
 1

Abstract— MPLS over DiffServ couples the diffserv’s per hop
guarantees with MPLS traffic engineering capabilities to provide
better quality of service (QoS) guarantees than that provided by
MPLS or DiffServ alone. Linux provides powerful traffic control
features to ensure proper traffic classification and
differentiation. However, the current implementation of the
traffic filter, used for MPLS over DiffServ architecture on Linux,
exhibits certain drawbacks. This paper discusses the
shortcomings of the current filter implementation and proposes a
new filter that is capable of alleviating the problems.

Index Terms— DiffServ over MPLS, Linux traffic control,
RSVP-TE.

I. INTRODUCTION
HE continuing exponential growth of the Internet has
placed a tremendous strain on the service provider

networks. Coupled with this increase, there has been
introduction of newer applications like e-commerce, voice and
multimedia services that require higher bandwidth and stricter
quality guarantees. Augmenting the capacity of a network is a
costly proposition, so the service providers are looking at
architectures that gives them greater control on the traffic
passing through their domains and hence ensure optimal
performance with minimal increase in network resources.

MPLS is a label-switching technology with powerful traffic
engineering features like explicit route specification, path pre-
emption and fast reroute. Differentiated services, on the other
hand, provide quality of service (QoS) at per node level by
aggregating the traffic in classes or behaviour aggregates
(BAs) that receive proper treatment within the DiffServ
domain.

Although MPLS and DiffServ are independent
technologies, they complement each other quite well. Looking
collectively, MPLS is used to move packets from one place to
another through a series of hops along a pre-selected path,
while, DiffServ is used to ensure that the packet receives
proper treatment at each of these hops. Hence, DiffServ over
MPLS [1] can provide overall better guarantees by providing
QoS, on both, per node and end-to-end path basis.

RSVP-TE daemon for the DiffServ over MPLS [2] has
been implemented on Linux. The queuing and scheduling
information is read from the ds_config file and installed on the
system. Service differentiation depends on how well the
traffic filters are implemented.. Linux provides a powerful set
of traffic control (TC) utilities. However, the current traffic
filter implementation does not provide proper differentiation
for different classes of traffic as shown by the simulation

results presented here. Hence there is a need to understand the
short-comings and build a better filter for supporting DS-
MPLS.

The rest of the paper is organized as follows: Section II
gives an overview of the DiffServ over MPLS and section III
presents the architecture of the RSVP-TE daemon for Linux.
Section IV discusses the queuing schemes provided by Linux
traffic control and the logical structure of the current filter
implementation. Section V presents simulation studies that
demonstrate the drawbacks of the filter. Section VI details the
newly proposed traffic filter and the reasons for its better
performance. Finally, the conclusions are presented.

II. OVERVIEW OF DIFFSERV OVER MPLS
Traffic entering a differentiated services (DiffServ) domain

is classified into behaviour aggregates (BAs), based on
differentiated services code point (DSCP), which comprise of
six bits of DS/TOS (Differentiated Services/Type of Service)
field. Inside the DiffServ domain, a packet is forwarded
according to its BA. This forwarding treatment applied to a
BA at a DS node is defined as per-hop behaviour (PHB).
There are two standard PHB groups: Expedited Forwarding
(EF) PHB and Assured Forwarding (AF) PHB, with EF
having the highest priority for low latency service. Within the
AF, there are four classes, class AF1 has the highest priority
while AF4 has the lowest. Within each class AFx, there are
three drop precedence (DP) levels, the subclass DP1 has the
lowest dropping probability while DP3 has the highest.

MPLS or Multi-protocol label switching simplifies packet-
forwarding by forming label-switched paths or LSPs that act
like virtual tunnels. Inside the MPLS domain, a packet is first
classified into a forwarding equivalence class (FEC), based on
it, is assigned a locally significant label at the ingress. At the
subsequent hops, there is no further inspection of the network
layer header and the packet is forwarded by label switching.

To support DiffServ over MPLS, the six-bit DSCP in Layer
3 DS field is mapped to the three-bit EXP field present inside
the MPLS shim layer header or encapsulated into the Layer 2
header itself. This is needed because MPLS routers do not
examine the Layer 3 header during forwarding. The standards
define two types of label switch paths (LSPs):
EXP inferred LSP or E-LSP in which, the differential PHB is
inferred from the EXP bits,
Label inferred LSP or L-LSP in which, the MPLS label itself
signifies DS treatment and determines the PHB applied to all
packets in the FEC.

