Page7[00]
...

Page7[3D]
Page7[3E]
Page7[3F] 1500

variations:
MOVW DP,#imm ;2W, 16-bit (4 Meg)

MOVZ DP,#imm ;1W, 10-bit (64K)
MOV DP,#imm ;DP(15:10) unchanged

0000 0000 0000 0001 1111 1111
0 0 0 1 F F

DP offset

0 0 0 0 1 5 0 0
0 0 0 0 1 0 0 0

AccumulatorDP=0007
- - - - - - - -

MOV AL,@x
ADD AL,@y

MOV @z,AL

Direct Addressing – Caveats
Z = X + Y

x .usect “samp”,3
.sect “code”

ADD AL,@y
MOV @z, AL

Data Memory
address data
0001C0 0001 … …

x: 0001FF 1000
y: 000200 0500

… …

Page7[00]
...

Page7[3F]

Page8[00]

MOVW DP,#x0 0 0 0 1 0 0 10 0 0 7
0 0 0 0 1 0 0 00 0 0 7

AccumulatorDP=0007
- - - - - - - -0 0 0 7

MOV AL,@x

0000 0000 0000 0001 1111 1111
DP offset

0000 0000 0000 0010 0000 0000

expecting 1500

Solution: Group and block variables in ASM file:
x .usect “samp”,3,1 ;Force all locations to same data
y .set x+1 ;page (1st hole, else linker error)
z .set x+2 ;Assign vars within block

(X and Y not on the same page)

C2000 Piccolo Workshop - Appendix B - Addressing Modes B - 9

Indirect Addressing

Indirect Addressing

Indirect Addressing – “*”

Auxiliary Registers (XARn) used to access full
data memory space
Address Register Arithmetic Unit (ARAU) used
to modify the XARn
Access data from arrays anywhere in data
memory in an orderly fashion

Data Memory
XAR0
XAR1
XAR2
XAR3
XAR4
XAR5
XAR6
XAR7

ARAU

Any of eight hardware pointers (ARs) may be employed to access values from the first 64K of
data memory. Auto-increment or decrement is supported at no additional cycle cost. XAR register
formats offer larger 32-bit widths, allowing them to access across the full 4-Giga words data
space.

Indirect Addressing Modes

Auto-increment / decrement: *XARn++, *--XARn
Post-increment or Pre-decrement

Offset: *+XARn[AR0 or AR1], *+XARn[3bit]
Offset by 16-bit AR0 or AR1, or 3-bit constant

Stack Relative: *-SP[6bit]
Index by 6-bit offset (optimal for C)

Immediate Direct: *(0:16bit)
Access low 64K

Circular: *AR6%++
AR1(7:0) is buffer size
XAR6 is current address

B - 10 C2000 Piccolo Workshop - Appendix B - Addressing Modes

 Indirect Addressing

Indirect Addressing – Example
Autoincrement

∑
=

=
4

0n
nxy

Data

x0
x1
x2
x3
x4

x

y

XAR2

*(0:16bit) - 16 bit label
- must be in lower 64K
- 2 word instruction

x .usect “samp”,6
y .set (x + 5)

.sect “code”
MOVL XAR2,#x
MOV ACC,*XAR2++
ADD ACC,*XAR2++
ADD ACC,*XAR2++
ADD ACC,*XAR2++
ADD ACC,*XAR2++
MOV *(0:y),AL

Fast, efficient access to arrays, lists, tables, etc.

Indexed addressing offers the ability to select operands from within an array without modification
to the base pointer. Stack-based operations are handled with a 16-bit Stack Pointer register, which
operates over the base 64K of data memory. It offers 6-bit non-destructive indexing to access
larger stack-based arrays efficiently.

Indirect Addressing – Example
Offset

x[2] = x[1] + x[3]

MOVL XAR2,#x
MOV AR0,#1
MOV AR1,#3
MOV ACC,*+XAR2[AR0]
ADD ACC,*+XAR2[AR1]
MOV *+XAR2[2],AL

x .usect “.samp”,5
.sect “.code”

MOVL XAR2,#x
MOV ACC,*+XAR2[1]
ADD ACC,*+XAR2[3]
MOV *+XAR2[2],AL

x .usect “.samp”,5
.sect “.code”

x

Data

x0
x1
x2
x3
x4

XAR2
[3]

3 bit offset16 bit offset
Allows offset into arrays with fixed base pointer

C2000 Piccolo Workshop - Appendix B - Addressing Modes B - 11

Indirect Addressing

Indirect Addressing – Example
Stack Relative

.sect “.code”

x2 = x1 + x3

MOV *-SP[2],AL

ADD AL,*-SP[3]

MOV AL,*-SP[1]
Accumulator

0 0 0 0 0 2 0 0

0 0 0 0 0 3 2 0

0 1 2 0
0 0 5 0
0 2 0 0
empty
empty

Data Memory

- SP -

x2
x1

x3
? ? ? ?0 3 2 0

Instr. 1

Instr. 2

Instr. 3

Useful for stack based operations

Indirect Addressing – Example
Circular

(AR1 Low is set to buffer size – 1)

AR1 Low (16)
end of buffer ---- ----

start of buffer

(align on 256 word boundary)

AAAA AAAAAAAA … AAAA

SECTIONS
{ Buf_Mem: align(256) { } > RAM PAGE 1

. . .
}

LINKER.CMD

circular
buffer
range

Element 0

Element N-1

Buffer Size N

XAR6 (32)access pointer
AAAA AAAAAAAA … AAAA xxxx xxxx

N-1

0000 0000

MAC P,*AR6%++,*XAR7++

B - 12 C2000 Piccolo Workshop - Appendix B - Addressing Modes

 Review

Review
Addressing Range Review

0x000000

0x00003F

0x00FFFF

0xFFFFFFFF

Stack
Addressing

SP
64K Indirect

Addressing
XARn

4G

0x3FFFFF

Direct
Addressing

DP(16+6)
4M

Data memory can be accessed in numerous ways:

• Stack Addressing: allows a range to 64K
• Direct Addressing: Offers a 16-bit DP plus a 6-bit offset, allowing a 4M range
• Indirect Addressing: Offers the full 4G range

C2000 Piccolo Workshop - Appendix B - Addressing Modes B - 13

Review

Exercise B

Exercise B: Addressing
Given: DP = 4000 DP = 4004 DP = 4006
Address/Data (hex) 100030 0025 100100 0105 100180 0100
Fill in the 100031 0120 100101 0060 100181 0030
table below 100032 100102 0020 100182 0040

Src Mode Program ACC DP AR1 AR2
MOVW DP,#4000h
MOVL XAR1,#100100h
MOVL XAR2,#100180h
MOV AL,@31h
ADD AL,*XAR1++
SUB AL,@30h
ADD AL,*XAR1++
MOVW DP,#4006h
ADD AL,@1
SUB AL,*XAR1
ADD AL,*XAR2
SUB AL,*+XAR2[1]
ADD AL,#32
SUB AL,*+XAR2[2]
MOV @32h,AL

Src Mode Program

Imm: Immediate;
Reg: Register;

Dir: Direct;
Idr: Indirect

ACC DP XAR1 XAR2

In the table above, fill in the values for each of the registers for each of the instructions. Three
areas of data memory are displayed at the top of the diagram, showing both their addresses and
contents in hexadecimal. Watch out for surprises along the way. First, you should answer the
addressing mode for the source operand. Then, fill in the change values as the result of the in-
struction operation.

B - 14 C2000 Piccolo Workshop - Appendix B - Addressing Modes

 Lab B: Addressing

Lab B: Addressing
Note: The lab linker command file is based on the F28035 memory map – modify as needed, if

using a different F28xx device memory map.

 Objective

The objective of this lab is to practice and verify the mechanics of addressing. In this process we
will expand upon the ASM file from the previous lab to include new functions. Additionally, we
learn how to run and observe the operation of code using Code Composer Studio.

In this lab, we will initialize the “vars” arrays allocated in the previous lab with the contents of
the “const” table. How is this best accomplished? Consider the process of loading the first
“const” value into the accumulator and then storing this value to the first “vars” location,
and repeating this process for each of the succeeding values.

• What forms of addressing could be used for this purpose?
• Which addressing mode would be best in this case? Why?
• What problems could arise with using another mode?

Procedure

Copy Files, Create Project File

1. Create a new project called LabB.pjt in C:\C28x\Labs\Appendix\LabB and
add LabB.asm and Lab.cmd to it. Check your file list to make sure all the files are
there. Be sure to setup the Build Options by clicking: Project Build
Options on the menu bar. Select the Linker tab. In the middle of the screen select
“No Autoinitialization” under “Autoinit Model:”. Enter start in
the “Code Entry Point (-e):” field. Next, select the Compiler tab. Note that
“Full Symbolic Debug (-g)” under “Generate Debug Info:” is
selected. Then select OK to save the Build Options.

Initialize Allocated RAM Array from ROM Initialization Table
2. Edit LabB.asm and modify it to copy table[9] to data[9] using indirect addressing.

(Note: data[9] consists of the allocated arrays of data, coeff, and result). Initialize the
allocated RAM array from the ROM initialization table:
• Delete the NOP operations from the “code” section.
• Initialize pointers to the beginning of the “const” and “vars” arrays.
• Transfer the first value from “const” to the “vars” array.
• Repeat the process for all values to be initialized.

To perform the copy, consider using a load/store method via the accumulator. Which
part of an accumulator (low or high) should be used? Use the following when writing
your copy routine:
 - use AR1 to hold the address of table
 - use AR2 to hold the address of data

C2000 Piccolo Workshop - Appendix B - Addressing Modes B - 15

Lab B: Addressing

3. It is good practice to trap the end of the program (i.e. use either “end: B
end,UNC” or “end: B start,UNC”). Save your work.

Build and Load
4. Click the “Build” button and watch the tools run in the build window. Debug as

necessary. To open up more space, close any open files or windows that you do not need.

5. Load the output file onto the target. Click:

File Load Program…

If you wish, right click on the LabB.asm source window and select Mixed Mode to
debug using both source and assembly.

Note: Code Composer Studio can automatically load the output file after a successful build. On
the menu bar click: Option Customize… and select the “Program Load
Options” tab, check “Load Program After Build”, then click OK.

6. Single-step your routine. While single-stepping, it is helpful to see the values located in
table[9] and data[9] at the same time. Open two memory windows by using the “View
Memory” button on the vertical toolbar and using the address labels table and data.
Setting the properties filed to “Hex 16 Bit – TI style” will give you more viewable data in
the window. Additionally, it is useful to watch the CPU registers. Open the CPU
registers by using the “View Registers CPU Registers”. Deselect
“Allow Docking” and move/resize the window as needed. Check to see if the
program is working as expected.

End of Exercise

B - 16 C2000 Piccolo Workshop - Appendix B - Addressing Modes

 OPTIONAL Lab B-C: Array Initialization in C

OPTIONAL Lab B-C: Array Initialization in C
Note: The lab linker command file is based on the F28035 memory map – modify as needed, if

using a different F28xx device memory map.

 Objective

The objective of this lab is to practice and verify the mechanics of initialization using C.
Additionally, we learn how to run and observe the operation of C code using Code Composer
Studio. In this lab, we will initialize the “vars” arrays with the contents of the “const” table.

Procedure

Create Project File

1. In Code Composer Studio create a new project called LabB-C.pjt in
C:\C28x\Labs\Appendix\LabB\LabB-C and add LabB-C.c and Lab.cmd to
it. Check your file list to make sure all the files are there. Open the Build Options and
select the Linker tab. Select the “Libraries” Category and enter rts2800_ml.lib in
the “Incl. Libraries (-l):” box. Do not setup any other Build Options. The
default values will be used. In Appendix Lab D exercise, we will experiment and explore
the various build options when working with C.

Initialize Allocated RAM Array from ROM Initialization Table
2. Edit LabB-C.c and modify the “main” routine to copy table[9] to the allocated arrays

of data[4], coeff[4], and result[1]. (Note: data[9] consists of the allocated arrays of
data, coeff, and result).

Build and Load
3. Click the “Build” button and watch the tools run in the build window. Debug as

necessary.

