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Abstract. In Wireless LANs, users may adapt their transmission rates depending on the observed radio

conditions on their links to maximize their throughput. Recently, there has been a significant research effort

in developing distributed rate adaptation schemes offering better performance than that of the current ARF
(Automatic Rate Fallback). Unlike previous works, this paper characterizes the optimal reaction of a rate

adaptation protocol to the contention information received from the MAC. We formulate this problem

analytically. We study both competitive and cooperative user behaviors: In the case of competition, users
selfishly adapt their rates so as to maximize their own throughput, whereas in the case of cooperation they

aim at adapting their rates to maximize the overall system throughput. We show that the Nash Equilibrium

realized in the case of competition can be inefficient (i.e.,the price of anarchy is high, up to 50% of the

social optimum), and provide insightful properties of the socially optimal rate adaptation schemes. We
also show that RTS/CTS does not make the competitive scenario more efficient. We then apply the same

analysis to recently proposed collision-aware rate adaptation algorithms and observe similar conclusions.

Finally, we propose a novel collision-aware rate adaptation algorithm that significantly reduces the price
of anarchy in many scenarios of interest.

I. INTRODUCTION

Radio sharing policy and rate adaptation are two key parts ofthe IEEE 802.11 MAC. Users share
the radio resources in a distributed manner using the mandatory contention-resolution scheme DCF

(Distributed Coordination Function). This scheme specifies how users should adapt their channel access

probability when they experience transmission failures. When the network is perceived as congested, under
the DCF, userscooperativelydecrease their access probability, which in turn should limit the number of

collisions and keep the overall network efficiency at a satisfying level. DCF design is time-critical and it

is implemented in hardware. Users cannot modify it.
Transmission failures are not due to collisions only, but may also be caused by a noisy channel. In IEEE

802.11 systems, users may adapt their modulation and codingrate to identify the optimal trade-off between
the transmission rate and the packet losses due to channel errors. An objective of a rate adaptation algorithm

is to estimate the channel’s quality and to find the optimal trade-off. A rate adaptation algorithm is typically

implemented in software and it can easily be modified. The IEEE 802.11 standard does not specify any
rate adaptation algorithm. Today, the great majority of commercial devices implement a common simple

rate adaptation algorithm, ARF (Automatic Rate Fallback).Many rate adaptation algorithms have been

recently proposed and evaluated in the literature to replace ARF, see Section II.
Rate adaptation can be done in a cooperative or competitive way. In the former scenario, the rate

adaptation scheme is designed so as to maximize the total throughput of the network while guaranteeing
a certain degree of fairness among users, thus achieving a social optimum of the network. In the latter

scenario, each user designs its own rate adaptation strategy with the aim of maximizing its own throughput

and without accounting for its impact on the performance of other users. If there is a single greedy user,
selfishly trying to adapt its rate, this user could potentially receive a higher throughput than that obtained in

the social optimal. However, if all users compete, the system may evolve to an inefficient Nash Equilibrium

where all users would receive a lower throughput than that inthe social optimum. The performance gap
between the social optimum and Nash Equilibria is called theprice of anarchy.

An important challenge in designing the rate adaptation schemes comes from the fact that transmitters

may not be able to distinguish between the causes of transmission failures. Transmission failures are caused
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by collisions and/or channel errors. Without thisloss differentiationcapability, both scheduling DCF and

rate adaptation schemes may make wrong decisions. Channel errors can lead to an unnecessary access

probability decrease when the network is lightly loaded. When the network is congested, collisions may
be interpreted as channel errors and lead users to decrease their transmission rates, which in turn increases

the packet transmission durations and further exacerbatesthe network congestion. Several schemes for

loss differentiation have already been proposed; see Section II.

In this paper, we are interested in the interaction of DCF andthe rate adaptation protocols. We assume
that all users implement the standard DCF (with or without loss differentiation), but can modify their

rate adaptation protocols. We aim at characterizing how users should optimally select a transmission rate

depending on their state in the DCF schemes (i.e., the back-off stage) representing the level of congestion
in the network. Indeed, selecting rates based on the back-off stage is one of the novel features that separates

our work from the previous work.

To make the problem analytically tractable, we assume that the channel state does not change with

time. The transmitters know the channel quality on their links, and need not estimate it. The assumption
is made as our primary interest is in understanding the interaction between the DCF and the rate adaptation

schemes, and not in the channel estimation part. The assumption is also partly supported by typically large

channel coherence times (much larger than the time requiredfor a packet transmission). We also assume
that the network is symmetric, in the sense that all the linksexperience the same radio conditions, and

they all interfere with each other. We leave both heterogeneous scenarios and SNR estimation for the

future work.

Since SNR is known at the transmitter, one may expect that it is straightforward to determine the optimal
transmission rate, and this rate should be used in all the back-off stages. We, however, prove that this is

not the case. In the cooperative scenario, the optimal rate increases as back-off stage increases (which

was previously observed only in scenarios with hidden terminals), whereas in the competitive scenario
the optimal rate decreases. Thus, price of anarchy is significant. This illustrates counter-intuitive complex

behavior of inter-action between DCF and rate adaptation even in a simple scenario in which SNR is

known. We quantify these interactions and show what are the optimal rate adaptation strategies in both
cooperative and competitive scenarios. In the competitivescenario, we are also interested in identifying

slight modifications of the DCF scheme that could eliminate the price of anarchy, and push the Nash

Equilibria of the rate adaptation game toward a socially efficient system, if such modification is possible.

The main contributions of this paper are as follows:

• We formulate the problem of designing optimal rate adaptation algorithms analytically. We develop a

generic framework that enables us to consider both cooperative and competitive user behaviors, but also
to account for the use of RTS/CTS and the capability or the inability of users to distinguish collisions

from channel errors.

• In the cooperative scenario, we characterize the optimal algorithms and provide a distributed implemen-
tation of these algorithms. We prove that even in absence of hidden terminals a node should increase its

transmission rate as the contention increases. We also showthat collision-awareness or RTS/CTS offer

little performance improvements.

• In the competitive scenario, we analyze the resulting rate adaptation game. We show the existence of

pure symmetric Nash Equilibria, and give methods to identify them. We also compute the price of anarchy
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in these games and show that it is not negligible in general.

• We propose ROCE, a novel way of reacting to channel errors andwe show that it consistently has smaller

price of the anarchy than the other proposed schemes (although it does not eliminate it completely), while
it achieves the same social optimum.

The paper is organized as follows. Section II discusses the related work. Section III defines the models.
Stationary analysis for a given rate adaptation is given in Section IV. Competitive scenarios are discussed

in Section V and cooperative scenarios in Section VI. Numerical results are presented in Section VII and

conclusions in VIII. The proofs are in the appendix.

II. RELATED WORK

Many rate adaptation algorithms have been recently proposed and evaluated in the literature to replace

ARF, see e.g. [1], [2], [3], [4]. To solve the problems raisedby the interaction of the DCF and the

rate adaptation algorithm, researchers have proposed waysof differentiating the causes of transmission
failures, and then collision-aware rate adaptation algorithms, see e.g. [5], [6], [7], [8], [9], [10]. Note

that most often, the proposed rate adaptation algorithms are based on heuristic arguments and numerical

experiments.
The authors of [11], [12] provide analytical models for the interaction of DCF and the rate adaptation

scheme, but they do not propose improved adaptation algorithms. Note also that the possible non-
cooperative behavior of users in adapting their rate is rarely considered (in [13], [14], the authors provide

preliminary analysis of rate adaptation games in WLANs where transmission failures due to channel errors

are not modeled). DCF design in a game setting is discussed in[15].
From Nash’s original paper [16], we know that there always exists a mixed strategy Nash Equilibrium

(NE) when the number of pure strategies are finite and moreover there always exists a symmetric mixed
strategy NE when the game is symmetric. Though existence of NE is guaranteed, it is well known that

obtaining a NE is computationally expensive.Schmeidler showed the existence of pure strategy NE in non-

atomic games, when a player’s payoff depends only on his strategy and average behavior of others [17].
The question of the existence of symmetric pure strategy NE in a symmetric game and a quasi-concave

payoff is addressed in [18]. However, it is difficult to verify if the payoff in our case is quasi-concave.

