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1. Laboratory Objectives

The inverted pendulum is a classic experiment used to teach dynamics and control systems. 
In this laboratory, the pendulum dynamics are derived using Lagrangian equations and an 
introduction to nonlinear control is made.

There are two control challenges: designing a balance controller and designing a swing-up 
control. After manually initializing the pendulum in the upright vertical position, the 
balance controller moves the rotary arm to keep the pendulum in this upright position. It is 
designed using the Linear-Quadratic Regulator technique on a linearized model of the 
rotary pendulum system.

The swing-up controller drives the pendulum from its suspended downward position to the 
vertical upright position, where the balance controller can then be used to balance the link. 
The pendulum equation of motion is derived using Lagrangian principles and the pendulum 
moment of inertia is identified experimentally to obtain a model that represents the 
pendulum more accurately. The swing-up controller is designed using the pendulum model 
and a Lyapunov function. Lyapunov functions are commonly used in control theory and 
design and it will be introduced to design the nonlinear swing-up control.

Regarding Gray Boxes:

Gray boxes present in the instructor manual are not intended for the students as they
provide solutions to the pre-lab assignments and contain typical experimental results
from the laboratory procedure.

2. References
[1] QNET-ROTPEN User Manual.
[2] NI-ELVIS User Manual.
[3] QNET Experiment #03: ROTPEN Gantry Control

3. ROTPEN Plant Presentation

3.1. Component Nomenclature
As a quick nomenclature, Table 1, below, provides a list of the principal elements
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composing the Rotary Pendulum (ROTPEN) Trainer system. Every element is located and
identified, through a unique identification (ID) number, on the ROTPEN plant represented
in Figure 1, below.

ID #ID # Description Description
1 DC Motor 3 Arm

2 Motor/Arm Encoder 4 Pendulum
Table 1 ROTPEN Component Nomenclature

Figure 1 ROTPEN System

3.2. ROTPEN Plant Description
The QNET-ROTPEN Trainer system consists of a 24-Volt DC motor that is coupled with
an encoder and is mounted vertically in the metal chamber. The L-shaped arm, or hub, is
connected to the motor shaft and pivots between ±180 degrees. At the end of the arm, there
is a suspended pendulum attached. The pendulum angle is measured by an encoder.
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4. Pre-Lab Assignments
This section must be read, understood, and performed before you go to the laboratory 
session.
The first section, Section 4.1, summarizes the control design method using the linear- 
quadratic regulator technique to construct the balance control. Section 4.2 is the first pre-lab 
exercise and involves modeling the open-loop pendulum using Lagrangian. The second pre- 
lab assignment, in Section 4.3, develops the equations needed to experimentally identify the 
pendulum inertia. Lastly, the last pre-lab exercise in Section 4.4 is designing the swing-up 
control.

4.1. Balance Control Design

Section 4.1.1 discusses the model of the inverted pendulum and the resulting linear state- 
space representation of the device. The design of a controller that balances an inverted 
pendulum is summarized in Section 4.1.2.

4.1.1. Open-Loop Modeling
As already discussed in the gantry experiment, ROTPEN Laboratory #3, the ROTPEN plant 
is free to move in two rotary directions. Thus it is a two degree of freedom, or 2 DOF, 
system. As described in Figure 2, the arm rotates about the Y0 axis and its angle is denoted
by the symbol θ while the pendulum attached to the arm rotates about its pivot and its angle 
is called α. The shaft of the DC motor is connected to the arm pivot and the input voltage of
the motor is the control variable.
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Figure 2 Rotary Pendulum System

In the inverted pendulum experiment, the pendulum angle, α, is defined to be positive when
the it rotates counter-clockwise. That is, as the arm moves in the positive clockwise
direction, the inverted pendulum moves clockwise (i.e. the suspended pendulum moves
counter-clockwise) and that is defined as α>0. Recall that in the gantry device, when the
arm rotates in the positive clockwise direction the pendulum moves clockwise, which in
turn is defined as being positive.

The nonlinear dynamics between the angle of the arm, θ, the angle of the pendulum, α, and
the torque applied at the arm pivot, τoutput, are
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where the torque generated at the arm pivot by the motor voltage Vm  is
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The ROTPEN model parameters used in [1] and [2] are defined in Table 2.

Symbol Description Value Unit
Mp Mass of the pendulum assembly (weight and link

combined). 0.027
kg

lp m0.153Length of pendulum center of mass from pivot.
Lp m0.191Total length of pendulum.

m0.08260Length of arm pivot to pendulum pivot.r
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Symbol Description Value Unit
Jm Motor shaft moment of inertia. 3.00E-005 kg⋅m2

Marm 0.028Mass of arm. kg

m/s9.810Gravitational acceleration constant.g 2

Jeq Equivalent moment of inertia about motor shaft
1.23E-004pivot axis.

kg⋅m2

Jp Pendulum moment of inertia about its pivot axis. kg1.10E-004 ⋅m2

Beq Arm viscous damping. N0.000 ⋅m/(rad/s)
Bp Pendulum viscous damping. N0.000 ⋅m/(rad/s)
Rm Motor armature resistance. 3.30 Ω

Kt Motor torque constant. N0.02797 ⋅m
Km V/(rad/s)0.02797Motor back-electromotive force constant.