Note: Have Code Composer Studio automatically load the output file after a successful build. On
the menu bar click: Option Customize… and select the “Program Load Options”
tab, check “Load Program After Build”, then click OK.

4. Under Debug on the menu bar click “Go Main”. Single-step your routine. While
single-stepping, it is helpful to see the values located in table[9] and data[9] at the same
time. Open two memory windows by using the “View Memory” button on the vertical
toolbar and using the address labels table and data. Setting the properties field to
“Hex 16 Bit – TI style” will give you more viewable data in the window. Additionally,
you can watch the CPU registers. Open the CPU registers by using the “View
Registers CPU Registers. Deselect “Allow Docking” and move/resize
the window as needed. Check to see if the program is working as expected.

End of Exercise

C2000 Piccolo Workshop - Appendix B - Addressing Modes B - 17

Solutions

Solutions

Exercise B: Addressing - Solution

1001B2 0320

Given: DP = 4000 DP = 4004 DP = 4006
Address/Data (hex) 100030 0025 100100 0105 100180 0100
Fill in the 100031 0120 100101 0060 100181 0030
table below 100032 100102 0020 100182 0040

Imm MOVW DP,#4000h
MOVL XAR1,#100100h
MOVL XAR2,#100180h
MOV AL,@31h
ADD AL,*XAR1++
SUB AL,@30h
ADD AL,*XAR1++
MOVW DP,#4006h
ADD AL,@1
SUB AL,*XAR1
ADD AL,*XAR2
SUB AL,*+XAR2[1]
ADD AL,#32
SUB AL,*+XAR2[2]
MOV @32h,AL

Src Mode Program
4000

Imm 100100
Imm 100180
Dir 120
Idr 225 100101
Dir 200
Idr 260 100102
Imm 4006
Dir 290
Idr 270
Idr 370
Idr 340
Imm 360
Idr 320
Dir

100180

100180

ACC DP XAR1 XAR2

Imm: Immediate;
Reg: Register;

Dir: Direct;
Idr: Indirect

B - 18 C2000 Piccolo Workshop - Appendix B - Addressing Modes

Appendix C – Assembly Programming

Introduction
Appendix C discusses the details of programming in assembly. It shows you how to use
different instructions that further utilize the advantage of the architecture data paths. It gives
you the ability to analyze the instruction set and pick the best instruction for the application.

Learning Objectives
Learning Objectives

Perform simple program control using
branch and conditional codes
Write C28x code to perform basic
arithmetic
Use the multiplier to implement
sum-of-products equations
Use the RPT instruction (repeat) to
optimize loops
Use MAC for long sum-of-products
Efficiently transfer the contents of one
area of memory to another
Examine read-modify-write operations

C2000 Piccolo Workshop - Appendix C - Assembly Programming C - 1

Module Topics

Module Topics
Appendix C – Assembly Programming ...C-1

Module Topics...C-2
Program Control...C-3

Branches ...C-3
Program Control Instructions ...C-4

ALU and Accumulator Operations..C-6
Simple Math & Shift...C-7

Multiplier ..C-9
Basic Multiplier ..C-10
Repeat Instruction...C-11
MAC Instruction...C-12

Data Move...C-13
Logical Operations ...C-15

Byte Operations and Addressing ..C-15
Test and Change Memory Instructions...C-16
Min/Max Operations...C-17

Read Modify Write Operations ...C-18
Lab C: Assembly Programming..C-20
OPTIONAL Lab C-C: Sum-of-Products in C..C-22

C - 2 C2000 Piccolo Workshop - Appendix C - Assembly Programming

 Program Control

Program Control
The program control logic and program address generation logic work together to provide proper
program flow. Normally, the flow of a program is sequential: the CPU executes instructions at
consecutive program memory addresses. At times, a discontinuity is required; that is, a program
must branch to a nonsequential address and then execute instructions sequentially at that new
location. For this purpose, the C28x supports interrupts, branches, calls, returns, and repeats.
Proper program flow also requires smooth flow at the instruction level. To meet this need, the
C28x has a protected pipeline and an instruction-fetch mechanism that attempts to keep the
pipeline full.

Branches

Branch Types and Range

Branch
offset +/-32K

2-word
instruction

Long
Branch

absolute 4M
2-word

instruction

PC

Short Branch
offset +127/-

128
1-word

instruction

Program
Memory

0x000000

0x3FFFFF

3 Branch Types

The PC can access the entire 4M words (8M bytes) range. Some branching operations offer 8-
and 16-bit relative jumps, while long branches, calls, and returns provide a full 22-bit absolute
address. Dynamic branching allows a run-time calculated destination. The C28x provides the fa-
miliar arithmetic results status bits (Zero, oVerflow, Negative, Carry) plus a Test Control bit
which holds the result of a binary test. The states of these bits in various combinations allow a
range of signed, unsigned, and binary branching conditions offered.

C2000 Piccolo Workshop - Appendix C - Assembly Programming C - 3

Program Control

Program Control Instructions

Program Control - Branches
Function

Short Branch SB 8bit,cond 7/4 1

Fast Short Branch SBF 8bit,EQ|NEQ|TC|NTC 4/4 1

Fast Relative Branch B 16bit,cond 7/4 2

Fast Branch BF 16bit,cond 4/4 2

Absolute Branch LB 22bit 4 2

Dynamic Branch LB *XAR7 4 1

Branch on AR BANZ 16bit,ARn-- 4/2 2

Branch on compare BAR 16bit,ARn,ARn,EQ|NEQ 4/2 2

The assembler will optimize
B to SB if possible

NEQ
EQ
GT
GEQ

LT
LEQ
HI
HIS (C)

LO (NC)
LOS
NOV
OV

NTC
TC
UNC
NBIO

Condition Code

Instruction Cycles T/F Size

Condition flags are set on
the prior use of the ALU

Program Control - Call/Return

Function Call Code

Call LCR 22bit 4 LRETR 4

Dynamic Call LCR *XARn 4 LRETR 4

Interrupt Return IRET 8

Cycles Return code Cycles

More Call variations
in the user guide are
for code backward
compatibility

Stack
Local

Var

RPC Old RPC

PC Func

LCR Func
LRETR

RPC
22-bit old

Ret Addr

Ret AddrNew RPC

C - 4 C2000 Piccolo Workshop - Appendix C - Assembly Programming

 Program Control

BANZ Loop Control Example

len .set 5
x .usect “samp”,6
y .set (x+len)

.sect “code”
MOVL XAR2,#x
MOV AR3,#len-2
MOV AL,*XAR2++

sum: ADD AL,*XAR2++
BANZ sum,AR3--
MOV *(0:y),AL

AR3
COUNT

Data

x0
x1
x2
x3
x4

x

y

XAR2

∑
=

=
4

0n
nxy

Auxiliary register used as loop counter
Branch if Auxiliary Register not zero
Test performed on lower 16-bits of XARx only

C2000 Piccolo Workshop - Appendix C - Assembly Programming C - 5

ALU and Accumulator Operations

ALU and Accumulator Operations

ALU and Accumulator

ALU and Barrel Shifter

ACC

AH (31-16) AL (15-0)
AH.MSB AH.LSB AL.MSB AL.LSB

16/32 data mem,
16/32 bit registersProduct (32)

MUX

ST0, ST1

8/16 Imm

One of the major components in the execution unit is the Arithmetic-Logical-Unit (ALU). To
support the traditional Digital Signal Processing (DSP) operation, the ALU also has the zero
cycle barrel shifter and the Accumulator. The enhancement that the C28x has is the additional
data paths added form the ALU to all internal CPU registers and data memory. The connection to
all internal registers helps the compiler to generate efficient C code. The data path to memory
allows the C28x performs single atomic instructions read-modify-write to the memory.

The following slides introduce you to various instructions that use the ALU hardware. Word,
byte, and long word 32-bit operation are supported.

C - 6 C2000 Piccolo Workshop - Appendix C - Assembly Programming

 ALU and Accumulator Operations

Simple Math & Shift

Accumulator - Basic Math Instructions

MOV Ax, loc16
ADD Ax, loc16
SUB Ax, loc16
AND Ax, loc16
OR Ax, loc16
XOR Ax, loc16
AND Ax,loc16,#16b
NOT Ax
NEG Ax
MOV loc16,Ax

Ax = AH or AL Operations

xxx Ax, #16b ;word
xxxB Ax, #8b ;byte
xxxL ACC, #32b ;long

xxx = instruction: MOV, ADD, SUB, ...
Ax = AH, or AL
Assembler will automatically convert to 1
word instruction.

Two word instructions with shift option
One word instruction, no shift

ADD ACC, #01234h<<4
ADDB AL, #34h

ACC Operations
MOV ACC,loc16<<shift
ADD
SUB

} from memory (left shift
optional)

MOV ACC,#16b<<shift
ADD
SUB } 16-bit constant (left shift

optional)

MOV loc16,ACC <<shift ;AL
MOVH loc16,ACC <<shift ;AH

Fo
rm

at
Ex

Va
ria

tio
n

Shift the Accumulator
Shift full ACC
LSL ACC <<shift
SFR ACC >>shift

LSL ACC <<T
SFR ACC >>T ACC

31 ……… 0
SFR

ACC
31 ……… 0

LSL
0C

CSXM

Shift AL or AH

LSL AX <<T
LSR AX <<T
ASR AX >>T

LSL AX <<shift
LSR AX <<shift
ASR AX >>shift Ax

15 ……… 0
ASR

Ax
15 ……… 0 LSL

0C

CSXM

Ax
15 ……… 0

LSRC0

(1-16)

(0-15)

C2000 Piccolo Workshop - Appendix C - Assembly Programming C - 7

ALU and Accumulator Operations

32 Bit Shift Operations [ACC]

ACC
31 ……… 0

0C
Examples:
LSLL ACC, T

LSRL ACC, T
ASRL ACC, T

ACC
31 ……… 0

C0 or 1

ACC
31 ……… 0

C0

Note: T(4:0) are used;
other bits are ignored

based on SXM

Logical Shift Left – Long: LSLL

Logical Shift Right – Long: LSRL

Arithmetic Shift Right – Long: ASRL

C - 8 C2000 Piccolo Workshop - Appendix C - Assembly Programming

 Multiplier

Multiplier

Multiply Unit

P Register (32)

ACC (32)

Shift (PM)

32x32 Multiply Unit

16x16

Data Mem
or Register

Prog Mem (16)
or

Immed (8,16)

XT Register

M
U

X

T Register

Digital signal processors require many multiply and add math intensive operations. The single
cycle multiplier is the second major component in the execution unit. The C28x has the
traditional 16-bit-by-16-bit multiplier as previous TI DSP families. In-addition, the C28x has a
single cycle 32-bit-by-32-bit multiplier to perform extended precision math operations. The large
multiplier allows the C28x to support higher performance control systems requirement while
maintaining small or reduce code.

The following slides introduce instructions that use the 16-bit-by-16-bit multiplier and multiply
and add (MAC) operations. The 32-bit-by-32-bit multiplication will be covered in the appendix.