III. M ODELS

We consider a network ofN links. All links interfere each other, and always have packets to send in
their buffer. All transmitters implement the same distributed random back-off scheduling mechanism to

access the channel, e.g. DCF. This mechanism is modeled as follows. There areI+1 back-off stages: stage

i ∈ {0, . . . , I} indicates thati consecutive collisions have been experienced. In stagei a node transmits a
packet with a fixed probabilitypi such thatpi ≥ pi+1 for every i < I (in DCF pi = 2−ip0). We optimize

the rate adaptation algorithm for a fixed scheduling mechanism.
The radio conditions for a link are characterized by the signal-to-noise (SNR) ratio at the receiver. We

consider symmetric networks where all links have the same SNR, known at the transmitters. To send

a packet, each transmitter can select a rate from a setR that can be either finite (as in the case of
IEEE802.11g which has 8 rates) or infinite.

Definition 1 (Rate Adaptation Strategy):A rate adaptation strategyρ is a map from{0, . . . , I} to R.

A strategyρ is said to beconstantif ρ(i) = ρ(i + 1) for all i < I.
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Note thatρ(i) indicates the transmission rate under strategyρ in ith back-off stage.

Packet transmission can fail either due to a collision (several transmitters access the channel simulta-
neously) or due to a channel error. The probability that a packet sent at rateR is lost due to a channel

error is a functione(R, SNR) of the rate and of the SNR. A widely used model consists in defining e by

e(R, SNR) = 1− γe−κR, and we use this model unless specified otherwise. Since the SNR is assumed to
be fixed and known at a transmitter, we denote:eR = e(R, SNR).

All packets have a fixed sizeσ, and thus the time to transmit a packet at rateR is TR = σ/R. Systems
with or without RTS/CTS mechanisms are analyzed. IfTRTS denotes the duration of the RTS/CTS signaling

procedure, then with RTS/CTS, the effective transmission of a packet at rateR lastsTR + TRTS, and the

duration of collisions reduce toTRTS .

In the analysis, we consider both competitive and cooperative scenarios, and the cases where collisions

and channel errors can or cannot be distinguished.

A. Without loss differentiation (WoLD)

When collisions and channel errors can not be distinguished(like in all of the 802.11 standards), a

transmitter chooses a transmission rateρ(i) as a function of the number of consecutive transmission
failures, denoted byi. Note that afteri successive failures, the transmitter is inith back-off stage.

B. With loss differentiation (WLD)

We also consider the case where collisions and channel errors can be differentiated. This model is

inspired by several proposals for collision-aware rate adaptation (e.g. [5], [6], [7], [8], [9], [10]). A
transmitter chooses a transmission rateρ(i) as a function of the number of successive collisionsi. Here,

we do not keep track of the number of previous successive channel errors as these errors are assumed to

be independent over various transmissions.

We consider two families of collision-aware rate adaptation strategies: The first family, calledWLDS

(WLD Standard), includes the strategies proposed in the literature, e.g. in [5], [6], [7], [8], [9], [10]. If a
transmission fails due to a collision, then the back-off stage is incremented. If it fails due to a channel

error, then the back-off stage remains the same.

We propose a second new family of rate adaptation strategies, referred to as ROCE (Return to 0 On

Channel Error). Here, unlike WLDS, if a transmission fails due to a channel error, the back-off stage is

reset to the minimum value (i = 0). The intuition behind this is that since the loss was not caused by
collision, there is not reason to remain in a high-contention DCF state. If a transmission fails due to a

collision, the back-off stage is increased, as in all other schemes.

C. Competition vs. Cooperation

Competition.Since all links are assumed to be equivalent in the systems considered, the competitive

behavior of transmitters is modeled as a pure strategic symmetric rate adaptation game. This means that

each transmitter adopts a deterministic strategyρ. We emphasize on symmetric strategy for fairness, and
on pure strategy for it is easy to implement. When all transmitters use the same strategyρ, and when one

of the transmitter updates its strategy, the latter becomesB(ρ), the best response to the others’ strategy
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ρ. A symmetric Nash Equilibrium is reached when all transmitters use the same strategyρ such that

ρ = B(ρ).
Cooperation.In the cooperation scenario, all transmitters use the same strategyρ, hence all links achieve
the same throughput. We want to find the social optimum, that is to characterizeρ that maximizes the

total system throughput (or equivalently the throughput ofeach link since all the links are the same).

IV. STATIONARY ANALYSIS

We start the analysis by studying the steady state behavior of systems where all transmitters use a given

rate adaptation strategyρ. In such systems, we denote byπi the stationary probability that a transmitter
is in the back-off stagei, by p =

∑

i πipi the average transmission probability, and byc = 1− (1−p)N−1

the collision probability.

A. Average slot duration

We consider virtualslots, as defined in [19]: a slot may correspond to a slot where the channel is idle
(no transmission occurs), to a successful transmission, orto a collision. Denote bySN(ρ) the expected

slot duration whenN transmitters use the same rate adaptation strategyρ. Also denote bySN
R (ρ) the

expected slot duration in a system withN +1 transmitters using strategyρ, and given that one transmitter
sends a packet at rateR, which is (in case when RTS/CTS is not used):

SN
R (ρ) =

∑

r∈R

Pr(min TX rate ofN users isr) max(Tr, TR).

When RTS/CTS is used, the expressions forSN(ρ), SN
R (ρ) simplify to:

SN(ρ) = (1 − p)N + N(1 − p)N−1
∑

j

πjpjTρ(j)

+
(

1 − (1 − p)N
)

TRTS,

SN
R (ρ) = (1 − p)N(TR + TRTS) +

(

1 − (1 − p)N
)

TRTS.

When RTS/CTS is not used, the expressions are more complex, and given in the following proposition.
Proposition 1: Let t(X) = 1 −

∑

i∈X πipi be the probability that a node is not transmitting in any of
the back-off stages inX ⊆ {0, . . . , I}. Then in the cases without RTS/CTS we have

SN(ρ) = (1 − p)N

+
∑

r∈R

(

t({j : ρ(j) < r})N − t({j : ρ(j) ≤ r})N
)

Tr,

SN
R (ρ) = ((1 − p)N + t({j : ρ(j) < R})n)TR

+
∑

r<R

(

t({j : ρ(j) < r})N − t({j : ρ(j) ≤ r})N
)

Tr

The proof is in [20].

B. Link Throughput

From the average slot duration, we can compute the stationary throughput of a link using the similar
analysis as that in [19]. The throughput is

φ(ρ) =

∑

i πipi(1 − eρ(i))(1 − c)

SN(ρ)
. (1)
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C. Stationary distributions

To compute the link throughputs, we need to evaluate the stationary distributionπ and the collision

probability c. We compute these, first for WoLD systems, and then for WLDS and ROCE systems.

1) Without loss differentiation:Given that a transmitter is in stagei, it can either successfully transmit

and move to state 0 with probabilitypi(1−c)(1−ei), or experience of transmission failure with probability

pi(1 − (1 − c)(1 − eρ(i))) or remain idle with probability1 − pi. Then we classically deduce that:

πi =
p0

∏i−1
k=0(1 − (1 − c)(1 − eρ(k)))

pi

π0, for 0 < i < I,

πI =
p0

∏I−1
k=0(1 − (1 − c)(1 − eρ(k)))

pI(1 − c)(1 − eρ(I))
π0.

2) With loss differentiation, WLDs:Given that a transmitter is in stagei, it can either move to stage
i + 1 if it encounters a collision with probabilitypic, or it can remain silent with probability1− pi, or it

can return to stage 0 with probabilitypi(1 − c) (regardless of channel errors). We then have

πi =
p0c

i

pi

π0, for 0 < i < I; πI =
p0c

I

pI(1 − c)
π0.