Table 2 ROTPEN Model Nomenclature

The pendulum center of mass, lp, is not given in Table 2 since it was calculated in the
previous experiment, ROTPEN Laboratory #3 – Gantry. The moment of inertia parameter,
Jp, is not given because it will be determined experimentally in this laboratory. However,
the Jp that was calculated in ROTPEN Laboratory #3 – Gantry is still used in this
experiment for comparison purposes. The viscous damping parameters of the pendulum, Bp,
and of the arm, Beq, are regarded as being negligible in this laboratory.

Similarly in ROTPEN Laboratory #3, the linear equations of motion of the system are
found by linearizing the nonlinear equations of motions, or EOMs, presented in [1] about
the operation point α = π and solving for the acceleration of the terms θ and α. For the state

 = x [ ], ,,x1 x2 x3 x4
T

[3]

where

 = x1 θ
, 

 = x2 α
, 

 = x3 ∂
∂
t θ

, and 
 = x4 ∂

∂
t α [4]

the linear state-space representation of the ROTPEN Inverted Pendulum is

 = d
d
t ( )x t  + A ( )x t B ( )u x

 = ( )y t  + C ( )x t D ( )u x
[5]
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where u(x) = Vm and the A, B, C, and D matrices are
State-Space Matrix Expression
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Table 3 Linear State-Space Matrices

4.1.2. LQR Control Design
The problem of balancing an inverted pendulum is like balancing a vertical stick with your
hand by moving it back and forth. Thus by supplying the appropriate linear force, the stick
can be kept more-or-less vertical. In this case, the pendulum is being balanced by applying
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torque to the arm. The balance controller supplies a motor voltage that applies a torque to
the pendulum pivot and the amount of voltage supplied depends on the angular position and
speed of both the arm and the pendulum.

Recall that the linear quadratic regulator problem is: given a plant model

 = d
d
t ( )x t  + A ( )x t B ( )u t [6]

find a control input u that minimizes the cost function

 = J d⌠
⌡
⎮⎮

0

∞

 + ( )x t T Q ( )x t ( )u t T R ( )u t t [7]

where Q is an n×n positive semidefinite weighing matrix and R is an r×r positive definite
symmetric matrix. That is, find a control gain K in the state feedback control law

 = u K x [8]
such that the quadratic cost function J is minimized.

The Q and R matrices set by the user affects the optimal control gain that is generated to
minimize J. The closed-loop control performance is affected by changing the Q and R
weighing matrices. Generally, the control input u will work harder and therefore a larger
gain, K, will be generated if Q is made larger. Likewise, a larger gain will be computed by
the LQR algorithm if the R weighing matrix is made smaller. 

Figure 3 Closed-Loop Control System

The closed-loop system that balances the pendulum is shown in Figure 3. The controller
computes a voltage Vm depending on the position and velocity of the arm and pendulum
angles. The box labeled Plant shown in Figure 3 represents the nonlinear dynamics given in
[1] and [2]. Similarly to the gantry experiment, the LQR gain K is automatically generated
in the LabView Virtual Instrument by tuning the Q and R matrix.
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4.1.3. Inverted Pendulum Control Specifications

Design an LQR control, that is tune the Q weighing matrix, such that the closed-loop 
response meets the following specifications:

(1) Arm Regulation: |θ(t)| < 30°
(2) Pendulum Regulation: |α(t)| < 3°
(3) Control input limit: Vm < 12 V

Thus the control should regulate the arm about zero degrees within 30° as it balances the 
pendulum without angle |α| going beyond 3°. The arm angle is re-defined to zero degrees,
θ = 0°, when the balance controller is activated. Additionally, the control input must be kept
under the voltage range of the motor, 12 Volts.

4.2. Pre-Lab Assignment #1: Open-loop Modeling of the 
Pendulum
In Reference [3], the full model representing the two degrees-of-freedom motion of the 
gantry was developed using Lagrange. The following exercises deals instead with modeling 
only the pendulum shown in Figure 4 and assuming that the torque at the pendulum pivot, 
which is not directly actuated, is a control variable. Later, the dynamics between the input 
voltage of the DC motor and the torque applied to the pendulum pivot will be expressed. 
The Lagrange method will be used to find the nonlinear equations of motion of the 
pendulum. Thus the kinematics, potential energy, and kinetic energy are first calculated and 
the equations of motion are found using Euler-Lagrange.
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Figure 4 Free body diagram of pendulum considered a single
rigid body.

4.2.1. Exercise: Kinematics
Figure 4 is the pendulum of the ROTPEN system when being considered as a single rigid
object. It rotates about the axis z0, at an angle α that is positive, by convention, when the
pendulum moves in the counter-clockwise fashion. Further, α = 0 when the pendulum is in
the vertical downward position. Find the forward kinematics of the center of mass, or CM,
of the pendulum with respect to the base frame o0x0y0z0, as shown in Figure 4 More
specifically, express the position, xp and yp, of the CM and the velocity, xdp and ydp, of the
pendulum CM in terms of the angle α.
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Solution:
The kinematics of the pendulum CM relative to the base coordinate system o0x0y0z0 is

 = xp lp ( )sin ( )α t

 = yp −lp ( )cos ( )α t
[s1]

and the velocity components are found by taking the derivative of [s1] with respect to
time

 = xdp lp ( )cos ( )α t ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
t ( )α t

 = ydp lp ( )sin ( )α t ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
t ( )α t

.