C2000 Piccolo Workshop - Appendix C - Assembly Programming C - 9

Multiplier

Basic Multiplier

Multiplier Instructions
Instruction Execution Purpose

MOV T,loc16 T = loc16 Get first operand

MPY ACC,T,loc16 ACC = T*loc16 For single or first product
MPY P,T,loc16 P = T*loc16 For nth product
MPYB ACC,T,#8bu ACC = T*8bu Using 8-bit unsigned const
MPYB P,T,#8bu P = T*8bu Using 8-bit unsigned const
MOV ACC,P ACC = P Move 1st product<<PM to ACC
ADD ACC,P ACC += P Add nth product<<PM to ACC
SUB ACC,P ACC -= P Sub nth product<<PM fr. ACC

Instruction

MPYA P, T, #16b ACC += P<<PM then P = T*#16b
MPYA P, T, loc16 ACC += P<<PM then P = T*loc16
MPYS P, T, loc16 ACC - = P<<PM then P = T*loc16

Execution
MOVP T, loc16 ACC = P<<PM T = loc16
MOVA T, loc16 ACC += P<<PM T = loc16
MOVS T, loc16 ACC - = P<<PM T = loc16

Sum-of-Products

ZAPA ;ACC = P = OVC = 0
MOV T,@X1 ;T = X1
MPY P,T,@A ;P = A*X1
MOVA T,@X2 ;T = X2 ;ACC = A*X1
MPY P,T,@B ;P = B*X2
MOVA T,@X3 ;T = X3 ;ACC = A*X1 + B*X2
MPY P,T,@C ;P = C*X3
MOVA T,@X4 ;T = X4;ACC = A*X1 + B*X2 + C*X3
MPY P,T,@D ;P = D*X4
ADDL ACC,P<<PM ;ACC = Y
MOVL @y,ACC

Y = A*X1 + B*X2 + C*X3 + D*X4

C - 10 C2000 Piccolo Workshop - Appendix C - Assembly Programming

 Multiplier

32x32 Long Multiplication

IMPYAL P,XT,loc32 P = u(XT)*u(loc32)
QMPYAL ACC,XT,loc32 ACC = (XT)*(loc32)

X

YX

XO * Y0

Z1 Z0

IMACL P,loc32,*XAR7 ACC += P; P = u(loc32)*u(loc32)
QMACL P,loc32,*XAR7 ACC += P; P = (loc32)*(loc32)

Integer long multiplication
u(long) = u(long) * u(long)

Fraction long multiplication:
(long) = (long) * (long)
(long) 64 = (long) 32 * (long) 32

Y1 * X1

Z3 Z2

Accumulator P-register

Repeat Instruction

Repeat Next: RPT

Features:
Next instruction iterated N+1 times
Saves code space - 1 word
Low overhead - 1 cycle
Easy to use
Non-interruptible
Requires use of | | before next line
May be nested within BANZ loops

Options:
RPT #8bit up to 256 iterations
RPT loc16 location “loc16” holds count value

Instruction Cycles
RPT
BANZ

1
4 . N

Example :
int x[5]={0,0,0,0,0};

x .usect “samp”,5
MOV AR1,#x
RPT #4

|| MOV *XAR1++,#0

Refer to User Guide for more repeatable instructions

C2000 Piccolo Workshop - Appendix C - Assembly Programming C - 11

Multiplier

Single repeat instruction (RPT) is used to reduce code size and speed up many operations in the
DSP application. Some of the most popular operations that use the RPT instruction to perform
multiple taps digital filters or perform block of data transfer.

MAC Instruction

Sum-of-Products: RPT / MAC

∑
=

=
19

0n
nnaxy

XAR1++ X0

X1

...

X19

MOV T,loc16
ADD ACC,P MPY P,T,loc16

MOVA T,loc16 ACC+=P
T=*ARn++
P=T*(*ARn++)

MAC {

Zero ACC & P
Repeat single
Dual operand
last ADD

ZAPA
RPT #19

|| MAC P,*XAR1++,*XAR7++
ADDL ACC,P<<PM

x .usect “sample”,20
y .usect “result”,2

.sect “coefficient”
a0: .word 0x0101

.word 0x0202
• • •

.word 0x2020

.sect “code”
SOP: SPM 0

MOVW DP,#y
MOVL XAR1,#x
MOVL XAR7,#a0

MOVL @y,ACC
B SOP,UNC

XAR7++ A0

A1

...

A19

Second operand
must use XAR7

C - 12 C2000 Piccolo Workshop - Appendix C - Assembly Programming

 Data Move

Data Move

Data Move Instructions
DATA ↔ DATA (4G ↔ 64K) DATA ↔ PGM (4G ↔ 4M)

Faster than Load / Store, avoids
accumulator
Allows access to program memory

Optimal with RPT (speed and code size)
In RPT, non-mem address is auto-
incremented in PC

MOV loc16, *(0:16bit)

MOV *(0:16bit), loc16

32-bit address memory
location

16-bit address concatenated
with 16 leading zeros

.sect “.code”
START: MOVL XAR5,#x

MOVL XAR7,#TBL
RPT #len-1

|| PREAD *XAR5++,*XAR7
...

x .usect “.samp”,4
.sect “.coeff”

TBL: .word 1,2,3,4
len .set $-TBL

PREAD loc16 ,*XAR7

PWRITE *XAR7, loc16

pointer with a 22-bit
program memory address

Conditional Moves
Instruction Execution (if COND is met)
MOV loc16,AX,COND [loc16] = AX

MOVB loc16,#8bit,COND [loc16] = 8bit

If A<B, Then B=A Accumulator
0 0 0 0 0 1 2 0

MOVW DP, #A
MOV AL, @A
CMP AL, @B

Example

A .usect “var”,2,1
B .set A+1

.sect “code”

MOV @B, AL, LT

0 1 2 0
0 3 2 0

Data Memory

B
A 0 1 2 0

Data Memory

B
A

0 1 2 0

Before After

Instruction Execution (if COND is met)
MOVL loc32,ACC,COND [loc32] = AX

The conditional move instruction is an excellent way to avoid a discontinuity (branch or call)
based upon a condition code set prior to the instruction. In the above example, the 1st step is to

C2000 Piccolo Workshop - Appendix C - Assembly Programming C - 13

Data Move

place the contents of A into the accumulator. Once the Ax content is tested, by using the CMP
instruction, the conditional move can be executed.

If the specified condition being tested is true, then the location pointed to by the “loc16” address-
ing mode or the 8–bit zero extended constant will be loaded with the contents of the specified AX
register (AH or AL): if (COND == true) [loc16] = AX or 0:8bit;

Note: Addressing modes are not conditionally executed. Hence, if an addressing mode performs a
pre or post modification, it will execute regardless if the condition is true or not. This instruction
is not repeatable. If this instruction follows the RPT instruction, it resets the repeat counter
(RPTC) and executes only once.

Flags and Modes
N - If the condition is true, then after the move, AX is tested for a negative condition. The nega-
tive flag bit is set if bit 15 of AX is 1, otherwise it is cleared.
Z - If the condition then after the move, AX is tested for a zero condition. The zero flag bit is set
if AX = 0, otherwise it is cleared.
V - If the V flag is tested by the condition, then V is cleared.

C-Example
; if (VarA > 20)
; VarA = 0;

CMP @VarA,#20 ; Set flags on (VarA – 20)
MOVB @VarA,#0,GT ; Zero VarA if greater then

C - 14 C2000 Piccolo Workshop - Appendix C - Assembly Programming

 Logical Operations

Logical Operations

Byte Operations and Addressing

Byte Operations

MOVB AX.LSB,loc16 0000 0000 Byte AX

MOVB AX.MSB,loc16 Byte No change AX

MOVB loc16, AX.MSB Byte loc16No change

MOVB loc16, AX.LSB Byte loc16No change

For loc16 = *+XARn[Offset] Odd Offset Even Offset loc16

Byte = 1. Low byte for register addressing
2. Low byte for direct addressing
3. Selected byte for offset indirect addressing

Byte Addressing

MOVL XAR2, #MemA
MOVB *+XAR2[1], AL.LSB
MOVB *+XAR2[2], AL.MSB
MOVB *+XAR2[5], AH.LSB
MOVB *+XAR2[6], AH.MSB

AR2

AH.MSB AH.LSB AL.MSB AL.LSB

16 bit memory

01
02

05
06

12 34 56 78

04
07

00
03
34

56

12

78

MOVL XAR2, #MemA
MOVB AL.LSB,*+XAR2[1]
MOVB AL.MSB,*+XAR2[2]
MOVB AH.LSB,*+XAR2[4]
MOVB AH.MSB,*+XAR2[7]

Example of Byte PackingExample of Byte Un-Packing

C2000 Piccolo Workshop - Appendix C - Assembly Programming C - 15

Logical Operations

Test and Change Memory Instructions

The compare (CMPx) and test (Txxx) instructions allow the ability to test values in memory. The
results of these operations can then trigger subsequent conditional branches. The CMPx instruc-
tion allows comparison of memory with respect to a specified constant value, while the Txxx in-
structions allow any single bit to be extracted to the test control (TC) field of status register 0.
The contents of the accumulator can also be non-destructively analyzed to establish branching
conditions, as seen below.

Test and Change Memory

Instruction Execution Affects
TBIT loc16,#(0-15) ST0(TC) = loc16(bit_no) TC

TSET loc16,#(0-15) Test (loc16(bit)) then set bit TC
TCLR loc16,#(0-15) Test (loc16(bit)) then clr bit TC
CMPB AX, #8bit Test (AX - 8bit unsigned) C,N,Z
CMP AX, loc16 Test (AX – loc16) C,N,Z
CMP loc16,#16b Test (loc16 - #16bit signed) C,N,Z
CMPL ACC, @P Test (ACC - P << PM) C,N,Z

C - 16 C2000 Piccolo Workshop - Appendix C - Assembly Programming

 Logical Operations

Min/Max Operations

MIN/MAX Operations

MOVL ACC,#0
MOVL XAR1,#table
RPT #(table_length – 1)

|| MAXL ACC,*XAR1++

Find the maximum 32-bit number in a table:

Instruction Execution
MAX ACC,loc16 if ACC < loc16, ACC = loc16

if ACC >= loc16, do nothing
MIN ACC,loc16 if ACC > loc16, ACC = loc16

if ACC <= loc16, do nothing
MAXL ACC,loc32 if ACC < loc32, ACC = loc32

if ACC >= loc32, do nothing
MINL ACC,loc32 if ACC > loc32, ACC = loc32

if ACC <= loc32, do nothing
MAXCUL P,loc32 if P < loc32, P = loc32
(for 64 bit math) if P >= loc32, do nothing
MINCUL P,loc32 if P > loc32, P = loc32
(for 64 bit math) if P <= loc32, do nothing

C2000 Piccolo Workshop - Appendix C - Assembly Programming C - 17

Read Modify Write Operations

Read Modify Write Operations
The accumulator (ACC) is the main working register for the C28x. It is the destination of all
ALU operations except those, which operate directly on memory or registers. The accumulator
supports single-cycle move, add, subtract and compare operations from 32-bit-wide data memory.
It can also accept the 32-bit result of a multiplication operation. These one or two cycle
operations are referred to as read-modify-write operations, or as atomic instructions.

Read-Modify-Write Instructions

AND loc16,#16b

OR loc16,#16b

XOR loc16,#16b

ADD loc16,#16b

SUBR loc16,#16b

AND loc16,AX

OR loc16,AX

XOR loc16,AX

ADD loc16,AX

SUB loc16,AX

SUBR loc16,AX
INC loc16

DEC loc16

TSET loc16,#bit

TCLR loc16,#bit

AH,
AL

16- bit
constant

Work directly on memory – bypass ACC
Atomic Operations – protected from interrupts

C - 18 C2000 Piccolo Workshop - Appendix C - Assembly Programming

 Read Modify Write Operations

Read-Modify-Write Examples

MOV AL, @VarB

ADD @VarA, AL

VarA += VarB VarA += 100 VarA += 1

ADD @VarA,#100 INC @VarA

SETC INTM

MOV AL, @VarB

ADD AL, @VarA

MOV @VarA, AL

CLRC INTM

SETC INTM

MOV AL, @VarA

ADD AL, #100

MOV @VarA, AL

CLRC INTM

SETC INTM

MOV AL, @VarA

ADD AL, #1

MOV @VarA, AL

CLRC INTM

update with a mem update with a constant update by 1

Benefits of Read-Modify-Write Instructions

C2000 Piccolo Workshop - Appendix C - Assembly Programming C - 19

Lab C: Assembly Programming

Lab C: Assembly Programming
Note: The lab linker command file is based on the F28035 memory map – modify as needed, if

using a different F28xx device memory map.

 Objective

The objective of this lab is to practice and verify the mechanics of performing assembly language
programming arithmetic on the TMS320C28x. In this exercise, we will expand upon the .asm
file from the previous lab to include new functions. Code will be added to obtain the sum of the
products of the values from each array.

Perform the sum of products using a MAC-based implementation. In a real system application,
the coeff array may well be constant (values do not change), therefore one can modify the
initialization routine to skip the transfer of this arrays, thus reducing the amount of data RAM and
cycles required for initialization. Also there is no need to copy the zero to clear the result
location. The initialization routine from the previous lab using the load/store operation will be
replaced with a looped BANZ implementation.