3) With loss differentiation, ROCE:Given that a transmitter is in stagei, it can either move to stage
i + 1 if it encounters a collision with probabilitypic, or it can remain in stagei with probability1− pi +

pi(1 − c)eρ(i) (either it remains silent or it encounters a channel error),or it can return to stage 0 with

probability pi(1 − c)(1 − eρ(i)). We have:

πi =
p0c

i

pi

∏i

k=1(1 − (1 − c)eρ(k))
π0, for 0 < i < I,

πI =
p0c

I

pI(1 − c)(1 − eρ(I))
∏I−1

k=1(1 − (1 − c)eρ(k))
π0.

In each of the cases, we use the above expressions to obtainc for the system ofN users. The collision
probability is obtained as a fixed point of the following two expressions: First,p =

∑I

i=0 πipi, and second

c = 1 − (1 − p)N−1. As in [19], it can be shown that the fixed point is unique.

V. COMPETITION

Here, we study the system performance when users are competing with each other and our aim here

is to determine whether a symmetric pure strategy Nash Equilibrium (NE) exists, and if it exists, then
how to compute it. We also want to determine properties of theNash Equilibrium so as to curtail the

computational efforts required to compute it.

A. Analytical Results

First, we present the existence result of a symmetric pure NEfor all the variations we have considered,

viz., with or without RTS/CTS, and with or without loss differentiation, and their combinations. Existence

of pure strategy NE is primarily studied when the number of players is large so that choice of one
player’s strategy does not affect the payoffs of the others.These games are referred to as non-atomic

games. For precise mathematical definition, see [17]. In this section, we only consider a system with
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RTS/CTS mechanism. We believe that all the results also holdwhen RTS/CTS is not used. For notational

brevity, we assume thateR = 1 − e−κR, i.e. γ = 1, but all the results hold for everyγ > 0.
Proposition 2: If each user can select rate at every back-off stage from a closed interval[0, Rmax], then

in the non-atomic settings, a symmetric pure NE exists for all the variations of the system considered in

this paper.
The proof is given in the appendix and it follows along the similar lines as that of the original proof

by Nash (using Kakutani’s fixed point theorem).
Though the existence is known, computing a symmetric pure NEis computationally expensive. Hence,

we show certain properties a NE should satisfy in various cases, and wherever possible give an explicit

procedure to compute the NE.
1) Properties of NE for WoLD and WLDs:First, we explain how the best response correspondence is

obtained in these cases. Fix a usern, and let other users use rate adaptationρ. Then the best response for

n is computed using Markov decision process formulation, which allowsn to determine rate adaptation

strategy that minimizes the expected time to transmit a packet successfully given that other users use
ρ. Let J(i) denote the minimum expected time to transmit a packet successfully given that it is inith

back-off stage. Then Bellman’s equations for WoLD are as follows:

J(i) =
1 − pi

pi

SN−1(ρ)

+ min
R

{

SN−1
R (ρ) + (1 − (1 − c)e−κR)J(i + 1)

}

,

J(I) = min
R

{

1−pI

pI
SN−1(ρ) + SN−1

R (ρ)

(1 − c)e−κR

}

.

where 1−pi

pi
SN−1(ρ) is the average time the link is idle before transmitting for the first time,SN−1

ρ(i) (ρ) is

the average time the link transmits (regardless of the success of the transmission) and if the transmission

is unsuccessful (with probability(1 − (1 − c)e−κR) the average time to transmit the packet isJ(i + 1, ρ)

as the link moves toi + 1. Note that the best response can be computed easily by back-tracking asJ(i)

can be computed in a single step onceJ(i + 1) is known. Thus,J(I) is computed first, theJ(I − 1) and

so on.
Now, in the case of WLDs, the best response is given as follows:

J(i) = min
R

{

1−pi

pi
SN−1(ρ) + cJ(i + 1) + SN−1

R (ρ)

1 − (1 − c)(1 − e−κR)

}

,

J(I) = min
R

{

1−pi

pi
SN−1(ρ) + SN−1

R (ρ)

(1 − c)e−κR

}

.

Again the best response can be calculated easily by back-tracking.
Note that these relations provide the best response rate adaptation for a user only for the non-atomic

game. This is because the choice of rate adaptation for a usern affectsπ and c, and thus in turn affects

the average behavior of the system as perceived byn. In the above expressions, a key assumption is
that the average system behavior does not change whenn changes its rate adaptation. Using the above

relations, we show the following result.
Proposition 3: Consider non-atomic setting. Letρ be a strategy used by any usern in any symmetric

NE. Then,ρ(i) ≥ ρ(i + 1) for every i.



8

The proof is in the appendix. Intuitively, the expected timespent in stagei waiting for the first

opportunity to transmit (1−pi

pi
SN−1(ρ)) is monotone increasing ini. Thus, the best response rate adaptation

is discouraged to enter the higher stages. For the WoLD case,the user moves into a higher back-off stage
w.p. 1 − (1 − c)e−κR. In this, rate adaptation can affect only the second term. Thus, for a higheri, rate

adaptation decreases rateρ(i) to decrease the probability of moving toi + 1. Similarly, for WLDS, the

user stays in the same back-off stage in case of a channel error. Thus, here as well, for a largeri, rate
adaptation chooses smaller rate so as to increase its chances of successful transmission given that nobody

else is simultaneously transmitting.

B. Computing Symmetric Pure Strategy NE for ROCE

The best response correspondence in this case when other users use rate adaptation strategyρ is given

as follows. In this section, we do not need to assume non atomic game.

J(i) =
1 − pi

pi

SN−1(ρ) + cJ(i + 1)

+ min
R

{

SN−1
R (ρ) + (1 − c)(1 − e−κR)J(0)

}

,

J(I) =
1 − pi

pi(1 − c)
SN−1(ρ)

+
1

1 − c
min

R

{

SN−1
R (ρ) + (1 − c)(1 − e−κR)J(0)

}

.

Contrary to the previous section, these relations provide the best response rate adaptation for usern even

when the number of users is finite (we do not need non-atomicity). This is because hereπ and c do not

depend on rate adaptation strategies of the users. Thus, given (ρ, π, c), the average behavior of the system
as perceived byn does not change even when it changes its rate adaptation strategy. Next, we can show

the following property of the best response correspondence.
Proposition 4: Let ρ̂ be a rate adaptation strategy used by all the users in the system, and letρ be a

rate adaptation strategy obtained from the best response correspondence. Then,ρ is constant (ρi = ρi+1

for every i.)
The proposition immediately follows by observing that the function that is optimized overR is the

same for everyi, hence assuming all users useρ̂ and usern usesρ, the throughput of the system is

φ(ρ, ρ̂) =

p(1 − c)(1 − eρ)

(1 − p)(1 − c) + p(1 − c)Tρ + (1 − p)cTρ̂ + pc max{Tρ, Tρ̂}
.

and the best response for usern is simply B(ρ̂) = argmaxρ∈R
φ(ρ, ρ̂).

Note that since we also allow for finite number users, Proposition 2 does not guarantee the existence

of symmetric pure NE. But, in this case, we are able to show that symmetric pure NE exists and we also

propose the following procedure to compute it. The main assumption we make is that all the users update
their rate adaptation strategies synchronously based on the above best response correspondence. We start

with an initial state, where each user has rate adaptationρ(0). Since the system is symmetric, the best

response obtained by each user is the same. Thus, all of them synchronously change their rate adaptation
from ρ(0) to ρ(1), and the procedure continues in the same fashion. For this iterative procedure, we make

the following claim.
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Proposition 5: Let ρ(0) = Rmax1. Then,limm→∞ ρ(m) = ρ∗ such thatρ∗ is a symmetric pure NE.
The proof is in the appendix. In the key step in the proof of above result, we show thatρ(m) is a monotone

decreasing sequence. Intuitive explanation for this phenomenon is as follows. Clearly,ρ(1) ≤ ρ(0). When
the rate decreases, time required to transmit the packet increases, which in turn results in increase in

J(i) for all i. As J(i) increases, best response chooses a rate adaptation that reaches termination state

(successful packet transmission) with a higher probability. This can be achieved only by reducing the
rates asπ and c are independent of the rate adaptation strategy. Thus,ρ(2) will be smaller thanρ(1), and

this continues.