[s2]

4.2.2. Exercise: Potential Energy
Express the total potential energy, to be denoted as UT(α), of the rotary pendulum system.
The gravitational potential energy depends on the vertical position of the pendulum center-
of-mass. The potential energy expression should be 0 Joules when the pendulum is at α = 0,
the downward position, and is positive when the α > 0. It should reach its maximum value
when the pendulum is upright and perfectly vertical.

Solution:
The gravitational potential energy is dependent on the vertical position of the
pendulum CM. Thus using expression yp from the above exercise, the total potential
energy of the system is

 = ( )Ut α Mp g lp ( ) − 1 ( )cos ( )α t
. [s3]

The potential energy is zero when the pendulum is at rest suspending, Ut(0) = 0 J, and
is at its maximum value when the pendulum is brought in upright vertical position,
Ut(π) = 2Mpglp.

4.2.3. Exercise: Kinetic Energy
Find the total kinetic energy, Tt, of the pendulum. In this case, the system being considered
is a pendulum that rotates about a fixed pivot, therefore the entire kinetic energy is
rotational kinetic energy.
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Solution:
The total kinetic energy of the system can be described is

 = Tt
1
2 Jp

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
t ( )α t

2

.
[s4]

The pendulum inertia parameter, Jp, is found experimentally in a later exercise.

4.2.4. Exercise: Lagrange of System
Calculate the Lagrangian of the pendulum

 = ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟L ,α d

d
t ( )α t  − Tt Ut .

[9]

where Tt is the total kinetic energy calculated in Exercise 4.2.3, and Ut is the total potential
energy of the system calculated in Exercise 4.2.2.

Solution:
The Lagrange of the system for the position and velocity of α is

 = ⎛
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4.2.5. Exercise: Euler-Lagrange Equations of Motions
The Euler-Lagrange equations of motion are calculated from the Lagrangian of a system
using

 =  − 
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟∂ ∂
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∂
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where for an n degree-of-freedom, or n DOF, structure i = {1,..,n}, qi is a generalized
coordinate, and Qi is a generalized force. 

For the 1 DOF pendulum being considered, q1(t)= α(t) and the generalized force is,

 = Q1  − τpend Bp
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
t ( )α t [11]

where τpend is the torque applied to the pendulum pivot. The generalized force, expression
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[11] above, becomes Q1 = τpend since the viscous damping of the pendulum, Bp, is regarded
as being negligible.

Calculate the nonlinear equation of motion of the pendulum using [10] on the Lagrange
calculated in Exercise 4.2.4. The answer should be in the form

 = 
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟f ,α

∂
∂2

t2 τα pend
,

[12]

where the function f represents the differential equation in terms of the position and
acceleration of the pendulum angle α. Do not express in terms of generalized coordinates.

Solution:
The two differentiations of [s5] for solving the Euler-Lagrange given in [10] are

 = 
∂
∂
α

L −Mp g lp ( )sin α [s6]

and

 = 
∂ ∂
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t alpha_dot L Jp
⎛
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⎠
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.
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The nonlinear equation of motion of the pendulum using Euler-Lagrange is

 =  + Jp
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟d

d2

t2 ( )α t Mp g lp ( )sin ( )α t τpend
.

[s8]

theofInertiaFinding#2:4.3. Pre-Lab Assignment
Pendulum Experimentally
The inertia of the pendulum about its pivot point was calculated analytically using integrals
in the previous gantry experiment, ROTPEN Laboratory #3. In this laboratory, the inertia of
the pendulum is found experimentally by measuring the frequency at which the pendulum
freely oscillates. The nonlinear equation of motion derived in the previous exercise is used
to find a formula that relates frequency and inertia. The nonlinear equation of motion must
first be linearized about a point and then solved for angle α.
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4.3.1. Exercise: Linearize Nonlinear EOMs of Pendulum
The inertia is found by measuring the frequency of the pendulum when it is allowed to
swing freely, or without actuation. Thus the torque at the pivot is zero, τpend = 0, and the
nonlinear EOM found in [12] becomes

 = 
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟f ,α

∂
∂2

t2 α 0 [13]

where f is the differential expression in [12] that represents the motions of the pendulum.

Linearize function [13] about the operating point α = 0°, which is the angle the pendulum
will be swinging about in order to measure its frequency.

Solution:
The only nonlinear component in [s8] is the trigonometric term sin(α). For small
angles about α= 0°, it can be approximated to

 = ( )sin α α . [s9]

The linearization of the nonlinear equations of motions in [s8] is therefore

 =  + Jp
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟d

d2

t2 ( )α t Mp g lp ( )α t 0
.