As in previous lab, consider which addressing modes are optimal for the tasks to be performed.
You may perform the lab based on this information alone, or may refer to the following
procedure.

Procedure

Copy Files, Create Project File

1. Create a new project called LabC.pjt in C:\C28x\Labs\Appendix\LabC and
add LabC.asm and Lab.cmd to it. Check your file list to make sure all the files are
there. Be sure to setup the Build Options by clicking: Project Build
Options on the menu bar. Select the Linker tab. In the middle of the screen select
“No Autoinitialization” under “Autoinit Model:”. Enter start in the
“Code Entry Point (-e):” field. Next, select the Compiler tab. Note that
“Full Symbolic Debug (-g)” under “Generate Debug Info:” is
selected. Then select OK to save the Build Options.

Initialization Routine using BANZ
2. Edit LabC.asm and modify it by replacing the initialization routine using the load/store

operation with a BANZ process. Remember, it is only necessary to copy the first four
values (i.e. initialize the data array). Do you still need the coeff array in the vars section?

3. Save your work. If you would like, you can use Code Composer Studio to verify the
correct operation of the block initialization before moving to the next step.

C - 20 C2000 Piccolo Workshop - Appendix C - Assembly Programming

 Lab C: Assembly Programming

Sum of Products using a RPT/MAC-based Implementation
4. Edit LabC.asm to add a RPT/MAC-based implementation to multiply the coeff array by

the data array and storing the final sum-of-product value to result.

Build and Load
5. Click the “Build” button and watch the tools run in the build window. Debug as

necessary. To open up more space, close any open files or windows that you do not need.

6. If the “Load program after build” option was not selected in Code Composer
Studio, load the output file onto the target. Click: File Load Program…

If you wish, right click on the source window and select Mixed Mode to debug using
both source and assembly.

7. Single-step your routine. While single-stepping, open memory windows to see the values
located in table [9] and data [9]. Open the CPU Registers. Check to see if the program
is working as expected. Debug and modify, if needed.

Optional Exercise
After completing the above, edit LabC.asm and modify it to perform the initialization
process using a RTP/PREAD rather than a load/store/BANZ.

End of Exercise

C2000 Piccolo Workshop - Appendix C - Assembly Programming C - 21

OPTIONAL Lab C-C: Sum-of-Products in C

OPTIONAL Lab C-C: Sum-of-Products in C
Note: The lab linker command file is based on the F28035 memory map – modify as needed, if

using a different F28xx device memory map.

 Objective

The objective of this lab is to practice and verify the mechanics of performing C programming
arithmetic on the TMS320C28x. The objective will be to add the code necessary to obtain the
sum of the products of the n-th values from each array.

Procedure

Create Project File

1. In Code Composer Studio create a new project called LabC-C.pjt in
C:\C28x\Labs\Appendix\LabC\LabC-C and add LabC-C.c and Lab.cmd to
it. Check your file list to make sure all the files are there. Open the Build Options and
select the Linker tab. Select the “Libraries” Category and enter rts2800_ml.lib in
the “Incl. Libraries (-l):” box. Do not setup any other Build Options. The
default values will be used. In Appendix Lab D exercise, we will experiement and
explore the various build options when working with C.

Sum of Products using a MAC-based Implementation
2. Edit LabC-C.c and modify the “main” routine to perform a MAC-based

implementation in C. Since the MAC operation requires one array to be in program
memory, the initialization routine can skip the transfer of one of the arrays, thus reducing
the amount of data RAM and cycles required for initialization.

Build and Load
3. Click the “Build” button and watch the tools run in the build window. Debug as

necessary.

Note: Have Code Composer Studio automatically load the output file after a successful build. On
the menu bar click: Option Customize… and select the “Program Load Options”
tab, check “Load Program After Build”, then click OK.

4. Under Debug on the menu bar click “Go Main”. Single-step your routine. While
single-stepping, open memory windows to see the values located in table [9] and data
[9] . (Note: data[9] consists of the allocated arrays of data, coeff, and result). Open the
CPU Registers. Check to see if the program is working as expected. Debug and modify,
if needed.

End of Exercise

C - 22 C2000 Piccolo Workshop - Appendix C - Assembly Programming

Appendix D – C Programming

Introduction

The C28x architecture, hardware, and compiler have been designed to efficiently support C code
programming.

Appendix D will focus on how to program in C for an embedded system. Issues related to
programming in C and how C behaves in the C28x environment will be discussed. Also, the C
compiler optimization features will be explained.

Learning Objectives

Learning Objectives

Learn the basic C environment for
the C28x family
How to control the C environment
How to use the C-compiler optimizer
Discuss the importance of volatile
Explain optimization tips

C2000 Piccolo Workshop – Appendix D – C Programming D- 1

Module Topics

Module Topics
Appendix D – C Programming...D-1

Module Topics...D-2
Linking Boot code from RTS2800.lib ..D-3
Set up the Stack ...D-4
C28x Data Types...D-5
Accessing Interrupts / Status Register...D-6
Using Embedded Assembly ...D-7
Using Pragma ...D-8
Optimization Levels ..D-9

Volatile Usage ..D-11
Compiler Advanced Options ..D-12
Optimization Tips Summary...D-13

Lab D: C Optimization..D-14
OPTIONAL Lab D2: C Callable Assembly...D-17
Solutions..D-20

D- 2 C2000 Piccolo Workshop – Appendix D – C Programming

 Linking Boot code from RTS2800.lib

Linking Boot code from RTS2800.lib
Boot.ASM - Invoked With “-C”

Reset : PC <- *0x3F FFC0

_main ...

1. Allocate stack
2. Init SP to top of stack
3. Initialize status bits
4. Copy .cinit to .bss (skip if “-cr”)
5. Call “_main”

_c_int00

.ref _c_int00
Reset:

.long _c_int00

vectors.asm

The boot routine is used to establish the environment for C before launching main. The boot
routine begins with the label _c_int00 and the reset vector should contain a ".long" to this address
to make boot.asm the reset routine. The contents of the boot routine have been extracted and
copied on the following page so they may be inspected. Note the various functions performed by
the boot routine, including the allocation and setup of the stack, setting of various C-requisite
statuses, the initialization of global and static variables, and the call to main. Note that if the link
was performed using the "–cr" option instead of the "–c" option that the global/static variable
initialization is not performed. This is useful on RAM-based C28x systems that were initialized
during reset by some external host processor, making transfer of initialization values unnecessary.
Later on in this chapter, there is an example on how to do the vectors in C code rather than
assembly.

C2000 Piccolo Workshop – Appendix D – C Programming D - 3

Set up the Stack

Set up the Stack
The Stack

The C/C++ compiler uses a
stack to:
Allocate local variables
Pass arguments to
functions
Save the processor status
Save the function return
address
Save temporary results

The compiler uses the hardware
stack pointer (SP) to
manage the stack.

SP defaults to 0x400 at reset.
The run-time stack grows from

low addresses to higher
addresses.

Data Memory

64K

0x400SP
(reset)

.stack

4M

Caller’s
local vars

Arguments
passed on

stack
Return
address

Function
return addr

Temp results

The C28x has a 16-bit stack pointer (SP) allowing accesses to the base 64K of memory. The stack
grows from low to high memory and always points to the first unused location. The compiler
uses the hardware stack pointer (SP) to manage the stack. The stack size is set by the linker.

Setting Up the Stack
Boot.asm sets up SP to
point at .stack
The .stack section has to
be linked into the low 64k
of data memory. The SP is
a 16-bit register and cannot
access addresses beyond
64K.
Stack size is set by the
linker. The linker creates a
global symbol,
--STACK-SIZE, and assigns
it a value equal to the size
of the stack in bytes.
(default 1K words)
You can change stack size
at link time by using the
-stack linker command
option.

Linker command file:
SECTIONS {
.stack :> RAM align=2

... }

Note: The compiler provides no
means to check for stack
overflow during compilation or at
runtime. A stack overflow
disrupts the run-time
environment, causing your
program to fail. Be sure to allow
enough space for the stack to
grow.

In order to allocate the stack the linker command file needs to have “align = 2.”

D- 4 C2000 Piccolo Workshop – Appendix D – C Programming

 C28x Data Types

C28x Data Types
C28x C-Language Data Types

Type Bit Value Range

char 16 Usually 0 .. 255, but can hold 16 bits
int (natural size CPU word) 16 -32K .. 32K, 16 bits signed
unsigned int 16 0 .. 64K, 16 bits unsigned
short (same as int or smaller) 16 same as int
unsigned short 16 same as unsigned int

long (same as int or larger) 32 -2M .. 2M, 32 bits signed
unsigned long 32 0 .. 4M, 32 bits unsigned

float 32 IEEE single precision
double 64 IEEE double precision
long double 64 IEEE double precision

Data which is 32-bits wide, such as longs, must begin on even word-addresses (i.e. 0x0,
0x2, etc). This can result in “holes” in structures allocated on the stack.

Suggestion: Group all longs together, group all pointers together

C2000 Piccolo Workshop – Appendix D – C Programming D - 5

Accessing Interrupts / Status Register

Accessing Interrupts / Status Register
Accessing Interrupts / Status Register
Initialize via C :
extern cregister volatile unsigned int IFR;
extern cregister volatile unsigned int IER;
. . .
IER &= ~Mask; //clear desired bits
IER |= Mask; //set desired bits
IFR = 0x0000; //clear prior interrupts

Interrupt Enable & Interrupt Flag Registers (IER, IFR) are not
memory mapped

Only limited instructions can access IER & IFR (more in interrupt
chapter)

The compiler provides extern variables for accessing the IER & IFR

D- 6 C2000 Piccolo Workshop – Appendix D – C Programming

 Using Embedded Assembly

Using Embedded Assembly

Embedding Assembly in C

Allows direct access to assembly language from C
Useful for operating on components not used by C, ex:

asm (“ CLRC INTM ; enable global interrupt”);

Note: first column after leading quote is label field - if no label,
should be blank space.
Avoid modifying registers used by C
Lengthy code should be written in ASM and called from C

main C file retains portability
yields more easily maintained structures
eliminates risk of interfering with registers in use by C

#define EINT asm (“ CLRC INTM”)

The assembly function allows for C files to contain 28x assembly code. Care should be taken not
to modify registers in use by C, and to consider the label field with the assembly function. Also,
any significant amounts of assembly code should be written in an assembly file and called from
C.
There are two examples in this slide – the first one shows how to embed a single assembly
language instruction into the C code flow. The second example shows how to define a C term that
will invoke the assembly language instruction.

C2000 Piccolo Workshop – Appendix D – C Programming D - 7

Using Pragma

Using Pragma
Pragma is a preprocessor directive that provides directions to the compiler about how to treat a
particular statement. The following example shows how the DATA_SECTION pragma is used
to put a specific buffer into a different section of RAM than other buffers.

The example shows two buffers, bufferA and bufferB. The first buffer, bufferA is treated
normally by the C compiler by placing the buffer (512 words) into the ".bss" section. The second,
bufferB is specifically directed to go into the “my_sect” portion of data memory. Global
variables, normally ".bss", can be redirected as desired.

When using CODE_SECTION, code that is normally linked as ".text", can be identified
otherwise by using the code section pragma (like .sect in assembly).

#pragma CODE_SECTION (func, ”section name”)

#pragma DATA_SECTION (symbol, “section name”)

User defined sections from C :

Pragma Examples

.global _bufferA, _bufferB

.bss _bufferA,512
_bufferB: .usect “my_sect”,512

Resulting assembly file

char bufferA[512];
#pragma DATA_SECTION(bufferB, ”my_sect”)
char bufferB[512];

C source file

Example - using the DATA_SECTION Pragma

More #pragma are defined in the C compiler UG

D- 8 C2000 Piccolo Workshop – Appendix D – C Programming

 Optimization Levels

Optimization Levels
Optimization Scope

FILE1.C
{

{
SESE

}

{
. . .

}
}

{
. . .

}

FILE2.C

-o0, -o1 -o2 -o3 -pm -o3

SESE: Single Entry, Single Exit

LOCAL
single block

FUNCTION
across
blocks

FILE
across

functions PROGRAM
across files

{
. . .