VI. COOPERATION

Here, we derive key properties of the socially optimal rate adaptation strategy, and present its distributed
implementation.

A. Optimal rate adaptation for ROCE

We first show that the optimal rate adaptation has to be non-decreasing.
Proposition 6: Let ρ be the socially optimal rate adaptation strategy. Then, in absence of RTS/CTS,

for every i < I, ρ(i) ≤ ρ(i + 1); and with RTS/CTS,ρ(i) = ρ(i + 1).
The proof of the above proposition is presented in appendix.The intuition behind this result is as

follows: the reward for successful transmission in statei is proportional toπipi. The probability that a

slot will last Tρ(i) is proportional to different collision probabilities and it increases faster withi thanπipi.
Using this result, we can derive a gradient-descent algorithm to enable transmitters to identify the

optimal rate adaptation strategy in a distributed manner (in the sense that all variables can be measured
locally). Here we assume for simplicity that the set of ratesis continuous. The algorithm is described in

the following proposition where the update of the rate adaptation strategy from stepm to stepm + 1 is

described through the duration of a packet transmission in any given stage (these durations uniquely define
the rate adaptation strategy). The algorithm classically uses at stepm a step sizeεm, whereεm → 0 as

m → ∞ and
∑

m=0∞ ε = ∞. For convenience, we denote the error functione as follows:e(Tρ(i)) = eρ(i).
Proposition 7: Assume that at stepm + 1, all transmitters update their rate adaptation strategy from

ρm to ρm+1 as:

Tρm+1(i) = Tρm(i) − εmπipi(1 − c)e′(Tρm(i)) (2)

− εm(t({k : k ≤ i − 1})N − t({k : k ≤ i})N)φ(ρm).

wheret({k : k ≤ i}) = 1 −
∑

k≤i πkpk and e′(T ) = ∂e
∂T

. Then, whenm grows large,ρm converges to a

socially optimal rate adaptation strategy.
The proof is in the appendix. Notice thatπipi is the fraction of time a transmitter transmits in back-off

stagei, c is the collision probability for a packet andt({k : k ≤ i−1})N − t({k : k ≤ i})N is the fraction

of slots that lastTρ(i). All of these can easily be measured locally hence (2) can be evaluated locally at

a transmitter. Similarly, we can deduce an update algorithmfor the case with RTS/CTS.
Proposition 8: Assume that at stepm + 1, all transmitters update their rate adaptation strategy from

ρm to ρm+1 as:

Tρm+1(i) = Tρm(i) − εmπipi(1 − c)e′(Tρm(i)) (3)

− εmN(1 − p)N−1πipiφ(ρm).
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Then, whenm grows large,ρm converges to the socially optimal rate adaptation strategy.

The proof of this proposition is similar to that of the previous proposition, so we omit it. Notice that here

as well all the quantities involved in the update can be calculated locally. In particularN(1 − p)N−1πipi

is the fraction of slots with transmissions without collisions.

B. Optimal rate adaptation for WoLD

The major difficulty for systems without loss differentiation is that the stationary probabilityπ depends

on ρ. The problem becomes hard, if not intractable. We do not haveexplicit solution in a general case.
However, if only constant strategies are allowed, then we obtain the socially optimal strategy. In Section

VII, we evaluate a socially optimal strategy for the generalcase using numerical computations. Let us

denote bye = eρ. We have:

Proposition 9: The optimal constant rate adaptation strategyρ in absence of RTS/CTS satisfies:

∂π0

∂e
p0S

N(ρ) + N(1 − p)N−1(1 − T )
∂p

∂e
π0p0 (4)

−(1 − (1 − p)N)
∂T

∂e
π0p0 = 0,

where

∂π0

∂e
= − 2(1−c)2(1−e)

(1−c)(1−e)+(N−1)
p0

1−p

, (5)

∂p

∂e
= − p0

(1−c)(1−e)+(N−1)
p0

1−p

1
1−e

. (6)

The proof of the proposition is in the appendix. Uniqueness of the solution for (4) is difficult to establish.

Numerical computations, however, point toward unique solution. Similarly, for systems with RTS/CTS
we have:

Proposition 10: The optimal constant rate adaptationρ with RTS/CTS satisfies:

0 =
∂π0

∂e
p0S

N(ρ) − Np(1 − p)N−1∂T

∂e
π0p0 + N

∂p

∂e
× (7)

× (1 − p)N−2((1 − p)(1 − TRTS) + (1 − 2p + Np)T )π0p0.

The proof is similar to that of Proposition 9, and is omitted.

C. Optimal rate adaptation for WLDS

Like WoLD systems, these systems are also difficult to analyze. Hence, here as well we only consider

constant rate adaptation strategies. We obtain the same results as in Propositions 9 and 10, but need to

substitute the following derivatives:

∂π0

∂e
= − 2c

(1−c)(1−e)+(N−1)
p0

1−p

1
1−e

,

∂p

∂e
= − p0c

(1−c)(1−e)+(N−1)
p0

1−p

1
1−e

.
(8)
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VII. N UMERICAL RESULTS

In this section we present a numerical analysis of the rate adaptation algorithms previously discussed.
In order to obtain realistic results, we take the error probability function e(R, SNR) from the results of

802.11a measurements presented in [21, Figure 2]. We fix the number of back-off stages to 8 (I = 7)

and we take the standard RTS/CTS signaling parameters to calculateTRTS . We use brute-force approach

and explore the full state space to find the social optimum of the cooperative approach where it cannot
be found otherwise. We iterate over the best response to find the Nash equilibria of competitive cases.

Note that we observe numerically that this process always converges, even in the cases where we cannot

prove it analytically. Thus we are able to obtain the numerical results for all the cases analyzed in the
paper. Also note that for the numerical calculations we do not need any a priori assumptions on the error

probabilitye(R, SNR). However, we verify that in most of the cases the measurements from [21, Figure

2] can be well fitted with a function of the form of1 − γeκR.

A. Social optima

We start by analyzing different social optima that can be achieved in different cases discussed in the

paper. They are depicted in Figure 1 for SNR= 10 dB. As one can see, the differences among the
social optima are very small. We verify that the same conclusion holds for various SNR values. Hence, it

becomes irrelevant which protocol one chooses, and in particular whether a loss differentiation capability

is available.

This is an apparent paradox with respect to [5], [6], [7], [8], [9], [10] which show that a collision-

aware rate adaptation improves performance. There, the major reason for such improvement stems from

the improved channel estimation. Our results show there is almost no impact of collision awareness on
scheduling. We see that in the WoLD case, if the probability of a channel error is large, this will reduce

the collision probability leading to a similar steady-state transmission probabilityp to the same level as

in WLDS or ROCE.

We also verify that the use of RTS/CTS almost always decreases the performance of the network, as

expected by a common wisdom, because the RTS/CTS packets aresent with the lowest rate and incur

more overhead than benefits.

0 5 10 15 20
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WoLD, cooperative
ROCE, cooperative
WLDS, cooperative
WoLD, competitive
ROCE, competitive
WLDS, competitive

Fig. 1. The rates achieved in different cases, without RTS/CTS, when SNR= 10 dB. On the x axis is the number of usersN and on the

y axis is the sum of rates of all users.

Next, we look at the optimal rate adaptation strategyρ. As already discussed in Section VI, the optimal
ρ(i) is not constant in general. We illustrate the shape ofρ(i) in Figure 2. Restricting to the set of constant

rate allocations one can loose up to 10% of the rate, as shown in Figure 3.
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Type ρ(i)

WoLD, cooperative 36, 36, 36, 48, 48, 54, 54

WLDS, cooperative 36, 36, 36, 48, 54, 54, 54

ROCE, cooperative 36, 36, 36, 36, 36, 36, 36

WoLD, competitive 24, 18, 18, 18, 18, 18, 18

WLDS, competitive 24, 24, 24, 18, 18, 18, 18

ROCE, competitive 24, 24, 24, 24, 24, 24, 24

Fig. 2. The socially optimal rate selections for different cases, for a network withN = 10 users, SNR= 20 dB, without RTS/CTS.
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Fig. 3. The ratio of the constant rate social optimum over theglobal social optimum, in absence of RTS/CTS.