DiffServ over MPLS: Tuning QOS parameters for
Converged Traffic using Linux Traffic Control

Sundeep .B.Singh and Girish.P.Saraph

Indian Institute of Technology Bombay, Powai, Mumbai-400076, India

T

 2

III. RSVP-TE DAEMON FOR DIFFSERV OVER MPLS UNDER
LINUX

The RSVP-DS-TE daemon has components in both user and
kernel space. The components in kernel space are: MPLS
kernel component, netfilter and the QoS and fair queuing
component. The components in user space are RSVP daemon
for the signaling and maintaining of the MPLS state and for
distribution of labels. “Rtest”, on the ingress, issues request
for the LSP with resource allocation to the RSVP daemon.
Once the signaling is complete and path is set-up, “rapirecv”
on the egress, sends acknowledgement back to the ingress.
“tunnel” is used to map specific traffic from ingress onto the
LSP.

When a packet enters the ingress, it is marked and its FEC
is identified using netfilter. Then, the packet is labeled with
DSCP is mapped to the EXP bits and forwarded to the proper
MPLS tunnel interface. The “QoS and fair queuing” module
reads the ds_config file to determine the structure of the traffic
filter to be installed. At the intermediate nodes, the incoming
label is swapped with a new label while, the EXP value in the
MPLS header is mapped to “tcindex” to determine its PHB
treatment based on its behaviour aggregate.

IV. TRAFFIC CONTROL AND CURRENT FILTER
IMPLEMENTATION

A. Linux Traffic Control (TC)[4]:
Linux provides powerful traffic control features using TC.

Traffic control consists of shaping, scheduling and policing.
Queuing disciplines (qdiscs) are the building blocks of traffic

control system. A lot of qdiscs are available on Linux, but the
ones that have been used in implementing the traffic filter are:

1. Classless qdiscs: These qdiscs do not have classes.
Packet FIFO (PFIFO): This is a simple FIFO qdisc where the
buffer size is specified in packets.
Token Bucket Filter (TBF): This has functionality of the token
bucket /leaky bucket queuing model.
Random Early Detect (RED): This has RED scheme[5] based
probabilistic packet drop mechanism.

2. Classful qdiscs: These qdiscs contain classes which may
contain other qdiscs. The different qdiscs are as follows:

Priority Queuing Discipline (PRIO): In PRIO, packets are
first classified using the filter and placed into different priority
queues, which by default are three. Packets are scheduled
from the head of a given queue only if all queues of higher
priority are empty. Within each of the priority queues, packets
are scheduled in FIFO order.

Generalized RED (GRED): [6] It was specifically designed
keeping in mind the need for implementing multiple drop
precedence in Assured Forwarding Per Hop Behaviour (AF
PHB). GRED can have a maximum of 16 RED virtual queues
(VQs) each of which can be configured independently. GRED
takes advantage of the probabilistic dropping mechanism in
RED, to implement AF classes. The drop priority among the
VQs is chosen using the four least significant bits (0…15 for
16 VQs) in the tc_index field (discussed in DSMARK qdisc).

DSMARK qdisc: [6] This qdisc is used for marking the
Differentiated Services Code Point (DSCP) field of the
packets and/or with tcindex classifier set, it may also be used
for forwarding the packet to the appropriate AF queue in the
GRED qdisc. The operation is as follows: with the
“set_tc_index” option set, the TOS field is copied to a 16 bit
filed “tc_index”. Next, the tcindex classifier reads the
tc_index field and performs the following operation:
(tc_index & mask)>>shift;
mask and shift are the parameters that can be passed with the
tcindex classifier using TC. The value returned after this
operation (16 bit value) is then re-written by the qdisc back to
tc_index. This tc_index value may now be used for remarking
the packet. In fig.2., the four rightmost bits of the tc_index
field is used by the GRED qdisc to select a VQ for the packet
(as discussed above in GRED).

Hierarchical Token Bucket (HTB): [7] HTB is based on TBF
and Deficit Round Robin (DRR), which is a modified version
of Weighted Round Robin (WRR). The term “hierarchical”
implies that the filter allows hierarchical link sharing (such as
a tree) on an interface. HTB allows sharing of bandwidth
between its subclasses, each of which can be configured
independently.

Fig. 1. DiffServ over MPLS using RSVP-TE under Linux [3]

 3

B. Filter Structure
The logical representation of the current TC filter is

shown in Fig. 2. Its operation is explained here by using
AF12 type flow as an example. When this TC filter is used
at the ingress node, the Type Of Service (TOS) byte of the
incoming packet (say, the packet is marked AF12) is copied
into to tc_index. Then the DSMARK filter operates on the
tcindex and the following operation is done:

(tc_index & mask) >> shift
For this DSMARK filter, mask=0xFC and shift=2, so for an
AF12 (TOS=0x30) packet:

(0x30 & 0xFC) >> 2 = 0xC
which is the corresponding value of the DSCP field. Now
corresponding to this value 0xC, the tc_index classifier's
element returns the minor-value of the class identifier, in
this case 0x112, to the DSMARK qdisc.