}

Optimizations fall into 4 categories. This is also a methodology that should be used to invoke the
optimizations. It is recommended that optimization be invoked in steps, and that code be verified
before advancing to the next step. Intermediate steps offer the gradual transition from fully sym-
bolic to fully optimized compilation. Compiler switched may be invoked in a variety of ways.

Here are 4 steps that could be considered:
1st: use –g
 By starting out with –g, you do no optimization at all and keep symbols for debug.

2nd: use –g –o3
 The option –o3 might be too big a jump, but it adds the optimizer and keeps symbols.

3rd: use –g –o3 –mn
 This is a full optimization, but keeps some symbols

4th: use –o3
 Full optimization, symbols are not kept.

C2000 Piccolo Workshop – Appendix D – C Programming D - 9

Optimization Levels

Optimization Performance

–o3 Removes all functions that are never called
Simplifies functions with return values that are never used
Inlines calls to small functions
Identifies file-level variable characteristics

–o0 Performs control-flow-graph simplification
Allocates variables to registers
Performs loop rotation
Eliminates unused code
Simplifies expressions and statements
Expands calls to functions declared inline

–o1 Performs local copy/constant propagation
Removes unused assignments
Eliminates local common expressions

–o2 Default (-o)
Performs loop optimizations
Eliminates global common sub-expressions
Eliminates global unused assignments

FUNCTION

LOCAL

FILE

PROGRAM –o3 –pm

Optimizer levels zero through three, offer an increasing array of actions, as seen above. Higher
levels include all the functions of the lower ones. Increasing optimizer levels also increase the
scope of optimization, from considering the elements of single entry, single-exit functions only,
through all the elements in a file. The “-pm” option directs the optimizer to view numerous input
files as one large single file, so that optimization can be performed across the whole system.

D- 10 C2000 Piccolo Workshop – Appendix D – C Programming

 Optimization Levels

Volatile Usage

Optimization Issue: “Volatile” Variables

unsigned int *CTRL
while (*CTRL !=1);

volatile unsigned int *CTRL
while (*CTRL !=1);

Wrong: Wait loop for a hardware signal

Solution:

Problem: The compiler does not know that this pointer may refer to a
hardware register that may change outside the scope of the C program.
Hence it may be eliminated (optimized out of existence!)

CTRL
= 1?

No

Yes

Optimizer removes
empty loop

empty
loop

When using optimization, it is important to declare variables as
volatile when:

The memory location may be modifed by something other than the
compiler (e.g. it’s a memory-mapped peripheral register).
The order of operations should not be rearranged by the compiler

Define the pointer as “volatile” to prevent the optimizer from optimizing

C2000 Piccolo Workshop – Appendix D – C Programming D - 11

Optimization Levels

Compiler Advanced Options
To get to these options, go to Project Build Options in Code Composer Studio.

In the category, pick Advanced.

The first thing to notice under advanced options is the Auto Inlining Threshold.

- Used with –o3 option

- Functions > size are not auto inlined

Note: To prevent code size increases when using –o3, disable auto inlining with -oi0

The next point we will cover is the Normal Optimization with Debug (-mn).

- Re-enables optimizations disabled by “–g” option (symbolic debug)

- Used for maximum optimization

Note: Some symbolic debug labels will be lost when –mn option is used.

Optimizer should be invoked incrementally:
-g test Symbols kept for debug

-g -o3 test Add optimizer, keep symbols

-g -o3 -mn test More optimize, some symbols

-o3 test Final rev: Full optimize, no symbols

[-mf] : Optimize for speed instead of the default optimization for code size

[-mi] : Avoid RPT instruction. Prevent compiler from generating RPT instruction. RPT instruc-
tion is not interruptible

 [-mt] : Unified memory model. Use this switch with the unified memory map of the 281x &
280x. Allows compiler to generate the following:

-RPT PREAD for memory copy routines or structure assignments
-MAC instructions
-Improves efficiency of switch tables

D- 12 C2000 Piccolo Workshop – Appendix D – C Programming

 Optimization Levels

Optimization Tips Summary

Summary: Optimization Tips
Within C functions :

Use const with variables for parameter constants
Minimize mixing signed & unsigned ops
Keep frames <= 64 (locals + parameters + PC)
Use structures <= 8 words
Declare longs first, then declare ints
Avoid: long = (int * int)

Optimizing : Use -o0, -o1, -o2, -o3 when compiling
Inline short/key functions
Pass inlines between files : static inlines in header files
Invoke automatic inlining : -o3 -oi
Give compiler project visibility : use -pm and -o3

Tune memory map via linker command file
Re-write key code segments to use intrinsics or in assembly

App notes 3rd Parties

: SXM changes
: *-SP[6bit]

: use 3 bit index mode
: minimize stack holes

: yields unpredictable results

The list above documents the steps that can be taken to achieve increasingly higher coding effi-
ciency. It is recommended that users first get their code to work with no optimization, and then
add optimizations until the required performance is obtained.

C2000 Piccolo Workshop – Appendix D – C Programming D - 13

Lab D: C Optimization

Lab D: C Optimization
Note: The lab linker command file is based on the F28035 memory map – modify as needed, if

using a different F28xx device memory map.

 Objective

The objective of this lab is to practice and verify the mechanics of optimizing C programs. Using
Code Composer Studio profile capabilities, different routines in a project will be benchmarked.
This will allow you to analyze the performance of different functions. This lab will highlight the
profiler and the clock tools in CCS.

Procedure

Create Project File

1. Create a new project in C:\C28x\Labs\Appendix\LabD called LabD.pjt and
add LabD.c, Lab.cmd, and sop-c.c to it. (Note that sop-asm.asm will be used in
the next part of the lab, and should not be added now).

2. Setup the Build Options. Select the Linker tab and notice that “Run-time
Autoinitialization” under “Autoinit Model:”is selected. Do not enter
anything in the “Code Entry Point (-e):” field (leave it blank). Set the stack
size to 0x200. In the Linker options select the “Libraries” Category and enter
rts2800_ml.lib in the “Incl. Libraries (-l):” box. Next, select the
Compiler tab. Note that “Full Symbolic Debug (-g)” under “Generate
Debug Info:” in the Basic Category is selected. On the Feedback Category pull
down the interlisting options and select “C and ASM (-ss)”. On the Assembly
Category check the Keep generated .asm Files (-k), Keep Labels as
Symbols (-as) and Generate Assembly Listing Files (-al). The –as
will allow you to see symbols in the memory window and the –al will generate an
assembly listing file (.lst file). The listing file has limited uses, but is sometime helpful to
view opcode values and instruction sizes. (The .lst file can be viewed with the editor).
Both of these options will help with debugging. Then select OK to save the Build
Options.

Build and Load
3. Click the “Build” button and watch the tools run in the build window. Be sure the

“Load program after build” option is selected in Code Composer Studio. The
output file should automatically load. The Program Counter should be pointing to
_c_int00 in the Disassembly Window.

Set Up the Profile Session
4. Restart the DSP (debug restart) and then “Go Main”. This will run

through the C initialization routine in Boot.asm and stop at the main routine in
LabD.c.

D- 14 C2000 Piccolo Workshop – Appendix D – C Programming

 Lab D: C Optimization

5. Set a breakpoint on the NOP in the while(1) loop at the end of main() in LabD.c.

6. Set up the profile session by selecting Profiler Start New Session. Enter
a session name of your choice (i.e. LabD).

7. In the profiler window, hover the mouse over the icons on the left region of the window
and select the icon for Profile All Functions. Click on the “+” to expand the
functions. Record the “Code Size” of the function sop C code in the table at the end of
this lab. Note: If you do not see a “+” beside the .out file, press “Profile All Functions”
on the horizontal tool bar. (You can close the build window to make the profiler window
easier to view by right clicking on the build window and selecting “hide”).

8. Select F5 or the run icon. Observe the values present in the profiling window. What do
the numbers mean? Click on each tab to determine what each displays.

Benchmarking Code
9. Let’s benchmark (i.e.count the cycles need by) only a portion of the code. This requires

you to set a breakpoint pair on the starting and ending points of the benchmark. Open the
file sop-c.c and set a breakpoint on the “for” statement and the “return”
statement.

10. In CCS, select Profile Setup. Check “Profile all Functions and
Loops for Total Cycles” and click “Enable Profiling”. Then select
Profile viewer.

11. Now “Restart” the program and then “Run” the program. The program should be
stopped at the first breakpoint in sop. Double click on the clock window to set the clock
to zero. Now you are ready to benchmark the code. “Run” to the second breakpoint.
The number of cycles are displayed in the viewer window. Record this value in the table
at the end of the lab under “C Code - Cycles”.

C Optimization
12. To optimize C code to the highest level, we must set up new Build Options for our

Project. Select the Compiler tab. In the Basic Category Panel, under “Opt Level”
select File (-o3). Then select OK to save the Build Options.

13. Now “Rebuild” the program and then “Run” the program. The program should be
stopped at the first breakpoint in sop. Double click on the clock window to set the clock
to zero. Now you are ready to benchmark the code. “Run” to the second breakpoint.
The number of cycles are displayed in the clock window. Record this value in the table
at the end of the lab under “Optimized C (-o3) - Cycles”.

14. Look in your profile window at the code size of sop. Record this value in the table at the
end of this lab.

Benchmarking Assembly Code
15. Remove sop-c.c from your project and replace it with sop-asm.asm. Rebuild

and set breakpoints at the beginning and end of the assembly code (MOVL & LRETR).

C2000 Piccolo Workshop – Appendix D – C Programming D - 15

Lab D: C Optimization

16. Start a new profile session and set it to profile all functions. Run to the first breakpoint
and study the profiler window. Record the code size of the assembly code in the table.

17. Double Click on the clock to reset it. Run to the last breakpoint. Record the number of
cycles the assembly code ran.

18. How does assembly, C code, and optimized C code compare on the C28x?

 C Code Optimized C Code (-o3) Assembly Code

Code Size

Cycles

End of Exercise

D- 16 C2000 Piccolo Workshop – Appendix D – C Programming

 OPTIONAL Lab D2: C Callable Assembly

OPTIONAL Lab D2: C Callable Assembly
Note: The lab linker command file is based on the F28035 memory map – modify as needed, if

using a different F28xx device memory map.

 Objective

The objective of this lab is to practice and verify the mechanics of implementing a C callable
assembly programming. In this lab, a C file will be used to call the sum-of-products (from the
previous Appendix LabC exercise) by the “main” routine. Additionally, we will learn how to use
Code Composer Studio to configure the C build options and add the run-time support library to
the project. As in previous labs, you may perform the lab based on this information alone, or may
refer to the following procedure.

Procedure

Copy Files, Create Project File

1. Create a new project in C:\C28x\Labs\Appendix\LabD2 called LabD2.pjt and
add LabD2.c, Lab.cmd, and sop-c.c to it.

2. Do not add LabC.asm to the project (copy of file from Appendix Lab C). It is only
placed here for easy access. Parts of this file will be used later during this lab exercise.

3. Setup the Build Options. Select the Linker tab and notice that “Run-time
Autoinitialization” under “Autoinit Model:”is selected. Do not enter
anything in the “Code Entry Point (-e):” field (leave it blank). Set the stack
size to 0x200. In the Linker options select the “Libraries” Category and enter
rts2800_ml.lib in the “Incl. Libraries (-l):” box. Next, select the
Compiler tab. Note that “Full Symbolic Debug (-g)” under “Generate
Debug Info:” in the Basic Category is selected. On the Feedback Category pull
down the interlisting options and select “C and ASM (-ss)”. On the Assembly
Category check the Keep generated .asm Files (-k), Keep Labels as
Symbols (-as) and Generate Assembly Listing Files (-al). The –as
will allow you to see symbols in the memory window and the –al will generate an
assembly listing file (.lst file). The listing file has limited uses, but is sometime helpful to
view opcode values and instruction sizes. (The .lst file can be viewed with the editor).
Both of these options will help with debugging. Then select OK to save the Build
Options.