[s10]

4.3.2. Exercise: Differential Equation Solution
Solve the linear differential equation found in [13] for α(t) given that its initial conditions
are

 = ( )α 0 α0  and 
 = d

d
t ( )α 00

.
[14]

The solution should be in the form
 = ( )α t α0 ( )cos 2 π f t

, [15]

where f is the frequency of the pendulum in Hertz.
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Solution:
The Laplace transform of the linear equation of motion of the pendulum is

 =  + Jp ( ) − s2 ( )α s αo Mp g lp ( )α s 0
. [s11]

Solving for α(s), [s11] becomes

 = ( )α s
α0

 + s2
Mp g lp

Jp .

[s12]

The inverse Laplace of [s12] equals

 = ( )α t α0

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
cos

Mp g lp

Jp
t

.
[s13]

The frequency of the pendulum is therefore

 = f
1
2

Mp g lp

Jp

π .

[s14]

4.3.3. Relating Pendulum Inertia and Frequency
Solving the frequency expression in [15] for the moment of inertia of the pendulum, Jp,
should yield the equation

 = Jp
1
4

Mp g lp

π2 f2
,

[16]

where Mp is the mass of the pendulum assembly, lp is the center of mass of the pendulum
system, g is the gravitational acceleration, and f is the frequency of the pendulum.
Expression [16] will be used in the in-lab session to find the pendulum moment of inertia in
terms of the frequency measured when the pendulum is allowed to swing freely after a
perturbation. The frequency can be measured using
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 = f
ncyc

 − t1 t0 ,
[17]

where ncyc is the number of cycles within the time duration t1-t0, t0 is the time when the first
cycle begins, and t1 is the time of the last cycle.

4.4. Pre-Lab Assignment #3: Swing-Up Control Design
The controller using the Linear-Quadratic Regulator technique in Section 4.1 balances the
pendulum in the upright vertical position after it is manually rotated within a certain range
about its upright vertical angle. In this section, a controller is designed to automatically
swing the pendulum in the upwards vertical position. Once the pendulum is within the
range of the balance controller, it kicks-in and balances the pendulum. The closed-loop
system that uses the swing-up controller and the balance controller is depicted in Figure 5.

Figure 5 Swing-Up/Balance Closed-Loop System

The swing-up controller computes the torque that needs to be applied at the base of arm
such that the pendulum can be rotated upwards. It is a nonlinear control that uses the
pendulum energy to self-erect the pendulum. The swing-up controller will be designed
using a Lyapunov function. Lyapunov functions are often used to study the stability
properties of systems and can be used to design controllers.
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4.4.1. Exercise: Re-defining System Dynamics
The controller that will be designed attempts to minimize an expression that is a function of
the system's total energy. In order to rotate the pendulum into its upwards vertical position,
the total energy of the pendulum and its dynamics must be redefined in terms of the angle

 = αup  − α π
, [18]

resulting in the system shown in Figure 6. Thus angle zero is defined to be when the
pendulum is vertically upright. The translational acceleration of the pendulum pivot is
denoted by the variable u and is m/s2.

Figure 6 New Angle Definition

Re-define the nonlinear pendulum equations of motion found in Exercise 4.2.5 in terms of
αup,

 = 
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟f ,αup ∂

∂2

t2 αup ( )τpend ,αup u [19]

and for the Lagrange calculated in Exercise 4.2.4, express energy E with respect to the
upright angle

 = ( )E αup ( )L  + αup π
. [20]
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Given the pendulum is not moving, the pendulum energy should be zero when it is
vertically upright, thus E(0) = 0 J, and should be negative when in the vertically down
position, more specifically

 = ( )E −π −2 Mp g lp . [21]

Solution:
Using trigonometric identities, the re-defined nonlinear EOM of the pendulum is

 =  − Jp
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟d

d2

t2 ( )αup t Mp g lp ( )sin ( )αup t ( )τpend ,αup u [s15]

and the total energy of the pendulum defined in terms of αup is

 = ( )E αup  + 
1
2 Jp

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
t ( )αup t

2

Mp g lp ( ) − 1 ( )cos ( )αup t
.

[s16]

Given that the pendulum is motionless, the energy expression above reads 0J when the
pendulum is upright and -2Mpglp when it is vertically downward.

4.4.2. Exercise: Actuator Dynamics
The swing-up controller that will be designed generates an acceleration at which the
pendulum pivot should be moving at, denoted as u in Figure 6. The pendulum pivot
acceleration however is not directly controllable, the input voltage of the DC motor voltage
of the ROTPEN system is the input that is controlled by the computer. The dynamics
between the acceleration of the pendulum pivot, u, and the input motor voltage, Vm, is
required to supply the acceleration that is commanded by the swing-up control.

The dynamics between the torque applied at the arm by the motor, which is already given in
[2], is

 = τoutput

Kt
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ − Vm Km

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
t ( )θ t

Rm .
[22]

The torque applied to the arm moves the pendulum pivot, situated at the end of arm, at an
acceleration u, thus
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 = τouput Marm u r [23]
where Marm is the mass of the arm and r is the length between the arm pivot and pendulum
pivot. These parameters are both defined in Table 2. As shown above in Figure 6, the
resulting torque applied on the pivot of the pendulum from acceleration u is

 = ( )τpend ,αup u lp Fpend ( )cos αup , [24]

where lp is the length between the pendulum CM and its axis of rotation and
 = Fpend −Mp u

. [25]

As depicted in Figure 6, the force acting on the pendulum due to the pivot acceleration is
defined as being negative in the x0 direction for a positive u going along the x0 axis.