After passing through the DSMARK qdisc, the packet
again encounters the tc_index classifier/filter at the HTB
qdisc, with mask=0xF0 and shift=4. The tc_index value is
used for this operation and the following results for the
AF12 packet:

(0x0112 & 0xF0) >> 4 = 1
which signifies that the packet belongs to AF1 and is
passed to class-id 2:10 which is for AF1 packets. Note that
this time, the result of the bitwise operation is not returned
back to the tc_index (that can only be done inside a
DSMARK qdisc). After this, the packet goes through the
corresponding GRED qdisc which learns about the packet’s
drop precedence by checking out the last four bits of the
tc_index; since for AF12 it is 0x0112 and the AF12 packet
gets a drop precedence of 2.

This explains the logical passage of the packet through
the traffic filter.

V. DRAWBACKS WITH THE FILTER

In this section, we demonstrate the short-comings of the

above TC filter implementation based on our experimental
studies. The results show priority reversal could take place
leading to unacceptable performance. The experiments are
carried out using a simple network topology with fixed
source and destinations, as shown in Fig.3.

Classid 2:1 HTB

PFIFO 3:0

RED 4:0

DP1

DP2

DP3

GRED 7:0

DP1

DP2

DP3

GRED 6:0

DP1

DP2

DP3
GRED 5:0

0x0112

classid

classid

classid

classid

classid

0x161 & 0xf0 >> 4 = 6
00xx111111 && 00xxff00 >>>> 44 == 11
0x112 & 0xf0 >> 4 = 1
0x121 & 0xf0 >> 4 = 2
0x122 & 0xf0 >> 4 = 2
0x131 & 0xf0 >> 4 = 3
0x132 & 0xf0 >> 4 = 3
0x151 & 0xf0 >> 4 = 5

handle 1 classid 2:10
handle 2 classid 2:20
handle 3 classid 2:30
handle 5 classid 2:50
handle 6 classid 2:60

0x0112

skb tc_index

0x30 0x0112

0x0 & 0xfc >> 2 = 0x0
00xx2288 && 00xxffcc >>>> 22 == 00xxaa
0x30 & 0xfc >> 2 = 0xc
0x48 & 0xfc >> 2 = 0x12
0x50 & 0xfc >> 2 = 0x14
0x68 & 0xfc >> 2 = 0x1a
0x70 & 0xfc >> 2 = 0x1c
0xb8 & 0xfc >> 2 = 0x2e

handle 0x0 classid 1:161
handle 0xa classid 1:111
handle 0xc classid 1:112
handle 0x12 classid 1:121
handle 0x14 classid 1:122
handle 0x1a classid 1:131
handle 0x1c classid 1:132
handle 0x2e classid 1:151

skb iph tos

DSMARK 1:0

AF12

0x30

HTB 2:0

Fig. 2. Logical view of the current filter implementation

 4

The experimental observations with the present filter are
presented for three cases:

Case I: Three UDP flows with same packet-size and rate.
Flow1 was given EF service,
Flow2 was given AF11 service,
Flow3 was given BE service.

Case II: Two UDP flows with same packet size and rate.
Flow1 was given AF11 service,
Flow2 was given AF12 service.

Case III: Three UDP flows with same packet-size and rate.
Flow1 was given AF11 service,
Flow2 was given AF21 service,
Flow3 was given AF31 service.

From the above it can be seen that only in case II, where
BAs share an ordering constraint (PHB Scheduling Class),
does the filter show expected behaviour. While in cases I
and II, the filter shows anomalies by giving higher
preference in terms of lower packet-loss/delay to lower
priority BAs. It was further noticed that:

1. PFIFO qdisc implemented for EF PHB, dropped
considerable amount of packets and hence the QoS
deteriorated even below than that of BE traffic.

2. On increasing the buffer size for PFIFO, the drops
decreased but the delay and jitter increased to high values.

As evidenced from above, the current traffic control filter
may not provide proper differentiation and may lead to
priority reversals. Thus, the whole idea of the DiffServ
over MPLS could be defeated.

VI. PROPOSED FILTER

To over these shortcomings, we have implemented a new
filter as shown in Fig. 7. The filter structure shows that, the
EF, AF and BE classes are given priority in that order,
using PRIO qdisc. In order that the lower classes are not
starved, the EF queue uses a TBF qdisc.