Build and Load
4. Click the “Build” button and watch the tools run in the build window. Be sure the

“Load program after build” option is selected in Code Composer Studio. The
output file should automatically load. The Program Counter should be pointing to
_c_int00 in the Disassembly Window.

5. Under Debug on the menu bar click “Go Main”. This will run through the C
initialization routine in Boot.asm and stop at the main routine in LabD2.c.

C2000 Piccolo Workshop – Appendix D – C Programming D - 17

OPTIONAL Lab D2: C Callable Assembly

Verify C Sum of Products Routine
6. Debug using both source and assembly (by right clicking on the window and select

Mixed Mode or using View → Mixed Source/ASM).

7. Open a memory window to view result and data.

8. Single-step through the C code to verify that the C sum-of-products routine produces the
results as your assembly version.

Viewing Interlisted Files and Creating Assembly File
9. Using File → Open view the LabD2.asm and sop-c.asm generated files. The

compiler adds many items to the generated assembly file, most are not needed in the C-
callable assembly file. Some of the unneeded items are .func / .endfunc. .sym, and .line.

10. Look for the _sop function that is generated by the compiler. This code is the basis for
the C-callable assembly routine that is developed in this lab. Notice the comments
generated by the compiler on which registers are used for passing parameters. Also,
notice the C code is kept as comments in the interlisted file.

11. Create a new file (File → New, or clicking on the left most button on the horizontal
toolbar “New”) and save it as an assembly source file with the name sop-asm.asm.
Next copy ONLY the sum of products function from LabC.asm into this file. Add a
_sop label to the function and make it visible to the linker (.def). Also, be sure to add a
.sect directive to place this code in the “code” section. Finally, add the following
instruction to the end:

LRETR ; return statement

12. Next, we need to add code to initialize the sum-of-products parameters properly, based
on the passed parameters. Add the following code to the first few lines after entering the
_sop routine: (Note that the two pointers are passed in AR4 and AR5, but one needs to
be placed in AR7. The loop counter is the third argument, and it is passed in the
accumulator.)

 MOVL XAR7,XAR5 ;XAR7 points to coeff [0]

 MOV AR5,AL ;move n from ACC to AR5 (loop counter)

 SUBB XAR5,#1 ;subtract 1 to make loop counter = n-1

Before beginning the MAC loop, add statements to set the sign extension mode, set the
SPM to zero, and a ZAPA instruction. Use the same MAC statement as in Lab 4, but use
XAR4 in place of XAR2. Make the repeat statement use the passed value of n-1 (i.e.
AR5).

 RPT AR5 ;repeat next instruction AR5 times

D- 18 C2000 Piccolo Workshop – Appendix D – C Programming

 OPTIONAL Lab D2: C Callable Assembly

Now we need to return the result. To return a value to the calling routine you will need to
place your 32-bit value in the ACC. What register is the result currently in? Adjust your
code, if necessary.

13. Save the assembly file as sop-asm.asm. (Do not name it LabD2.asm because the
compiler has already created with that name from the original LabD2.c code).

Defining the Function Prototype as External
14. Note in LabD2.c an “extern” modifier is placed in front of the sum-of-products function

prototype:

 extern int sop(int*,int*,int); //sop function prototype

Verify Assembly Sum of Products Routine
15. Remove the sop-c.c file from the project and add the new sop-asm.asm assembly

file to the project.

16. Rebuild and verify that the new assembly sum-of-products routine produces the same
results as the C function.

End of Exercise

C2000 Piccolo Workshop – Appendix D – C Programming D - 19

Solutions

Solutions
Lab D Solutions

2232118Cycles

111227Code Size

Assembly
Code

Optimized
C Code

(-o3)

C Code

D- 20 C2000 Piccolo Workshop – Appendix D – C Programming

Appendix E – Control Law Accelerator

Introduction
Appendix E discusses the details of the Piccolo™ TMS320F2803x Control Law Accelerator
(CLA). The floating-point number format and the CLA registers will be discussed. Details of the
CLA instruction set and pipeline will be explained. Additionally, system configuration and a
comparison to the Delfino™ floating-point unit (FPU) will be covered.

Learning Objectives

Learning Objectives

Floating-point format

CLA registers and execution flow

Instructions

Pipeline

System configuration

Summary

C2000 Piccolo Workshop - Appendix E - Control Law Accelerator E - 1

Module Topics

Module Topics
Appendix E – Control Law Accelerator ..E-1

Module Topics... E-2
Control Law Accelerator .. E-3

Floating-Point Format... E-3
CLA Registers and Execution Flow ... E-4
CLA Instructions .. E-5
Status Register and Pipeline ... E-6
CLA System Configuration .. E-9
CLA Compared to C28x+FPU ... E-11
Summary .. E-12

E - 2 C2000 Piccolo Workshop - Appendix E - Control Law Accelerator

 Control Law Accelerator

Control Law Accelerator

Floating-Point Format

IEEE Single-Precision Floating-Point
Format

* Normal Positive and Negative Values are Calculated as:
(-1) s x 2 (E-127) x 1.M

+/- ~1.7 x 10 -38 to +/- ~3.4 x 10 +38

The Normalized IEEE numbers have a hidden 1; thus the equivalent
signed integer resolution is the number of mantissa bits + sign + 1

23-bit Mantissa (Implicit Leading Bit + Fraction Bits)
8-bit Exponent (Biased)
1 Sign Bit (0 = Positive, 1 = Negative) SS EE M M

Not a Number (NaN)Non-Zero255 (max)0 1
Positive or Negative Infinity0255 (max)0 1
Positive or Negative Values*0-0x7FFFF1-2540 1
Denormalized NumberNon-Zero00 1
Positive or Negative Zero000 1
ValueMES

IEEE Single-Precision Floating-Point
Format (IEEE 754)

Most widely used standard for floating-point
Standard number formats, Special values (NaN, Infinity)
Rounding modes & floating-point operations
Used on many CPUs

Simplifications for the C28x floating-point unit
Flags & Compare Operations:

Negative zero is treated as positive zero
Denormalized values are treated as zero
Not-a-number (NaN) is treated as infinity
Round-to-Zero Mode Supported (truncate)
Round-to-Nearest Mode Supported (even)

These formats are commonly handled this way on
embedded processors

C2000 Piccolo Workshop - Appendix E - Control Law Accelerator E - 3

Control Law Accelerator

CLA Registers and Execution Flow

CLA Execution
Registers

CLA Configuration
Registers

MR0 (32)
MR1 (32)
MR2 (32)
MR3 (32)

MAR0
MAR1
MPC

MSTF (32)

to
MVECT1

MVECT8

MCTL

MPISRCSEL1

MIFR
MICLR
MIFRC

MIOVF
MICLROVF

MIER
MIRUN

MEMCFG

Four 32-bit Result Registers
MR0 – MR3

MSTF: Status Register
Zero, negative, overflow, underflow
Rounding mode
RPC: Return PC
MEALLOW

Two 16-bit Auxiliary Registers
MAR0, MAR1
Used for indirect addressing

MPC: 12-bit Program Counter
Offset from the start of CLA program memory
Indicates instruction in the D2 phase

Eight Interrupt (Task) Vectors
MVECT1 to MVECT8
Offset from the start of CLA Program
Memory to the beginning of the task

Interrupt/Task Source Selection
MPISRCSEL1:

Task1: ADCINT1 or EPWM1_INT
Task2: ADCINT2 or EPWM2_INT
….
Task7: ADCINT7 or EPWM7_INT
Task8: ADCINT8 or CPU Timer 0

MIER: Interrupt enable/disable
MIRUN: Which task is running

Interrupt/Task Control
MIFR: Flag
MICLR: Clear
MIFRC: Force
MIOVF: Overflow flag
MICLROVF: Overflow clear

Configuration and Control
MEMCFG: Memory config
MCTL: CLA control

CLA Execution Registers:
CSM Protected
Main CPU has Read Only Access

CLA Configuration Registers:
CSM and EALLOW Protected
Main CPU has Read and Write Access

CLA Register Set

The task runs to
completion
(No task nesting)

x = Highest priority
task both enabled
and pending

Priority
Task1: Highest
. . .

Task8: Lowest

Task request is via software or
interrupt assigned in MPISRCSEL1:

Task1: ADCINT1 or EPWM1_INT
Task2: ADCINT2 or EPWM2_INT
…

Task7: ADCINT7 or EPWM7_INT
Task8: ADCINT8 or CPU Timer 0

Task
Request

?

Set MIOVF Bit
(Overflow Flagged)

Set MIFR bit
(Task Pending)

Yes

No

Yes

No

MIFR
bit

Set?

The main CPU
continues code
execution in
parallel with the
CLA

Note: Software task requests will not set MIOVF

When a task
completes a task-
specific interrupt is
sent to the PIE

Yes

Clear MIFR.x bit
Set MIRUN.x bit
MPC == MVECTx

Run CLA

Task
Enabled?

(MIER)

Yes

Yes

No

No

No

End of
Task?

MSTOP

Task
Pending?

(MIFR)

Clear MIRUN.x bit
Task x Interrupt to PIE

CLA Execution Flow

E - 4 C2000 Piccolo Workshop - Appendix E - Control Law Accelerator

 Control Law Accelerator

CLA Instructions

CLA Parallel Instructions

Multiply, Add, Subtract, MAC
& Parallel Load

Multiply, Add, Subtract
& Parallel Store

Multiply
& Parallel Add/Subtract

Instruction

1
MADDF32 MRa,MRb,MRc

|| MMOV32 mem32,MRe

1
MMPYF32 MRa,MRb,MRc

|| MSUBF32 MRd,MRe,MRf

1
MADDF32 MRa,MRb,MRc

|| MMOV32 MRe, mem32

CyclesExample

Both operations complete in a single cycle

Parallel bars indicate a parallel instruction
Parallel instructions operate as a single instruction with
a single opcode and performs two operations

Example: Add + Parallel Store

MADDF32 MR3, MR3, MR1
|| MMOV32 @_Var, MR3

; Before: MR0 = 2.0, MR1 = 3.0, MR2 = 10.0

MMPYF32 MR2, MR1, MR0 ; 1/1 instruction
|| MMOV32 @_X, MR2

<any instruction>

; After: MR2 = MR1 * MR0 = 3.0 * 2.0
; @_X = 10.0

Multiply and Store Parallel Instruction

Both the math operation and store
complete in 1 cycle
Parallel Instruction:

MMOV32 uses the value of MR2 before
the MMPY32 updates

C2000 Piccolo Workshop - Appendix E - Control Law Accelerator E - 5

Control Law Accelerator

Status Register and Pipeline

LVFLUFNFZFrsvd TF

CLA Status Register MSTF (32-bits)
rsvdRND

F32rsvdRPC MEALLOW

CLA Status Flags

Call and return: MCNDD, MRCNDD
Use store/load MSTF instructions to nest calls

Return Program
Counter

RPC

Enable/disable CLA writes to “EALLOW”
protected registers

Write ProtectionMEALLOW

To Zero (truncate) or To Nearest (even)Rounding ModeRNDF32

MTESTTF InstructionTest FlagTF

Float move operations to registers.
Result of compare, min/max, absolute,
negative
Integer result of integer operations
(MAND32, MOR32, SUB32, MLSR32 etc.)