The swing-up controller computes a desired acceleration, u, and a voltage must be given
that can achieve that acceleration. Express the input DC motor voltage in terms of u using
the above equations.

Solution:
By substituting expression [23] into equation [22] and solving for Vm, the input
voltage of the DC motor as a function of the pendulum pivot acceleration is

 = Vm  + 
Rm Marm u r

Kt
Km

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
t ( )θ t

.
[s17]

4.4.3. Exercise: Lyapunov Function
The goal of the self-erecting control is for αup(t) to converge to zero, or αup(t)  0 in a finite
time t. Instead of dealing with the angle directly, the controller will be designed to stabilize
the energy of the pendulum using expression [20]. The idea is that if E 0 J then αup(t)
0. Thus the controller will be designed to regulate the energy such that E 0 J.

The swing-up control computes a pivot acceleration that is required to bring E down to zero
and self-erect the pendulum. The control will be designed using the following Lyapunov
function
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 = ( )V E
1
2 ( )E αup

2

,
[26]

where E(αup) was found in Exercise 4.4.1. By Lyapunov's stability theorem, the equilibrium
point E(αup)=0 is stable if the following properties hold

(1)  = ( )V 0 0

(2)  < 0 ( )V E  for all values of E(αup) ≠ 0

(3) 
 ≤ 

∂
∂
t ( )V E 0

 for all values of E(αup).

[27]

The equilibrium point E(αup) = 0 is stable if the time derivative of function V(E) is negative
or zero for all values of E(αup). The function V(E) approaches zero when its time derivative
is negative (i.e. its a decreasing function) and that implies its variable, E(αup), converges to
zero as well. According to the energy expression in [20], this means the upright angle
converges to zero as well.

The derivative of V(E) is given by

 = 
∂
∂
t ( )V E ( )E αup

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∂

∂
t ( )E αup .

[28]

Compute the Lyapunov derivative in [28]. First, calculate the time derivative of E(αup )

∂
∂
t ( )E αup ,

[29]

and make the corresponding substitutions using the re-defined dynamics in [19] that
introduces the pivot acceleration control variable u. When expressing the Lyapunov
derivative leave E(αup ) as a variable in [28] and do not substitute the expression of E(αup )
in [20].
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Solution:
The time derivative of the energy expression is

 = 
∂
∂
t ( )E αup  − Jp

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟d

d2

t2 ( )αup t Mp g lp ( )sin αup [s18]

The above result equals the pendulum nonlinear dynamics in [s15], therefore

 = 
∂
∂
t ( )E αup −Mp u lp ( )cos αup .

[s19]

This substitution is key as it introduces the control variable u in the Lyapunov
derivative. The Lyapunov derivative is

 = 
∂
∂
t ( )V E − ( )E αup Mp u lp

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
t ( )αup t ( )cos αup .

[s20]

4.4.4. Exercise: Swing-Up Control Design
The preceding calculations should yield a Lyapunov derivative in the form

 = 
∂
∂
t ( )V E − ( )E αup ( )g αup u [30]

where g(αup) is real valued function that can be either negative or positive depending on the
pendulum angle. The swing-up controller is an expression u that guarantees [30] will be
negative or zero, V_dot(E) ≤ 0, for all values of E(αup ).

For example, determine if V_dot(E) ≤ 0 for the simple proportional controller u = µ where
µ≥0 is a user-defined control gain. Substituting the control u inside [30] gives

 = 
∂
∂
t ( )V E −µ ( )E αup ( )g αup .

[31]

The equilibrium point E(αup ) = 0 is shown as being unstable using the control u = µ
because V_dot(E) is not negative for all values of E(αup ). Since either the function g(αup) or
E(αup ) can be negative, [31] can become positive which means V(E) would not be a
decreasing function and, as a result, E(αup ) is not guaranteed to approach zero. In
conclusion, this control design is not suitable for swinging up the pendulum because there
is no guarantee the proper acceleration u will be generated such that αup will converge
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towards zero.

Determine and explain if E(αup ) = 0 is stable using the following controllers and the
V_dot(E) calculated in Exercise 4.4.3

1) u = µ⋅E(αup ), where µ≥0 is a user-defined control gain. 

Solution:
Substituting the control u above into function V(E) in [s20] gives

 = 
∂
∂
t ( )V E −µ ( )E αup

2
Mp lp

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
t ( )αup t ( )cos αup .

[s21]

If either the angular velocity of the pendulum angle or cos(αup) goes negative, when
the pendulum is below the horizontal, expression [s21] becomes positive.
Therefore E(αup ) = 0 is unstable using u = µ⋅E(αup ).

2) u = µ⋅E(αup )⋅cos(αup )

Solution:
Substituting the control u above into function V(E) in [s20] gives

 = 
∂
∂
t ( )V E −µ ( )E αup

2
Mp lp

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
t ( )αup t ( )cos αup

2

.
[s22]

If the angular velocity of the pendulum angle goes negative expression [s22] becomes
positive. Therefore E(αup ) = 0 is unstable using u = µ⋅E(αup )⋅cos(αup ).