B. Price of anarchy

We next look at the price of anarchy in different scenarios. The numerical results are depicted in

Figure 4. Already forN > 2 users the price of anarchy is significant, rapidly increasing to up to 50%
of the social optimum. Figure 2 gives the optimalρ. We see that ROCE consistently has smaller price

of anarchy than the other two protocols. Moreover, in many cases of networks with less than 6 nodes it

completely eliminates the price of anarchy. Since the threeprotocols do not differ much in terms of social
optima, we can conclude that ROCE is the preferred protocol.We also see from Figure 4 that RTS/CTS

does not decrease the price of anarchy. On the contrary, for networks of sizeN = 4 to N = 8 it may

lead to a significant price of anarchy in cases where it otherwise would not exist.
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Fig. 4. Relative price of anarchy for different types of games: on the y axis is the difference between the cooperative andthe competitive

optima, divided by the cooperative optimum. On the x axis is the number of nodes in the network.
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VIII. C ONCLUSIONS

We analyze the optimal rate adaptation strategy given a fixedscheduling protocol in both competitive
and collaborative scenarios. We consider protocols with and without RTS/CTS and loss differentiation.

We give a generic analytical model for symmetric networks that encompasses all variations. We show

that price of anarchy exists and it is significant. We also show that our modification of collision-aware
medium-access protocolROCEexhibits the smallest price of anarchy among other proposedschemes. We

provide a local algorithm that converges to the social optimum and we show that the social optimum does

not depend on loss differentiation capabilities nor on use of RTS/CTS. In future we plan to extend this
work to incorporate channel estimation and heterogeneous scenarios.
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APPENDIX I

PROOFS OF THE RESULTS INSECTION IV

Proof of Proposition 1: We have

Sn(ρ) = (1 − p)n+
∑

R∈R

Pr(at least one TX withR ∧ none TX with [0, R − 1])TR.

since we know that a duration of a slot isTR when there is at least one node transmitting with rateR

and no nodes transmit with rates{0, . . . , R − 1}. Furthermore

Pr(at least one TX withR ∧ none TX with [0, R − 1]) =

= Pr(no node TX with[0, R − 1])

− Pr(no node TX with[0, R])

= (t({j : ρ(j) < r})n − t({j : ρ(j) ≤ r})n)

Similarly we have

Si(ρ) =
(

(1 − p)N + Pr(no node TX with{r : r < R})
)

TR

+
∑

r<R

Pr(at least one TX inj ∧ none TX in [j + 1, I])Tj.

and the second relation immediately follows.

APPENDIX II

PROOFS OF THE RESULTS INSECTION V

Let all users use strategyρ, and letρ̂ be the best response of usern. Let π andc denote the steady state

distribution and the collision probability, respectively, corresponding to the profileρ. First, for analysis,

let us write the best response MDP in the following way for WoLD, WLDS and ROCE systems. Let
ξi(π, c) = 1−pi

pi
SN−1(ρ) + TRTS. For WoLD systems:

J(i) = min
R

{

(1 − c)σ

R
+ (1 − (1 − c)e−κR)J(i + 1)

}

+ ξi(π, c),

J(I) = min
R

{

(1 − c)σ

R
+ (1 − (1 − c)e−κR)J(I)

}

+ ξI(π, c).

Next, for the WLDS systems:

J(i) = min
R

{

(1 − c)σ

R
+ (1 − (1 − c)e−κR)J(i)

}

+ ξi(π, c) + c[J(i + 1) − J(i)]

J(I) = min
R

{

(1 − c)σ

R
+ (1 − (1 − c)e−κR)J(I)

}

+ ξI(π, c).

Finally, for ROCE systems:

J(i) = min
R

{

(1 − c)σ

R
+ (1 − (1 − c)e−κR)J(0)

}

+ ξi(π, c) + c[J(i + 1) − J(0)]

J(I) = min
R

{

(1 − c)σ

R
+ (1 − (1 − c)e−κR)J(0)

}

+ ξI(π, c) + c[J(I) − J(0)].
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Now, consider the functionG(R, u) = (1−c)σ
R

+(1−(1−c)e−κR)u. Note that ifi < I, then (a) for WLDS

systemsρ̂(i) = arg minR G(R, J(i + 1)) when i < I, and ρ̂(I) = arg minR G(R, J(I)), (b) for WoLD

systemŝρ(i) = arg minR G1(R, J(i)) for everyi, and (c) for ROCE systemŝρ(i) = arg minR G1(R, J(i))

for every i. Thus, obtaining insights into the properties of the function G(·, ·) is useful for obtaining the

properties of the best response. Thus, first we obtain some properties of the functionG(R, u), and then,

using these properties, we prove Theorems in Section V.

A. Supporting Lemmas

Lemma 1:Consider the functionG(R, u). We show that
1)If log

(

σ
uκ

)

> 2
[

log
(

2
κ

)

− 1
]

, i.e. u < σκe2

4
, thenG′(R, u)

def
= ∂G(R,u)

∂R
= 0 has no solution in[0,∞).

Moreover,G(R, u) is strictly decreasing.

2)If log
(

σ
uκ

)

= 2
[

log
(

2
κ

)

− 1
]

, i.e.u = σκe2

4
, thenG′(R, u) = 0 has a unique solution in[0,∞). However,

the solution is only a saddle point andG(R, u) is monotone decreasing.

3)If log
(

σ
uκ

)

< 2
[

log
(

2
κ

)

− 1
]

, i.e. u > σκe2

4
, thenG′(R, u) = 0 has two solutions, sayR1(u) andR2(u)

with R1(u) < R2(u), in [0,∞). Here,R1(u) (R2(u), resp.) is a local minima (maxima, resp.) ofG(R, u).
Moreover,[R1(u), R2(u)] ∈ [R1(u1), R2(u1)] wheneveru1 > u.

Proof: First, we note that

G′(R, u) = (1 − c)uκe−κR −
(1 − c)σ

R2
.

Thus,G′(R, u) = 0 implies that

2 log(R) − κR = log
( σ

uκ

)

. (9)

We consider the functionF (R)
def
= 2 log(R) − κR, and note that

F ′(R) =
2

R
− κ (10)

F ′′(R) =
−2

R2
. (11)

Relation (11) shows thatF (R) is a concave function in the positive half plane, and then (10) shows that

Fmax
def
= max

R∈[0,∞)
F (R) = 2

[

log

(

2

κ

)

− 1

]

. (12)

We also note thatF (0) = F (∞) = −∞. Thus, (9) and (12) along with concavity ofF (R) imply that
1) when log

(

σ
uκ

)

> Fmax, thenG′(R, u) = 0 does not have any root. Moreover,G′(R, u) < 0 for every

R ∈ [0,∞). This proves the first statement of the lemma.

2) when log
(

σ
uκ

)

= Fmax, thenG′(R, u) = 0 has exactly one root, sayR1(u). Moreover,G′(R, u) ≤ 0

for everyR ∈ [0,∞) with equality only atR1(u). This proves the second statement of the lemma.

3)when log
(

σ
uκ

)

< Fmax, thenG′(R, u) = 0 has exactly two roots, sayR1(u) andR2(u) with R1 < R2.

Note thatG′(R, u) < 0 for R ∈ [0, R1(u))∪ (R2(u),∞), andG′(R, u) > 0 for R ∈ (R1(u), R2(u)). Thus,
the last statement of the lemma follows. Moreover, from concavity of F (R) along with its boundary

conditions and the fact thatlog
(

σ
uκ

)

decreases asu increases, clearly imply that[R1(u), R2(u)] ⊂

[R1(u1), R2(u1)] wheneveru1 > u. This concludes the proof.
The functionF (R) is shown in Figure 5. Note that the points where horizontal lines intersect the curve
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Fig. 5. The functionF (R) is shown. The horizontal lines correspond to various valuesof log
(

σ

uκ

)

. Specifically, the top most line

corresponds to the first case in Lemma 1, i.e., we choseu < σκe2

4
. The middle line corresponds to the second case in Lemma 1, i.e., we

choseu = σκe2

4
. Finally, the bottom most line corresponds to the third casein Lemma 1, i.e., we choseu > σκe2

4
.
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4

Fig. 6. The functionG(R, u) is monotone decreasing foru ≤
σκe2

4
. For u < σκe2

4
, from case 2 of Lemma 1,G(R, u) has a saddle point

as shown in the figure (b).

of the functionF (R) are the roots ofG′(R, u) = 0.