The AF traffic has been bundled into the HTB filter so
that the excess bandwidth among the AF classes can be
shared and bandwidth resources are fully utilized. TBF
filter is not needed here since the HTB filter itself has
bandwidth restricting mechanisms.

Finally, the BE traffic is given the lowest priority, while
still being able to access the excess bandwidth. As in the
previous filter, it is still implemented using RED.
 The ongoing experiments conducted on this TC filter
have shown that it overcomes all the priority reversal
problems seen earlier.

60Mbps
40Mbps
20Mbps

DiffServ over MPLS Domain

Fig. 3. Network Topology

Fig. 4. Packet-loss for Case I

Fig. 5. Packet-loss for Case II

Fig. 6. Delay for Case III

Source Destination

Flow 1 - EF

Flow 3 - BE

Flow 2 – AF11

Flow 1 – AF11

Flow 2 – AF12

Flow 1 – AF11

Flow 2 – AF21 Flow 3 – AF31

 5

 VII. CONCLUSIONS

This paper has analyzed the logical structure of the
traffic filters for implementing DiffServ over MPLS on the
Linux platform. The traffic filter is a very important
component of this architecture and is essential for
providing the expected QoS to different flows.

The existing TC filter implementation for Linux is found
to have certain drawbacks, which could lead the priority
reversals under certain conditions. A proper differentiation
of traffic is important for DiffServ over MPLS services.
The new filter has been implemented to mitigate the
anomalies of the previous filter. The ongoing experiments
on it have shown significantly better results.

REFERENCES
[1] L. Wu, B. Davie, S. Davari, P. Vaananen, R. Krishnan, P. Cheval, J.

Heinanen, “Multi-Protocol Label Switching (MPLS) Support of
Differentiated Services”, RFC 3270, May 2002.

[2] For MPLS patch and RSVP-TE daemon,
http://dsmpls.atlantis.ugent.be/

[3] Pim Van Heuven, “RSVP-TE daemon for DiffServ over MPLS under
Linux”, in 9th International Linux System Technology Conference,
September 4-6, 2002 in Cologne, Germany.

[4] Linux 2.4 Advanced Routing HOWTO, referred for Linux qdiscs and
netfilter, http://lartc.org/howto/

[5] Floyd, S., and Jacobson, V., “Random Early Detection gateways for
Congestion Avoidance”, in IEEE/ACM transactions on Networking,
vol. 1, no. 4, pp 397-413, 1993.

[6] QoS on Linux. http://www.opalsoft.net/qos/
[7] For HTB documentation and HTB patch for Linux kernel 2.4.18

http://luxik.cdi.cz/~devik/qos/htb/

DSMARK 1:0

0x0 & 0xfc >> 2 = 0x0
00xx2288 && 00xxffcc >>>> 22 == 00xxaa
0x30 & 0xfc >> 2 = 0xc
0x48 & 0xfc >> 2 = 0x12
0x50 & 0xfc >> 2 = 0x14
0x68 & 0xfc >> 2 = 0x1a
0x70 & 0xfc >> 2 = 0x1c
0xb8 & 0xfc >> 2 = 0x2e

handle 0x0 classid 1:161
handle 0xa classid 1:111
handle 0xc classid 1:112
handle 0x12 classid 1:121
handle 0x14 classid 1:122
handle 0x1a classid 1:131
handle 0x1c classid 1:132
handle 0x2e classid 1:151

0x161 & 0xf0 >> 4 = 6
00xx111111 && 00xxff00 >>>> 44 == 11
0x112 & 0xf0 >> 4 = 1
0x121 & 0xf0 >> 4 = 2
0x122 & 0xf0 >> 4 = 2
0x131 & 0xf0 >> 4 = 3
0x132 & 0xf0 >> 4 = 3
0x151 & 0xf0 >> 4 = 5

handle 1 classid 2:2
handle 2 classid 2:2
handle 3 classid 2:2
handle 5 classid 2:1
handle 6 classid 2:3

classid 2:2

classid 2:1

classid 2:3

TBF 3:0

RED 4:0

PRIO 2:0

00xx111111 && 00xxff00 >>>> 44 == 11
0x112 & 0xf0 >> 4 = 1
0x121 & 0xf0 >> 4 = 2
0x122 & 0xf0 >> 4 = 2
0x131 & 0xf0 >> 4 = 3
0x132 & 0xf0 >> 4 = 3
handle 1 classid 3:10
handle 2 classid 3:20
handle 3 classid 3:30
 DP1

DP2

GRED 7:0

DP1

DP2

GRED 6:0

DP1

DP2

GRED 5:0

Classid 3:1 HTB

classid 3:10HTB

classid 3:20HTB

classid 3:30HTB

HTB 3:0

Fig. 7. Logical view of the new filter implementation