3) u = µ⋅E(αup )⋅(dαup(t)/dt)⋅cos(αup )
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Solution:
Substituting the control u above into function V(E) in [s20] gives

 = 
∂
∂
t ( )V E −µ ( )E αup

2
Mp lp

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
t ( )αup t

2

( )cos αup
2

.
[s23]

The time derivative of the Lyapunov in [s23] is negative for all values of E(αup).
Therefore E(αup ) = 0 is stable using u = µ⋅E(αup )⋅(dαup(t)/dt)⋅cos(αup ).

4) u = µ⋅sgn( E(αup )⋅(dαup(t)/dt)⋅cos(αup ) ), where sgn() represents the signum function.

Solution:
Substituting the control u above into function V(E) in [s20] gives

 = 
∂
∂
t ( )V E − ( )E αup Mp lp

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
t ( )αup t ( )cos αup µ ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟sgn ( )E αup

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
t ( )αup t ( )cos αup [s24]

The time derivative of the Lyapunov in [s24] is negative for all values of E(αup).
Therefore E(αup ) = 0 is stable using u = µ⋅sgn( E(αup )⋅(dαup(t)/dt)⋅cos(αup ) ).

4.4.5. Controller Implementation
The controller that is implemented in LabView is

 = u ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟satu

max
µ ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟sgn ( )E αup

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟d

d
t ( )αup t ( )cos αup [32]

where sat() is the saturation function and umax represents the maximum acceleration of the
pendulum pivot. The signum function makes for a control with the largest variance and
overall tends to perform very well. However, the problem with using a signum function is
the switching is high-frequency and can cause the voltage of the motor to chatter. In
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LabView, a smooth approximation of the signum function to help prevent motor damage.

Given that the maximum motor input voltage is Vm = 10V and neglecting the motor back-
electromotive force constant, Km = 0, calculate the maximum acceleration of the pendulum
pivot umax using the equations supplied in Section 4.4.2.

Solution:
Solving for the pivot acceleration u in expression [s17] found earlier gives

 = u
Kt Vm

Marm r Rm
[s25]

Substituting the appropriate parameters from Table 2 and the maximum input voltage
Vm = 10V into [s25] results in

 = umax 36.7 ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

m
s2

.
[s26]

This is the maximum acceleration at which the pivot point of the pendulum can move
and the control gain, µ, should not be set beyond this.

The control gain, µ, is an acceleration and it basically changes the amount of torque the
motor outputs. The maximum acceleration, umax, is the maximum value that the control gain
can be set. 

5. In-Lab Session

5.1. System Hardware Configuration
This in-lab session is performed using the NI-ELVIS system equipped with a QNET-
ROTPEN board and the Quanser Virtual Instrument (VI) controller file
QNET_ROTPEN_Lab_04_Inv_Pend_Control.vi. See QNET_ROTPEN_Lab_04_Inv_Pend
_Control_Demo.vi for the already tuned-and-ready version of the student VI. Please refer
to Reference [2] for the setup and wiring information required to carry out the present
control laboratory. Reference [2] also provides the specifications and a description of the
main components composing your system.
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Before beginning the lab session, ensure the system is configured as follows:
 QNET Rotary Pendulum Control Trainer module is connected to the ELVIS.
 ELVIS Communication Switch is set to BYPASS.
 DC power supply is connected to the QNET Rotary Pendulum Control Trainer

module.
 The 4 LEDs +B, +15V, -15V, +5V on the QNET module should be ON.

5.2. Software User-Interface
Please follow the steps described below:

Step 1. Read through Section 5.1 and go through the setup guide in Reference [2].
Step 2. Run the VI controller QNET_ROTPEN_Lab_04_Inv_Pend_Control.vi shown in

Figure 7.

Figure 7 QNET-ROTPEN VI

Step 3. Select the Identify Inertia tab and the front panel shown in Figure 8 should load.
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Figure 8 Identifying Inertia of Pendulum VI

The top-right corner has a panel with an Acquire Data button that stops this VI
and goes to the next stage of the inverted pendulum laboratory. Also in the
panel is the sampling rate for the implemented digital controller, which is by
default set to 200 Hz. Adjust the rate according to the system's computing
power. The RT LED indicates whether real-time is being sustained.

If the RT light goes RED or flickers then the sampling rate needs to be
decreased and the VI restarted. The VI can be restarted by clicking on the
Acquire Data button and selecting the Identify Inertia tab again.

The scope plots the angle of the pendulum, which is denoted by the variable α,
with respect to time. The scope can be frozen, for measuring purposes, by
clicking on the PAUSE PLOT button and a small voltage can be applied to the
DC motor by clicking on PERTURB PENDULUM.