Let R(u) = arg minR∈[0,Rmax] G(R, u). Then, we deduce following results from above lemma.

Corollary 1: Rmax = R(u). for everyu ∈
[

0, σκe2

4

]

.

Proof: From the first two statements of Lemma 1, the functionG(R, u) is monotone decreasing for

everyu in the given range. Thus, the result follows.

Refer to Figure 6 for illustrations.

Corollary 2: For everyu > σκe2

4
, then R(u) ∈ {R1(u), Rmax}. Specifically, if Rmax < R1(u), then

R(u) = Rmax; otherwiseR(u) = arg minR∈{R1(u),Rmax} G(R, u).

Proof: The proof follows from the third statement of Lemma 1. Note that the function is monotone

decreasing untilR(u). Thus, ifRmax < R1(u), then the minimum is achieved atRmax. Now, we also note
that the function is monotone increasing in(R1(u), R2(u)), and it decreases monotonically afterR2(u).

Thus,minR∈[0,Rmax] G(R, u) = minR∈{R1(u),Rmax} G(R, u).

Corollary 3: For everyu > κσe, thenR(u) = min{R1(u), Rmax}.
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Fig. 7. The functionG(R, u) has a local minima and maxima atR1(u) and R2(u), respectively. Whenσκe2

4
< u ≤ κσe (figure (a)),

R1(u) is not the global minima in the range[0,∞). The global minima occurs atR = ∞. But, whenu > κσe (figure (b)),R1(u) is the
global minima. Moreover, asu increasesG(R, u) increases at everyR andR1(u) decreases.

Proof: The result follows from the fact that ifu > κσe, thenminR∈[0,∞) G(R, u) < u. We prove this

using contradiction. Fixu > κσe and letminR∈[0,∞) G(R, u) > u. Then, for everyR ∈ [0,∞)

u ≤ min
R∈[0,∞)

{

(1 − c)σ

R
+ (1 − (1 − c)e−κR)u

}

⇒ u ≤
σeκR

R
.

Now, chooseR = 1
κ
. Clearly, 1

κ
∈ [0,∞). But, for this value ofR, the above inequality becomesu ≤ κσe,

which provides the required contradiction.
For illustrations, refer to Figure 7.
Lemma 2:R(u) is a monotone decreasing function ofu.

Proof: By Corollary 1, it suffices to focus onu > σκe2

4
. Here,R(u) ∈ {R1(u), Rmax} by Corollary 2.

Now, we show that if for someu R(u) = R1(u), thenR(u1) = R1(u1) for everyu1 > u. Clearly, since

R(u) = R1(u), R1(u) < Rmax. By the third statement of Lemma 1,R1(u) is a monotone decreasing

function of u. Thus, for everyu1 > u, R1(u1) < Rmax (see Corollary 2). Thus, to showR(u1) = R1(u1),
we need to show thatG(Rmax, u1)−G(R1(u1), u1) > 0. First, note thatG(R, u1)−G(R, u) = (1− (1−

c)e−κR)[u1 −u]. Thus,G(R, u1)−G(R, u) is monotone increasing function ofR, and hence achieves the

maximum atRmax. Now, we claim the following:

G(R1(u1), u1) − G(R(u), u) < G(R(u), u1) − G(R(u), u).

The above relation holds as[R1(u), R2(u)] ⊂ [R1(u1), R2(u1)] from Lemma 1, and since the function

G(R, u1) is monotone increasing in(R1(u1), R2(u1)). Now, from the above expression we can conclude

that

G(R1(u1), u1) − G(R(u), u) < G(Rmax, u1) − G(Rmax, u)

⇒ G(Rmax, u) − G(R(u), u) < G(Rmax, u1) − G(R1(u1), u1)

⇒ G(Rmax, u1) − G(R1(u1), u1) > 0.
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This concludes the proof.
Let R(u) = arg minR G(R, u) and R̂(u) = arg minR G1(R, u).
Lemma 3:The functionsG(R(u), u) andG1(R̂(u), u) are monotone increasing inu.

Proof: We prove the required forG(·, ·). The proof forG1(·, ·) follows from the similar arguments.

We note thatG(R, u) ≤ G(R, u1) wheneveru < u1 for every R. Thus,G(R(u), u) ≤ G(R(u1), u) ≤

G(R(u1), u1). This concludes the proof.
We note that from the practical perspective, we only need to consider the case withu > κσe. This is

because whenu ≤ κσe, then the minimum value of the functionG(R, u) in the positive half plane isu,
and it is achieved atR = ∞. Since, with the proper choice ofu, arg minR G(R, u) is the rate chosen by

the best response rate adaptation policy at every back-off stage. Thus,arg minR G(R, u) = ∞ at certain

back-off stagek implies that it is suboptimal to waste time in transmitting the packet, rather it is optimal
to move to the next stage as soon as possible. Specifically, inback-off stagek, the user waits for its turn to

transmit, but when the turn comes, it transmits at∞ rate. The transmission at∞ rate is guaranteed to fail

as the probability of transmission error is 1. This process continues until the user moves to the subsequent
stages. Thus, the throughput of the user can be improved by eliminating such back-off stages entirely as

it saves the time that user spend in these back-off stages. So, we assume that the system operates in the

regime that hasu > κσe. Note that in this regime,arg minR∈[0,Rmax] G(R, u) is unique (see Corollary 2).
We need this assumption explicitly for the proof of Theorem 2, remaining results hold even otherwise.

Lemma 4:Fix any givenρ, and let(π, c) denote the steady state probability and the collision probability,
respectively, when all the users use rate adaptation profileρ. Then,J(i) ≤ J(i + 1) for every i ≥ 0 in

WoLD and WLDS system.
Proof: We focus of WoLD systems. The proof for WLDS systems follows similarly. With some abuse

of notation, let us define

J(i, R) =
{

(1 − c)TR + (1 − (1 − c)e−κR)J(i + 1)
}

+ ξi(π, c),

J(I, R) =
{

(1 − c)TR + (1 − (1 − c)e−κR)J(I)
}

+ ξI(π, c),

Thus,J(i) = minR∈[0,Rmax] J(i, R).
We prove the required by induction. LetRI be such thatJ(I, RI) = J(I). Then, we know that

J(I, RI) = (1 − c)TRI
+ (1 − (1 − c)e−κRI )J(I, RI) + ξI(π, c).

Now, consider the following:

J(I, RI) − J(I − 1, RI) = ξI(π, c) − ξI−1(π, c).

SincepI ≤ pI−1, ξI(π, c) ≥ ξI−1(π, c). Thus, we conclude thatJ(I, RI) ≥ J(I − 1, RI). Now, observe

that J(I) = J(I, RI) ≥ J(I − 1, RI) ≥ J(I − 1). By induction hypothesis, letJ(i − 1) ≤ J(i) for every
i ≥ j. Moreover, letRj satisfyJ(j, Rj) = J(j). Now, consider

J(j, Rj) − J(j − 1, Rj)

= (1 − (1 − c)e−κRj )(J(j + 1, Rj) − J(j, Rj))

+(ξj(π, c) − ξj−1(π, c)).