Negative
and Zero

ZF
NF

Float math: MMPYF32, MADDF32, 1/x etc.
Connected to the PIE for debug

Latched Overflow
and Underflow

LVF
LUF

Independent 8 Stage Pipeline

Fetch1: Program read address generated
Fetch2: Read Opcode via CLA program data bus

Decode1: Decode instruction
Decode2: Generate address

Conditional branch decision made
MAR0/MAR1 update due to indirect addressing post increment

Read1: Data read address via CLA data read address bus
Read2: Read data via CLA data read data bus

Execute: Execute operation
MAR0/MAR1 update due to load operations

Write: Write

All Instructions are single cycle (except for Branch/Call/Return)
Memory conflicts in F1, R1 and W stall the pipeline

F2F1 D1 D2CLA Pipeline
Fetch Decode

R1 R2 E W

Read Exe Write

CLA Pipeline Stages

E - 6 C2000 Piccolo Workshop - Appendix E - Control Law Accelerator

 Control Law Accelerator

MMOV32 @_Reg1, MR3 ; Write Reg1
MMOV32 MR0, @_Reg2 ; Read Reg2

Due to the pipeline order, the read of Reg2 occurs before the Reg1 write

This is only an issue if the location written to can affect the location read
Some peripheral registers
Write to followed by read from the same location

Insert 3 other instructions or MNOPs to allow the write to occur first

F2F1 D1 D2CLA Pipeline
Fetch Decode

R1 R2 E W

Read Exe Write

Note: This behavior is different for the main C28 CPU:

The C28x CPU protects write followed by read to the same location
Blocks of peripheral registers have write-followed-by read protection

Write Followed-by-Read

Assume MAR0 is 50 and #_X is 20

MMOV16 MAR0, #_X ; I1 Load MAR0 with 20

MMOV32 MAR1, *MAR0[0]++ ; I2 Uses old MAR0 Value (50)
MMOV32 MAR1, *MAR0[0]++ ; I3 Uses old MAR0 Value (50)

<Instruction 4> ; I4 Can not use MAR0
MMOV32 MAR1, *MAR0[0]++ ; I5 Uses new MAR0 Value (20)

F2F1 D1 D2CLA Pipeline
Fetch Decode

R1 R2 E W

Read Exe Write

D2: Update to MAR0/MAR1 due to indirect addressing post increment
EXE: Update to MAR0/MAR1 due to load operation

When instruction I1 is in EXE instruction I4 is in D2
If I4 uses MAR0, then a conflict will occur and MAR0 will not be loaded

Loading MAR0 and MAR1

C2000 Piccolo Workshop - Appendix E - Control Law Accelerator E - 7

Control Law Accelerator

F2F1 D1 D2CLA Pipeline
Fetch Decode

R1 R2 E W

Read Exe Write

D2: Decide whether or not to branch
EXE: Branch taken (or not)

* Can not be MSTOP (end of task), MDEBUGSTOP (debug halt), MBCNDD
(branch), MCCNDD (call), or MRCNDD (return)

<Instruction 1> ; I1 Last instruction to affect flags for branch

<Instruction 2> ; I2
<Instruction 3> ; I3
<Instruction 4> ; I4

Branch, CND ; MBCNDD, MCCNDD or MRCNDD

<Instruction 5> ; I5
<Instruction 6> ; I6
<Instruction 7> ; I7

Can not be branch or stop *
Do not change flags in time to affect branch

Can not be branch or stop *
Always executed whether branch is taken or not

Branch, Call, Return Delayed Conditional

MCMPF32 MR0,#0.1
MCMPF32 MR0,#0.01
MTESTTF EQ
MNOP
MBCNDD Skip1,NEQ
MMOV32 MR1,@_Ramp
MMOVXI MR2,#RAMP_MASK
MOR32 MR1,MR2
MMOV32 @_Ramp,MR1
...
MSTOP

Skip1: MMOV32 MR3,@_Steady
MMOVXI MR2,#STEADY_MASK
MOR32 MR3,MR2
MBCNDD Skip2,NTF
MMOV32 MR1,@_Coast
MMOVXI MR2,#COAST_MASK
MOR32 MR1,MR2
MMOV32 @_Coast,MR1
...
MSTOP

Skip2: MMOV32 @_Steady,MR3
...
MSTOP

Optimized Code
MCMPF32 MR0,#0.1
MNOP
MNOP
MNOP
MBCNDD Skip1,NEQ
MNOP
MNOP
MNOP
MMOV32 MR1,@_Ramp
MMOVXI MR2,#RAMP_MASK
MOR32 MR1,MR2
MMOV32 @_Ramp,MR1
...
MSTOP

Skip1: MCMPF32 MR0,#0.01
MNOP
MNOP
MNOP
MBCNDD Skip2,NEQ
MNOP
MNOP
MNOP
MMOV32 MR1,@_Coast
MMOVXI MR2,#COAST_MASK
MOR32 MR1,MR2
MMOV32 @_Coast,MR1
...
MSTOP

Skip2: MMOV32 MR3,@_Steady
MMOVXI MR2,#STEADY_MASK
MOR32 MR3,MR2
MMOV32 @_Steady,MR3
...
MSTOP

Cycle count varies
depending on delay

slot usage

44
71
77

Not TakenTaken

MSTOP,
MDEBUGSTOP

MBCNDD, MCCNDD
MRCNDD are not
allowed in delay

slots

6 instruction
slots are

executed on
every branch

Use these
slots to
improve

performance

Optimizing Delayed Conditional Branch

E - 8 C2000 Piccolo Workshop - Appendix E - Control Law Accelerator

 Control Law Accelerator

CLA System Configuration

C28 + CLA
System

Initialization
Code

CLA
Run
Time
Code

Go

C Code

Assembly Code

C28
Run
Time
Code
Go

CLA and Main CPU
communication via

shared message RAMs
and interrupts

Peripherals
&

Memory

Access peripheral
registers & memory

Configure

Access peripheral
registers & memory

System initialization by
the main CPU in C

CLA concurrently
services time-critical

control loops

Main CPU performs
communication,

diagnostics, I/O in C

Code Partitioning

<Instruction 1> ; I1

...

<Instruction 7> ; I7
MUI16TOF32 MR0,@_AdcRegs.RESULT1

ADC
Conversion

RESULT
Register
Updates

After
15 Cycles

C
L

A
 M

ax
 B

an
dw

id
th

 =
 2

6
C

yc
le

s

ADC to CLA
Interrupt Response

Latency
6 Cycles

R ead AD C Reg

ADC
Sample
Window
7 Cycles

(minimum)

Assume 12 instructions
12 cycles

Minimum CLA Next Task Response
5 cycles

Pre Calc (7 instructions)...

MSTOP ; 1 cycle

Perform
pre-calculations
using the first 7
instructions
(7 cycles)

The 8th instruction
is “just-in-time” to
read the ADC
RESULT register
(1 cycle)

The ADC early interrupt occurs at the end of the sampling window

The CLA can read the result register as soon as it is latched

7 cycles after the early interrupt, the first CLA
instruction is in the D2 phase of the pipeline

I1 in D2

I8 in R2

Timing shown
for 2803x

RESULT register is
latched and ready
to be read

ADC’s
early
interrupt

Enables low ADC
sample to output delay

“Just in Time” ADC Sampling Using CLA

C2000 Piccolo Workshop - Appendix E - Control Law Accelerator E - 9

Control Law Accelerator

ADC
C28x
CPU

PIE

SOCA/B

CLA

ADCINT1

ADCINT9
ADCINT8

C
LA

1_
IN

T1

C
LA

1_
IN

T8

SOCA/B

EPWM1_INT/EPWM1_TZINT

EPWM7_INT7/EPWM7_TZINT

EPWM1_INT

EPWM7_INT
LU

F
LV

F

Piccolo ADC & CLA
interrupt structure
enables handling of
multi-channel systems
with different
frequencies and/or
phases

ePWM1

ePWM7

CLA Interrupts Improved Control Loop
Timing

// File main.c
#include “CLAShared.h”

#pragma DATA_SECTION(PIVars,"CpuToCla1MsgRAM");
struct PI_CTRL PIVars;
..
// Use Symbols defined in the CLA asm file
Cla1Regs.MVECT1 = (Uint16) (&Cla1Task1 \

- &Cla1Prog_Start)*sizeof(Uint32);

// Initialize variables
PIVars.KP = 1.234;
PIVars.KI = 0.92367;
PIVars.Ref = 2048.0;
PIVars.I = PIVars.KP*PIVars.Ref;

..
// Initialize Peripherals:
Epwm3Regs.PRD = (Uint16) PERIOD;

// File: CLAShared.h

#include “DSP28x_Project.h”
#define PERIOD 100.0
struct PI_CTRL
{

float KP;
float KI;
float I;
float Ref;

}
extern struct PI_CTRL PIVars;

extern Uint32 Cla1Prog_Start;
extern Uint32 Cla1Task1;
extern Uint32 Cla1Task2;
etc …

// File: C28x_Project.h

#include “DSP2803x_Device.h”
#include “DSP2803x_Examples.h”

Declare shared constants and variables in C

Include DSP2803x_Device.h to define register bit-
field structures

Assign variables to message RAMs or CLA data
memory sections using DATA_SECTION pragma

Add symbols defined in CLA assembly
to make them global and usable in C

Using a shared C-code header file
approach provides easy access to
variables and constants in both
C28x C and CLA assembly

Anatomy of CLA Code

E - 10 C2000 Piccolo Workshop - Appendix E - Control Law Accelerator

 Control Law Accelerator

; File: cla.asm
; Include C Header File:

.cdecls C,LIST,”CLAShared.h”

; Add linker directives:
.sect “Cla1Prog”

_Cla1Prog_Start:
……
_Cla1Task2:

MDEBUGSTOP ; breakpoint
..
; Read memory or register:
MMOV32 MR0,@_PIVars.Ref
MUI16TOF32 MR1,@_AdcResult.ADCRESULT0
MSUBF32 MR2,MR1,MR0
..
; Use constants defined in C
MMPYF32 MR1,MR2,#PERIOD
..
; Write to memory or register
MMOV32 @_PIVars.I, MR3
MMOV32 @_EPwm1Regs.CMPA.all, MR2
..
; End of task
MSTOP

_Cla1Task3:

Use .cdecls to include the
shared C header file in the
CLA assembly file
// File: CLAShared.h

#include “DSP28x_Project.h”
#define PERIOD 100.0
struct PI_CTRL
{

float KP;
float KI;
float I;
float Ref;

}
extern struct PI_CTRL PIVars;

extern Uint32 Cla1Prog_Start;
extern Uint32 Cla1Task1;
extern Uint32 Cla1Task2;
etc …

Place CLA code
into its own

assembly section

CLA assembly and C28 code reside in the same project

Put an MSTOP
at the end of

the task

Use C header file
references in

CLA assembly

Anatomy of CLA Code

CLA Compared to C28x+FPU

Single step flushes the pipelineSingle step moves the pipe one cycle

C28x + Floating-Point UnitControl Law Accelerator

Instructions Superset on Top of C28x Pass
Data Between FPU and C28x Regs

Self-Contained Instruction Set
Data is Passed Via Message RAMs

Programmed in C/C++ or AssemblyProgrammed in Assembly

C28x Integer OperationsSupports Native Integer Operations:
AND, OR, XOR, ADD/SUB, Shift

Uses C28x Branch, Call and Return
Copy flags from FPU STF to C28x ST0
Repeat MACF32 & Repeat Block

Native Delayed Branch, Call & Return
Use Delay Slots to Do Extra Work
No repeatable instructions

8 Result Registers
Shares C28x Auxiliary Registers
Supports Stack, Nested Interrupts

4 Result Registers
2 Independent Auxiliary Registers
No Stack Pointer or Nested Interrupts

Uses C28x Addressing ModesNo Data Page Pointer; Only uses
Direct & Indirect with Post-Increment

Math and Conversions are 2 CycleSingle Cycle Math and Conversions
F1-D2 Shared with the C28x PipelineIndependent 8 Stage Pipeline

CLA Compared to C28x+FPU

C2000 Piccolo Workshop - Appendix E - Control Law Accelerator E - 11

Control Law Accelerator

Summary

Summary
CLA is an independent 32-bit floating-point math
accelerator

robust, self saturating, and easy to program
System and CLA initialization is done by the
CPU in C
The CLA can directly access:

ADC Result, ePWM+HRPWM and comparator registers
The CLA is interrupt driven and has a low
interrupt response time (no nesting of
interrupts)
By using the ADC early interrupt, the CLA can
read the sample “Just-in-time”

Reduced ADC sample to output delay
Faster system response and higher MHz control loops
Support for multi-channel loops

E - 12 C2000 Piccolo Workshop - Appendix E - Control Law Accelerator

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DLP® Products www.dlp.com Communications and www.ti.com/communications
Telecom

DSP dsp.ti.com Computers and www.ti.com/computers
Peripherals

Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps

Interface interface.ti.com Energy www.ti.com/energy

Logic logic.ti.com Industrial www.ti.com/industrial

Power Mgmt power.ti.com Medical www.ti.com/medical

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Space, Avionics & www.ti.com/space-avionics-defense
Defense

RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video

Wireless www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/communications
http://dsp.ti.com
http://www.ti.com/computers
http://www.ti.com/clocks
http://www.ti.com/consumer-apps
http://interface.ti.com
http://www.ti.com/energy
http://logic.ti.com
http://www.ti.com/industrial
http://power.ti.com
http://www.ti.com/medical
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/space-avionics-defense
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless-apps

	Important Notice
	Revision History
	Mailing Address

	C2000™ Piccolo™ Workshop
	Introductions
	 C2000™ Piccolo™ Workshop Outline
	C2000™ Experimenter Kit

	Architecture Overview
	Introduction
	Learning Objectives
	Module Topics
	What is the TMS320C2000™?
	 TMS320C2000™ Internal Bussing

	F28x CPU
	 Special Instructions
	 Pipeline Advantage

	Memory
	Memory Map
	 Code Security Module (CSM)
	Peripherals

	Fast Interrupt Response
	F28x Mode
	Reset
	Summary

	Programming Development Environment
	Introduction
	Learning Objectives
	Module Topics
	Code Composer Studio
	Software Development and COFF Concepts
	 Projects
	 Build Options

	Creating a Linker Command File
	Sections
	Program Code (.text)
	Constants (.cinit – initialized data)
	Variables (.ebss – uninitialized data)

	 Linker Command Files (.cmd)
	Memory-Map Description
	 Section Placement

	Exercise 2
	Summary: Linker Command File

	Lab 2: Linker Command File
	System Description
	Placement of Sections:
	Create a New Project
	Project Build Options
	End of Exercise

	Solutions

	Peripherial Registers Header Files
	Introduction
	 Learning Objectives
	Module Topics
	Traditional and Structure Approach to C Coding
	Naming Conventions
	F2803x C-Code Header Files
	 Global Variable Definitions File
	 Mapping Structures to Memory
	Linker Command File
	 Peripheral Specific Routines

	Summary

	Reset and Interrupts
	Introduction
	Learning Objectives
	Module Topics
	Reset
	Reset - Bootloader
	 Emulation Boot Mode
	Stand-Alone Boot Mode
	 Reset Code Flow – Summary

	Interrupts
	Interrupt Processing
	 Interrupt Flag Register (IFR)
	Interrupt Enable Register (IER)
	 Interrupt Global Mask Bit (INTM)
	Peripheral Interrupt Expansion (PIE)
	 PIE Interrupt Vector Table
	Interrupt Response and Latency

	System Initialization
	Introduction
	Learning Objectives
	Module Topics
	Oscillator/PLL Clock Module
	Watchdog Timer
	General-Purpose Digital I/O
	External Interrupts
	Low Power Modes
	Register Protection
	Lab 5: System Initialization
	Create Project File
	Project Build Options
	Modify Memory Configuration
	Setup System Initialization
	Build and Load
	Run the Code – Watchdog Reset
	Setup PIE Vector for Watchdog Interrupt
	Build and Load
	Run the Code – Watchdog Interrupt
	End of Exercise

	Analog-to-Digital Converter and Comparator
	Introduction
	Learning Objectives
	Module Topics
	Analog-to-Digital Converter
	ADC Block and Functional Diagrams
	 ADC Triggering
	 ADC Conversion Priority
	 ADC Clock and Timing
	ADC Converter Registers
	ADC Calibration and Reference

	Comparator
	Comparator Block Diagram
	 Comparator Registers

	Lab 6: Analog-to-Digital Converter
	Notes
	Project File
	Setup ADC Initialization and Enable Core/PIE Interrupts
	Build and Load
	Run the Code
	Using Real-time Emulation
	End of Exercise

	Control Peripherals
	Introduction
	Learning Objectives
	Module Topics
	PWM Review
	ePWM
	 ePWM Time-Base Sub-Module
	 ePWM Compare Sub-Module
	 ePWM Action Qualifier Sub-Module
	Asymmetric and Symmetric Waveform Generation using the ePWM
	 PWM Computation Example
	 ePWM Dead-Band Sub-Module
	ePWM PWM Chopper Sub-Module
	 ePWM Digital Compare Sub-Module
	 ePWM Trip-Zone Sub-Module
	ePWM Event-Trigger Sub-Module
	 Hi-Resolution PWM (HRPWM)

	eCAP
	eQEP
	Lab 7: Control Peripherals
	Project File
	Setup Shared I/O and ePWM1
	Build and Load
	Run the Code – PWM Waveform
	Frequency Domain Graphing Feature of Code Composer Studio
	Setup eCAP1 to Measure Width of Pulse
	Build and Load
	Run the Code – Pulse Width Measurement
	End of Exercise

	Numerical Concepts
	Introduction
	Learning Objectives
	Module Topics
	Numbering System Basics
	Binary Numbers
	Examples:

	Two's Complement Numbers
	Examples:
	 To load small two's complement numbers into larger registers:
	Examples:

	Integer Basics
	 Sign Extension Mode

	Binary Multiplication
	Binary Fractions
	Representing Fractions in Binary
	Fraction Basics
	 Multiplying Binary Fractions

	Fraction Coding
	Fractional vs. Integer Representation
	Floating-Point
	IQmath
	IQ Fractional Representation
	Traditional “Q” Math Approach
	IQmath Approach

	IQmath Library
	 16 vs. 32 Bits

	Converting ADC Results into IQ Format
	AC Induction Motor Example
	IQmath Summary
	Lab 8: IQmath & Floating-Point FIR Filter
	Project File
	Project Build Options
	Include IQmathLib.h
	Inspect Lab_8.cmd
	Select a Global IQ value
	IQmath Single-Sample FIR Filter
	Build and Load
	Run the Code – Filtered Waveform
	End of Exercise
	 Lab 8 Reference: Low-Pass FIR Filter

	Control Law Accelerator
	Introduction
	Learning Objectives
	Module Topics
	Control Law Accelerator (CLA)
	CLA Block Diagram
	 CLA Memory and Register Access
	CLA Tasks
	Control and Execution Registers
	 CLA Registers
	CLA Initialization
	CLA Task Programming
	 CLA Instruction Set
	 CLA Addressing Modes
	CLA Code Example
	CLA Code Debugging

	Lab 9: CLA Floating-Point FIR Filter
	Project File
	Enabling CLA Support in CCS
	Inspect Lab_9.cmd
	Setup CLA Initialization
	Setup PIE Interrupt for CLA
	Build and Load
	Run the Code – Test the CLA Operation
	End of Exercise

	System Design
	Introduction
	Learning Objectives
	Module Topics
	Emulation and Analysis Block
	Flash Configuration and Memory Performance
	Flash Programming
	Code Security Module (CSM)
	Lab 10: Programming the Flash
	Project File
	Link Initialized Sections to Flash
	Compiler Sections
	Copying Interrupt Vectors from Flash to RAM
	Initializing the Flash Control Registers
	Code Security Module and Passwords
	Executing from Flash after Reset
	Initializing the CLA
	Build – Lab.out
	CCS Flash Plug-in
	Running the Code – Using CCS
	Running the Code – Stand-alone Operation (No Emulator)
	End of Exercise

	 Lab 10 Reference: Programming the Flash

	Communications
	Introduction
	Learning Objectives
	Module Topics
	Communications Techniques
	Serial Peripheral Interface (SPI)
	SPI Transmit / Receive Sequence
	 SPI Registers
	SPI Summary

	Serial Communications Interface (SCI)
	Multiprocessor Wake-Up Modes
	 SCI Registers
	SCI Summary

	Local Interconnect Network (LIN)
	 LIN Message Frame and Data Timing
	 LIN Summary

	Inter-Integrated Circuit (I2C)
	 I2C Operating Modes and Data Formats
	I2C Summary

	Enhanced Controller Area Network (eCAN)
	 CAN Bus and Node
	Principles of Operation
	 Message Format and Block Diagram
	eCAN Summary

	DSP/BIOS
	Introduction
	Learning Objectives
	Module Topics
	Introduction to DSP/BIOS
	DSP/BIOS Configuration Tool
	 1. Creating a New Memory Region (Using MEM)
	 2. Placing Sections – MEM Manager Properties
	 3. PIE Interrupts – HWI Interrupts
	 4. Running the Linker

	Scheduling DSP/BIOS threads
	Periodic Functions
	Real-Time Analysis Tools
	Lab 12: DSP/BIOS
	Project File
	Edit Lab.h File
	Remove “rts2800_ml.lib” and Inspect Lab_12.cmd
	Using the DSP/BIOS Configuration Tool
	Create New Memory Sections Using the TCF File
	BIOS Data tab
	BIOS Code tab
	Compiler Sections tab
	End of Exercise

	Development Support
	Introduction
	Learning Objectives
	Module Topics
	TI Support Resources
	C28x Signal Processing Libraries
	 Experimenter’s Kits
	 F28335 Peripheral Explorer Kit
	C2000 ControlCARD Application Kits
	 Product Information Resources

	Appendix A – Experimenter’s Kit
	Module Topics
	F28035 ControlCARD
	F28035 PCB Outline (Top View)
	LD1 / LD2 / LD3
	SW1
	 SW2
	SW3

	F28335 ControlCARD
	F28335 PCB Outline (Top View)
	LD1 / LD2 / LD3

	Docking Station
	SW1 / LD1
	JP1 / JP2
	J1 / J2 /J3 / J8 / J9
	F2833x Boot Mode Selection
	F280xx Boot Mode Selection
	 J3 – DB-9 to 4-Pin Header Cable

	Appendix B – Addressing Modes
	Introduction
	Learning Objectives
	Module Topics
	Labels, Mnemonics and Assembly Directives
	Addressing Modes
	Instruction Formats
	Register Addressing
	Immediate Addressing
	Direct Addressing
	Indirect Addressing
	Review
	Exercise B

	Lab B: Addressing
	Copy Files, Create Project File
	Initialize Allocated RAM Array from ROM Initialization Table
	Build and Load
	End of Exercise

	OPTIONAL Lab B-C: Array Initialization in C
	Create Project File
	Initialize Allocated RAM Array from ROM Initialization Table
	Build and Load
	End of Exercise

	Solutions

	Appendix C – Assembly Programming
	Introduction
	Learning Objectives
	Module Topics
	Program Control
	Branches
	Program Control Instructions

	ALU and Accumulator Operations
	 Simple Math & Shift

	Multiplier
	Basic Multiplier
	Repeat Instruction
	MAC Instruction

	Data Move
	Logical Operations
	Byte Operations and Addressing
	 Test and Change Memory Instructions
	 Min/Max Operations

	Read Modify Write Operations
	Lab C: Assembly Programming
	Copy Files, Create Project File
	Initialization Routine using BANZ
	Sum of Products using a RPT/MAC-based Implementation
	Build and Load
	Optional Exercise
	End of Exercise

	OPTIONAL Lab C-C: Sum-of-Products in C
	Create Project File
	Sum of Products using a MAC-based Implementation
	Build and Load
	End of Exercise

	Appendix D – C Programming
	Introduction
	Learning Objectives
	Module Topics
	Linking Boot code from RTS2800.lib
	Set up the Stack
	C28x Data Types
	Accessing Interrupts / Status Register
	Using Embedded Assembly
	Using Pragma
	Optimization Levels
	Volatile Usage
	 Compiler Advanced Options
	Optimization Tips Summary

	Lab D: C Optimization
	Create Project File
	Build and Load
	Set Up the Profile Session
	Benchmarking Code
	C Optimization
	Benchmarking Assembly Code
	End of Exercise

	OPTIONAL Lab D2: C Callable Assembly
	Copy Files, Create Project File
	Build and Load
	Verify C Sum of Products Routine
	Viewing Interlisted Files and Creating Assembly File
	Defining the Function Prototype as External
	Verify Assembly Sum of Products Routine
	End of Exercise

	Solutions

	Appendix E – Control Law Accelerator
	Introduction
	Learning Objectives
	Module Topics
	Control Law Accelerator
	Floating-Point Format
	 CLA Registers and Execution Flow
	 CLA Instructions
	 Status Register and Pipeline
	 CLA System Configuration
	CLA Compared to C28x+FPU
	 Summary