Step 4. The moment of inertia of a pendulum that oscillates freely after being perturbed
is given in [16]. The frequency can be measured accurately by taking into
account many samples over a large span of time. The plot can be cleared by
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selecting the PAUSE PLOT button in the top-right corner to freeze the scope,
clicking right on the scope, and selecting Clear Plot in the drop-down menu.
The plot should now be initialized to t = 0 and paused. Un-pause the scope by
clicking on the RESUME PLOT button and click on the PERTURB
PENDULUM button to apply a slight impulse on the pendulum. Avoid
perturbing the pendulum such that its oscillations exceed ±10°. The frequency
of the pendulum can be found using [17], re-stated here

 = f
ncyc

 − t1 t0

where ncyc is the number of cycles within the time duration t1-t0, t0 is the time
when the first cycle begins, and t1 is the time of the last cycle. Enter the
measured number of cycles and the time duration as well as the calculated
frequency and inertia, using expression [24], in Table 4.

Parameter Value Unit
t0 1.10 s
t1 7.90 s
f 3.10 Hz

Jp 1.10E-004 kg⋅m2

Table 4 Experimental Inertia Parameters

Step 5. Calculate the discrepancy between the experimentally derived inertia, Jp,e, in
Table 4 and the inertia calculated analytically, Jp,a, in Pre-Lab Exercise 4.3 from
ROTPEN Gantry Laboratory #3. Enter the result below.
 

Discrepancy Value Unit
100 ( ) − J ,p a J ,p e

 + J ,p a J ,p e
73.4 %

List one reason why the measured inertia is not the same as the calculated
result.
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Solution:
Here are possible sources of the discrepancy:
 The analytical method does not take into account the friction at the

pendulum pivot. The inertia measured experimental will tend therefore to
be less than the theoretical result.

 The moment of inertia, equation [14], is calculated using the center of
mass of the pendulum. However, the pendulum center of mass is
calculated analytically in Pre-Lab Exercise 4.3 and may not represent the
exact center of mass of the pendulum. This may contribute to the
difference between the experimental and analytical results.

Step 6. Click on the Acquire Data button when the inertia has been identified and this
will bring you to the Control Design tab shown in Figure 9.

Figure 9 Open-Loop Stability Analysis
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Step 7. Update the model parameter values in the top-right corner with the pendulum
center of mass, lp, calculated in ROTPEN Gantry Laboratory #3 as well as the
pendulum's moment of inertia just identified. The linear-state space model
matrices A and B, on the top-right corner of the front panel, as well as the open-
loop poles, situated directly below the state matrices, are automatically updated
as the parameters are changed.

Step 8. Directly beneath the open-loop poles in this VI  it indicates the stability of the
inverted pendulum system as being unstable, as shown in Figure 9. According
to the poles, why is the open-loop inverted pendulum considered to be
unstable?

Solution:
There is an open-loop pole located in the right-hand plane. The open-loop
gantry is therefore not considered to be stable.

Step 9. As depicted in Figure 9, the controllability matrix is shown in the bottom-right
area of the front panel along with an LED indicating whether the system is
controllable or not. The rank test of the controllability matrix gives

rank[B AB A2B A3B] = 4
and is equal to the number of states in the system. This verifies that the inverted
pendulum is controllable and, as a result, a controller can be constructed. Click
on the Closed-Loop System tab shown in Figure 10 to begin the LQR control
design.
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Figure 10 LQR Control Design Front Panel

Step 10. The Q and R weighing matrices and the resulting control gain K is in the top-
left corner of the panel. Directly below the LQR Control Design section is a
pole-zero plot that shows the locations of the closed-loop poles. The numerical
value of the poles are given below the plot along with the resulting stability of
the closed-loop system. The step response of the arm angle, θ(t), and the
pendulum angle, α(t), are plotted in the two graphs on the right side of the VI,
as shown in Figure 10. The rise time, peak time, settling time, and overshoot of
the arm response and the settling time of the pendulum angle response is given.
Further, the start time, duration, and final time of these responses can be
changed in the Time Info section located at the bottom-right corner of the VI.

Step 11. The balance controller will be designed by tuning the weighing matrix Q and
implementing the resulting control gain K on the ROTPEN system. The VI that
runs the balance control is shown in Figure 11.
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Figure 11 Implement Balance Controller VI

The pendulum angle measured by the encoder is shown in the above scope and
the arm angle is plotted in the bottom scope. The VI, by default, begins with a
sampling rate of 400 Hz. Adjust the rate according to the system's computing
power. The RT LED indicates whether real-time is being sustained.
If the RT light goes RED or flickers then the sampling rate needs to be
decreased and the VI restarted. On the other hand, make sure the sampling
rate is not set too low. Not attaining sufficient readings from the encoders can
cause the digitally implemented controller to become unstable.

The Stop Controller button stops the control and returns the user to the control
design tab where adjustments to the control can be made or the session can be
ended. The balance controller gain generated by LQR in the Control Design tab
is displayed in the panel along the left margin of the VI. The In Range? LED
indicates whether the pendulum is placed within the angular range that activates
the balance control. The STOP Balance Controller button disables the balance
controller when it is pressed but does not stop the VI. 