Again note thatξj(π, c) ≥ ξj−1(π, c), and alsoJ(j + 1, Rj) ≥ J(j, Rj) by induction hypothesis. Thus,

it follows that J(j) ≥ J(j − 1).
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B. Proof of Proposition 2

Since at each stage, the rate is chosen from[0, Rmax], any rate adaptation strategyρ ∈ A, where

A = [0, Rmax]
I . We assume that each user uses the same rate adaptation strategy. Every rate adaptation

strategyρ corresponds to a unique steady state distributionπρ and the collision probabilitycρ. Note that
the throughput for a user is a function of(ρ, πρ, cρ). Now, let us define a correspondenceB : A ↪→ A as

B(ρ) = Aρ ⊆ A, whereAρ is a set of the rate adaptation strategies that optimize the throughput for given

(ρ, πρ, cρ) using the MDP formulation. In a non-atomic gameB(·) is the best response correspondence.
This is because if a single user deviates from the profileρ, then it does not affect the average system

behavior in the non-atomic game. The average system behavior is still defined by(ρ, πρ, cρ). Thus, to

maximize the throughput assuming all the other users do not change there profile fromρ, a user has to
choose a profile fromAρ. Formally, letφ(ρ2, ρ1) denote the throughput of a user with profileρ2 given that

the average system behavior is described by(ρ1, πρ, cρ). Here, if ρ2 ∈ B(ρ1), thenφ(ρ2, ρ1) ≥ φ(ρ, ρ1)

for every ρ ∈ A. Note that to prove the existence of symmetric pure NE, it suffices to prove that the
correspondenceB(·) has a fixed point. We use Kakutani’s fixed point theorem to prove the required.

First note that by construction,A is a compact, convex and non-empty subset of the finite dimensional
Euclidean space. Moreover,B(ρ) is non-empty for allρ ∈ A, and B(ρ) is convex. The convexity of

B(ρ) follows as it contains a single point as shown in Corollary 2.Thus, to apply Kakutani’s Fixed Point

Theorem it suffices to show thatB(·) has a closed graph, i.e., if(ρn, ρ̂n) → (ρ, ρ̂) such thatρ̂n ∈ B(ρn)

for every n, then ρ̂ ∈ B(ρ). We prove the required using contradiction. Let there exista sequence

(ρn, ρ̂n) → (ρ, ρ̂) such thatρ̂n ∈ B(ρn) for everyn, but ρ̂ 6∈ B(ρ). This implies that there exists a profile

ρ′ and ε > 0 such that

φ(ρ′, ρ) > φ(ρ̂, ρ) + 3ε. (13)

We note thatφ(ρ, ρ′) is clearly a continuous function ofρ. We claim thatφ(ρ, ρ′) is also a continuous
function of ρ′. This can be seen as follows. A small perturbation inρ′ results in a small perturbations

in πρ′ and cρ′. Thus, the average system behavior is perturbed by a small amount, resulting in a small

change inφ(ρ, ρ′). Now, sinceρn → ρ, for large enoughn we can conclude thatφ(ρ′, ρn) ≥ φ(ρ′, ρ)− ε.

Using this and (13), we conclude thatφ(ρ′, ρn) > φ(ρ̂, ρ) + 2ε. Again using continuity ofφ(·, ·), note

for large enoughn, φ(ρ̂n, ρn) ≤ φ(ρ̂, ρ) + ε. Combining the previous two expression we obtain that

φ(ρ′, ρn) > φ(ρ̂n, ρn) + ε, which contradicts the fact that̂ρ 6∈ B(ρ) for every n. Thus, correspondence
B(·) has a fixed point.

C. Proof of Proposition 3

Proof: Fix ρ and the corresponding(π, c). Then, we show that̂ρi ≥ ρ̂i+1 for everyi < I in WoLD and
WLDS systems. Again, we focus on WoLD systems, and the proof for WLDS systems follows similarly.

The result follows immediately from the above lemma and Lemma 2 for all i < I as here we seek

minR G(R, J(i + 1)). To see the result for stageI, note thatJ(I) must satisfy

J(I) = min
R∈[0,Rmax]

{

(1 − c)TR + (1 − (1 − c)e−κR)J(I)
}

+ξI(π, c).
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Thus, here as well the required follows from Lemma 2. Since, every best response satisfies that the rates

decreases monotonically with the back-off stages, the Theorem 3 follows.
Note: From the above discussion, we can conclude that for everyρ, ρ̂I−1 = ρ̂I for WoLD systems.

D. Proof of Proposition 5

Fix any user, sayn, and let all the other users use a rate adaptation policyρ. Then the user’s best
response toρ is obtained from the expressions presented in Section V-B

We refer to theJ(i) values obtained forρ(m) as J (m)(i). For proving the theorem, we prove various

properties ofJ (m)(i) andρ(m+1), givenρ(m) by exploiting the value iteration method used to solve MDP.
Let, for everyi, J

(m)
` (i) denote the value ofJ-function in`th for stagei. Then,J (m)

`+1 (i) is computed using

the following recursion.

J
(m)
`+1(i) = min

R∈[0,Rmax]
G(R, J

(m)
` (0)) + ξi(ρ

(m−1)) + c[J
(m)
` (i + 1) − J

(m)
` (0)] for i < I (14)

J
(m)
`+1 (I) = min

R∈[0,Rmax]
G(R, J

(m)
` (0)) + ξI(ρ

(m−1)) + c[J
(m)
` (I) − J

(m)
` (0)], (15)

whereξi(ρ
(m−1)) is the value of functionξ when all the other users use rate adaptation strategyρ(m−1).

From results in MDP theory,lim`→∞ J
(m)
` (i) = J (m)(i) for every i. Moreover, if we letρ(m)(`) to be the

rate adaption policy in thèth iteration, thenlim`→∞ ρ(m)(`) = ρ(m).
Lemma 5: In the best response,ρ(m)(i) = ρ(m)(i+1) for everyi = 0, . . . , I−1 andm for anyρ(m−1)(i).

Proof: The result follows immediately from (14) and (15). Here, note that the optimal rate depends

on the same functionG(R, J
(m)
` (0)) for every i and `. Thus, for everỳ , ρ

(m)
i (`) = ρ

(m)
i+1(`) for every

i = 0, . . . , I − 1. Thus, the same property will hold even in the limit as` goes to∞.
Lemma 6:Let ρ(0) = Rmax1. Then,ρ(m) ≥ ρ(m+1) for everym.

Proof: The proof is by induction. Clearly,ρ(0) ≥ ρ(1). By induction hypothesis, we assume that
ρ(0) ≥ ρ(1) ≥ · · · ≥ ρ(m). Now, we show thatρ(m) ≥ ρ(m+1). To show this, by Lemma 3, it suffices to

show thatJ (m)(0) ≤ J (m+1)(0). We show this by showing thatJ (m)
` (i) ≤ J

(m+1)
` (i) for every i and `

starting from the initial conditionJ (m)
0 (i) = J

(m+1)
0 (i) = 0 for all i. Clearly, the required holds for̀= 0.

By induction hypothesis, let the required hold until`th iteration. Now, we consider the(` + 1)th iteration

and observe that for everyi < I

J
(m+1)
`+1 (i) − J

(m)
`+1(i)

=

[

min
R∈[0,Rmax]

G(R, J
(m+1)
` (0)) − min

R∈[0,Rmax]
G(R, J

(m)
` (0))

]

+
[

ξi(ρ
(m)) − ξi(ρ

(m−1))
]

+ c
[

J
(m+1)
` (i + 1) − J

(m)
` (i + 1)

]

.

Note that for everyR, G(R, J
(m+1)
` (0)) ≥ G(R, J

(m)
` (0)) as J

(m+1)
` (0) ≥ J

(m)
` (0). Thus, the first term

in the above expression is non-negative. The second term is also non-negative asρ(m) ≤ ρ(m−1) by the

induction hypothesis onm. Finally, the third term is also non-negative by induction hypothesis of̀ . Thus,
the required follows for alli < I. Also, note that using the similar arguments, it is easy to see that the

required also holds fori = I.
Proof of Proposition 5:Sinceρ(m) is a monotone decreasing sequence in compact space, there exists

ρ∗ = limm→∞ ρ(m). Moreover, it can be easily seen that the best response toρ∗ is ρ∗ itself. Thus,ρ∗ is a

NE.
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APPENDIX III

PROOFS OF THE RESULTS INSECTION IV

Proof of Proposition 6:Let us assume the contrary, that for somei we haveρ(i) = R1 > ρ(i+1) = R2

(consequentlyT1 = Tρ(i) < Tρ(i+1) = T2) and let us construct two other rate allocations. In the firstone,

ρ1, we increaseTρ1(i) = Tρ(i+1) and keep the remaining rates the same (Tρ1(j) = Tρ(j) for j 6= i). In the
second one,ρ2, we decreaseTρ2(i+1) = Tρ(i) and keep the remaining rates the same (Tρ1(j) = Tρ(j) for

j 6= i + 1).