Step 12. For the Q and R weighing matrices
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 = Q

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

q1 0 0 0

0 q2 0 0

0 0 q3 0

0 0 0 q4

 = R 1

[33]

vary the q1, q2, q3, and q4 elements as specified in Table 5 and record the
maximum amplitude range of the pendulum angle, α, and the arm angle, θ, in
the same table. Thus in the Control Design tab, adjust the Q matrix accordingly
and then click on the Implement Balance Control tab to run the controller on the
ROTPEN system. 
Ensure the pendulum is motionless before clicking on the Implement
Balance Control tab and running the controller. Also, verify that the
pendulum encoder cable is not positioned such that it will get entangled in the
motor shaft.
However before implementing the updated LQR balance control with the newly
changed Q matrix, observe its effects on the α(t) and θ(t) step responses.
Referring to the feedback loop in Figure 3, for the LQR gain

 = K [ ], , ,k ,p θ
k ,p α

k ,v θ
k ,v α

T
[34]

the control input u(t) that enters the DC motor input voltage is
 = Vm  +  +  + k ,p θ

x1 k ,p α
x2 k ,v θ

x3 k ,v α
x4 [35]

where kp,θ is the proportional gain acting on the arm, kp,α is the proportional gain
of the pendulum angle, kv,θ is the velocity gain of the arm, and kv,α is the
velocity gain of the pendulum. Observe the effects that changing the weighing
matrix Q has on the gain K generated and, hence, how that effects the properties
of the both step responses.

Q
q1 q2 q3 q4 Max |α | (deg) Max |θ | (deg)
5 0 0 0 2.5 30.0
1 0 0 0 4.5 63.0
10 0 0 0 2.5 32.0
8 0 0.5 0 1.3 26.0

Table 5 LQR Control Design
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Step 13. Re-stating the balance control specifications given in Section 4.1.4:
(1) Arm Regulation: |θ(t)| < 30.0°
(2) Pendulum Regulation: |α(t)| < 1.5°
(3) Control input limit: Vm < 10 V

Find the q1, q2, q3, and q4 elements that results in specifications (1), (2), and (3)
being satisfied. Record the Q matrix elements used and the resulting angle
limits in Table 5.

Step 14. Click on the Stop Controller button to stop the balance control which returns to
the Control Design tab. Select the tab labeled Swing-Up Control shown in
Figure 12. The swing-up control law being implemented is shown in the VI. Set
the maximum acceleration umax that was calculated in Exercise 4.4.5 and, can be
set as well as the control gain for the swing-up controller, µ. Set the maximum
acceleration of the pendulum pivot, umax, to the value that was found in Exercise
4.4.5 and initially set the control gain to 50% of the maximum acceleration,
thus set µ = 0.5⋅umax. 

Figure 12 Swing-Up Controller Design VI
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Step 15. Click on the Implement Swing-Up Control tab to run the swing-up controller
and the VI shown in Figure 13 should load.

Figure 13 Implement Swing-Up Control VI

Step 16. The top-panel has the Stop Controller button that stops the VI and goes back to
the Swing-Up Control tab where the swing-up gain can be tuned. Similarly to
the balance controller implementation VI, the Sampling Rate, RT, and
Simulation Time is given. By default, the sampling rate is set to 350 Hz. When
the pendulum enters the range of the balance controller, the In Range? LED
will become lit. The scope displays the measured pendulum angle.

If the RT light goes RED or flickers then the sampling rate needs to be
decreased and the VI restarted. However it is very important to make sure
that the sampling rate is not set too low. Not attaining sufficient readings from
the encoders when the pendulum is swinging-up can result in the balance
controller having difficulty "catching" the pendulum.
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Step 17. Before running the swing-up control, ensure the pendulum is motionless
and the pendulum encoder cable is not entangled in any way. When ready,
click and hold the Activate Swing-Up switch to enable the motor and run the
swing-up controller. On the other hand, ensure the button is released
immediately when the pendulum goes unstable.

Step 18. Tuning the swing-up control gain is an iterative process. Thus based on the
behaviour and performance of the controller, click on the Stop Controller
button to return to the Swing-Up Control tab and adjust the µ accordingly.
Avoid setting setting the gain too high, i.e. closer to umax, since it can make the
pendulum swing up too rapidly and cause the balance controller to have
difficulty "catching" the pendulum in order to balance it. On the other hand, the
gain has to be sufficient to drive the pendulum within ±30 degrees of its upright
position. Finally, the pendulum can self-erect in one swing with a properly
tuned controller.

Step 19. Once the pendulum can be swung-up and balanced, show the run to the
teaching assistant and enter the resulting swing-up control gain µ and the
balance control vector gain K in Table 6. The balance control gain is formatted
in Table 6 as in [34].

Gain Value Unit

µ 32.00 m/s2

kp,θ -2.83 V/rad
kp,α 44.16 V/rad
kv,θ -1.58 V/(rad/s)
kv,α 5.67 V/(rad/s)

Table 6 Final Swing-Up and Balance Control Gain Implemented

Step 20. Click on Stop Controller and the Swing-Up Control tab should become
selected. If all the data necessary to fill the shaded regions of the tables is
collected, end the QNET-ROTPEN Inverted Pendulum laboratory by turning off
the PROTOTYPING POWER BOARD switch and the SYSTEM POWER switch
at the back of the ELVIS unit. Unplug the module AC cord. Finally, end the
laboratory session by selecting the Stop button on the VI.
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