Let us callE, E1, E2 andD, D1, D2 andφ, φ1, φ2 the enumerators, the denominators and the average
rate from (1) forρ, ρ1, ρ2 respectively. Since inρ2 we have decreased the duration of a typical slot by

decreasingTρ2(i+1), we haveD > D2, and consequently we haveE−E2

D−D2 > φ > φ2. Similarly, in ρ1 we

have increased the slot duration, henceD < D1 and E1−E
D1−D

< φ1 < φ. Therefore,

E − E2

D − D2
>

E1 − E

D1 − D
.

SinceE − E2 = πi+1pi+1(1 − c)(ei − ei+1) andE1 − E = πipi(1 − c)(ei − ei+1), the inequality further

simplifies to

D1 − D

πipi

>
D − D2

πi+1pi+1
. (16)

Case without RTS/CTS: Observe that{j : ρ1(j) < R1} = {j : ρ(j) < R1∪{i}} and{j : ρ1(j) ≤ R2} =

{j : ρ(j) ≤ R2 ∪ {i}} becauseρ1(i) = R2. Similarly, {j : ρ1(j) < R1} = {j : ρ(j) < R1 \ {i + 1}} and

{j : ρ1(j) ≤ R2} = {j : ρ(j) ≤ R2 \ {i + 1}} becauseρ2(i + 1) = R1. Hence we have

D1 − D =

= [t({j : ρ(j) < R1} ∪ {i})n − t({j : ρ(j) < R1})
n] T1

+ [t({j : ρ(j) ≤ R2} ∪ {i})n − t({j : ρ(j) ≤ R2})
n] T2,

D − D2 =

= [t({j : ρ(j) < R1})
n − t({j : ρ(j) < R1} \ {i + 1})n] T1

+ [t({j : ρ(j) ≤ R2})
n − t({j : ρ(j) ≤ R2} \ {i + 1})n] T2.
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For brevity let us denotet1 = t({j : ρ(j) < R1}) and t2 = t({j : ρ(j) ≤ R2}). We then have

D1 − D

πipi

−
D − D2

πi+1pi+1
=

=

[

(t1 − πipi)
n − tn1

πipi

−
tn1 − (t1 + πi+1pi+1)

n

πi+1pi+1

]

T1

−

[

(t2 − πipi)
n − tn2

πipi

−
tn2 − (t2 + πi+1pi+1)

n

πi+1pi+1

]

T2

=
n−1
∑

j=1

[

tn−j
1 (t1 − πipi)

j − tn−j
1 (t1 + πi+1pi+1)

j
]

T1

−
n−1
∑

j=1

[

tn−j
2 (t2 − πipi)

j − tn−j
2 (t2 + πi+1pi+1)

j
]

T2

=

n−1
∑

j=1

tn−j
1 (πipi + πi+1pi+1)

j−1
∑

l=1

(t1 − πipi)
j−l(t1 + πi+1pi+1)

lT1

−

n−1
∑

j=1

tn−j
2 (πipi + πi+1pi+1)

j−1
∑

l=1

(t2 − πipi)
j−l(t2 + πi+1pi+1)

lT2

< 0.

where the last inequality follows from the fact thatt1 < t2 and T1 < T2, hence every term in the first

sum is strictly smaller than the corresponding term in the second term. This leads to contradiction.
Case with RTS/CTS: Let us start again from (16). It is easy to see that

D1 − D

πipi

=
D − D2

πi+1pi+1
= n(1 − p)n(T2 − T1).

which is again a contradiction and we cannot have thatρ(i) > ρ(i + 1). Similarly we can show that we

cannot haveρ(i) < ρ(i + 1) hence in this case we haveρ(i) = ρ(i + 1).
Lemma 7:Let us definetj = t({k : k ≤ j}) and

φ̄(ρ) =

∑

πipi(1 − c)(1 − eρ(i))

(1 − p)N +
∑

j≥0(t
N
j−1 − tNj )Tρ(j)

The optimal rate allocationρ∗ = argmaxρ∈RI φ(ρ) = argmaxρ∈RI φ̄(ρ) and the maximum rate isφ∗ =

φ̄(ρ∗).
Proof: From Proposition 6 we have that the optimalρ∗(i) is an increasing function ini. It is easy

to verify using Proposition 1 that̄φ(ρ) = φ(ρ) for any monotoneρ. Hence ifρ∗ obtained by maximizing

φ̄(ρ) is increasing, it also maximizesφ(ρ) over all increasing functionsρ(i), thus it also maximizesφ(ρ).

It remains to show thatρ∗ is increasing.
Sinceρ∗ maximizesφ̄ we have that∇φ̄(ρ∗) = 0. By simple derivation it then follows that

∂e

∂T

∣

∣

∣

∣

ρ∗(i)

= −
(tNi−1 − tNi )

πipi(1 − c)
φ̄(ρ∗).

Now ti−1 − ti = πipi hence
tNi−1 − tNi

πipi

=
N−1
∑

j=1

tN−j
i−1 tji ,
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which is increasing ini. Consequently we have that∂e
∂T

∣

∣

ρ∗(i)
is decreasing and hence∂e

∂T

∣

∣

ρ∗(i+1)
< ∂e

∂T

∣

∣

ρ∗(i)
.

Sincee(T ) is a strictly convex function we have that∂e
∂T

∣

∣

T
is increasing inT hence we haveTρ∗(i+1) ≤

Tρ∗(i), henceρ∗(i) is increasing ini which concludes the proof.

Proof of Proposition 7:As lemma 7 shows, we can optimizēφ instead ofφ. Moreover, if our initial rate
allocationρ0(i) is non-decreasing, the update (2) guaranteesρm(i) stays non-decreasing ini, as explained

in lemma 7. Hence for everym we haveφ(ρm) = φ̄(ρm). Update (2) represent a gradient-descent algorithm

for φ̄. It is well know that a gradient descent algorithm will converge to a local maximum for an appropriate
choice of step sizes (choosingεm for convergence is a standard technique and we do not discussit here.)

Finally, it remains to be proved that function̄φ has only a single local maximum. Suppose the contrary,

that ρ1 6= ρ2 are two local maxima. Let us choose an arbitraryx ∈ (0, 1) and chooseρ3 such that
eρ3(i) = xeρ1(i) + (1 − x)eρ2(i). Let us define

g(y) =

∑

πipi(1 − c)(1 − yeρ1(i) − (1 − y)eρ2(i))

(1 − p)N +
∑

j≥0(t
N
j−1 − tNj )(yTρ1(j) + (1 − y)Tρ2(j))

.

If is easy to see thatg(y) is either increasing or decreasing. Suppose with out loss ofgenerality that

φ̄(ρ1) ≤ φ̄(ρ2), henceg(0) ≤ g(x). Now sincee(T ) is a convex function, it is easy to verify that by

constructionTρ3(i) < xTρ1(j) +(1−x)Tρ2(j)) and consequentlyg(x) ≤ φ̄(ρ3) for an arbitrary smallx > 0.
Thus ρ1 cannot be a local minimum. Since there is a single local maximum, the gradient descent will

always converge to the global maximum, which concludes the proof.

Proof of Proposition 9:Since the we use the same rate in all stages, the stationary probabilities simplify
significantly and we havep = 1+2(1−c)(1−e)

(1−c)(1−e)
p0. We next have

∂p

∂e
= −

p0

(1 − c)2(1 − e)2

(

(1 − c) + (1 − e)
∂c

∂e

)

,

∂c

∂e
= (N − 1)(1 − p)N−2∂p

∂e
,

and by solving the system we derive (5) and similarly (6). Finally, we can expressφ = π0p0/S
n and by

simple derivation we obtain (4).


